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ABSTRACT
Introduction  The SARS-CoV-2 pandemic remains a 
threat to public health. Soon after its outbreak, it became 
apparent that children are less severely affected. Indeed, 
opposing clinical manifestations between children and 
adults are observed for other infections. The SARS-
CoV-2 outbreak provides the unique opportunity to study 
the underlying mechanisms. This protocol describes 
the methods of an observational study that aims to 
characterise age dependent differences in immune 
responses to primary respiratory infections using SARS-
CoV-2 as a model virus and to assess age differences in 
clinical outcomes including lung function.
Methods and analysis  The study aims to recruit at 
least 120 children and 60 adults that are infected with 
SARS-CoV-2 and collect specimen for a multiomics 
analysis, including single cell RNA sequencing of nasal 
epithelial cells and peripheral blood mononuclear cells, 
mass cytometry of whole blood samples and nasal cells, 
mass spectrometry-based serum and plasma proteomics, 
nasal epithelial cultures with functional in vitro analyses, 
SARS-CoV-2 antibody testing, sequencing of the viral 
genome and lung function testing. Data obtained from this 
multiomics approach are correlated with medical history 
and clinical data. Recruitment started in October 2020 and 
is ongoing.
Ethics and dissemination  The study was reviewed 
and approved by the Ethics Committee of Charité – 
Universitätsmedizin Berlin (EA2/066/20). All collected 
specimens are stored in the central biobank of Charité 
– Universitätsmedizin Berlin and are made available to all 
participating researchers and on request.
Trial registration number  DRKS00025715, pre-results 
publication.

INTRODUCTION
In December 2019, the novel coronavirus 
SARS-CoV-2 emerged as cause of acute 
pneumonia.1 2 By August 2021, more than 

200 million people were infected with SARS-
CoV-2.3 Soon after the beginning of the 
pandemic, it became obvious that children 
have an increased resilience against the 
primary infection. The course of disease in 
children is more likely to be milder and severe 
or even fatal courses remain extremely rare.4–8 
Various hypotheses to explain the reduced 
susceptibility and mortality of children are 
currently discussed, including reduced virus 
entry via ACE-2 in children,9 preactivated 
components of the immune system, such as 
cross-reactive T cells10–13 and antibodies,14 
or a more accentuated innate immunity in 
children15 16 (table 1). Most of these findings 
are complementary in the explanation of the 
observed phenomenon, however, some find-
ings are in part contradictory and require 
further investigation. Opposing clinical 
manifestations between children and adults 
are also observed for other viral respiratory 
infections.15–17 This points to major changes 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Sample collection from children and adults with pri-
mary SARS-CoV-2 infection at multiple time points, 
however, samples from severely ill patients are not 
included.

	⇒ Mass cytometry, single-cell RNA sequencing and 
mass spectrometry-based serum and plasma pro-
teomics display the local and systemic immune 
response.

	⇒ Air–liquid interface cultures reproduce in vivo condi-
tions and will be used for functional studies.

	⇒ Analysis of clinical data and lung function testing 
complement the multiomics approach.
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in the general immune response pattern during ageing. 
In the past, comparative immune response analyses to 
primary infections in various age groups were difficult 
to perform, as many adults had already been exposed to 
the pathogens. The SARS-CoV-2 outbreak provides the 
unique opportunity to study the age-dependent changes 
in immune responses in a controlled manner.

To understand the mechanisms behind the lower 
susceptibility of children compared with adults to develop 
severe COVID-19 disease, we have established the obser-
vational study RECAST (increased REsilience of Children 
compared to Adults in SARS-CoV-2 infecTion) focusing 
on the differences in the clinical presentation, lung func-
tion and the immune response to SARS-CoV-2 in children 
compared with adults.

The complexity of immune responses requires a multi-
level approach to display changes on various layers, 
including local immune cell composition, cytokine signal-
ling and systemic response. It can be assumed that the 
combination of several mechanisms leads to the largely 
different phenotypes. At the same time, modern tech-
niques allow to engage on an exploratory approach 

analysing simultaneously the involvement of canonical 
and non-canonical immune response patterns. The 
multiomics approach presented here allows deeply 
detailed characterisation of the various layers of age 
dependent specific immune responses. Therefore, we 
believe that the presented study design will contribute to 
a further understanding even beyond COVID-19.

To meet these requirements adequately, we chose a 
multiomics approach, including: (1) single-cell RNA 
sequencing (scRNAseq) of peripheral blood mononu-
clear cells (PBMCs) and nasal epithelial cells, (2) mass 
spectrometry-based serum and plasma proteomics, which 
has been used to identify prognostic marker signatures 
for SARS-CoV-2 disease severity and devise risk-adapted 
treatment strategies,18 (3) mass cytometry (cytometry 
by time-of-flight, CyTOF) of whole blood samples and 
nasal cells, which has been used to elucidate the role of 
T cell cytotoxicity in COVID19 and to identify a dysreg-
ulation of the myeloid cell compartment as hallmark of 
severe COVID,20 (4) highly differentiated nasal epithe-
lial cultures and functional in vitro analyses, which have 
been used to display age-related differences in the nasal 

Table 1  Hypotheses to explain the resilience of children in SARS-CoV-2 infections

Hypothesis Proposed explanation Scientific findings

Reduced 
susceptibility for 
SARS-CoV-2 in 
children81

Reduced virus entry via 
ACE-2 in children

SARS-Cov-2 uses ACE-2 in the upper and lower airways for host cell 
entry82

The age-dependency of ACE-2 expression is controversely discussed.83–85

Even though an increased expression of ACE-2 renders the individual 
more susceptible to viral infection, ACE-2 also initiates anti-inflammatory 
signalling and might contribute to a milder immune response.86

Age-dependent 
differential immune 
activation pattern

Preactivated immune 
components in children 
entail a milder immune 
response

In early childhood, infections of the upper respiratory tract are frequent. 
It has been proposed that previous infections with coronaviridae might 
contribute to a cross-reactive immunity.87

Pre-existing T cell reactivity to SARS-CoV-2 could affect the severity of 
COVID-19.10–13 19

Cross-reactive antibodies entail a milder immune response to SARS-
CoV-2.14 Of note, uninfected infants do not express cross-reactive 
antibodies.88

The polyclonality and polyreactivity of IgM naturally present in children 
recognises SARS-CoV-2 particles.89

Children possess a 
stronger innate immunity 
than adults

Children display a higher basal expression of pattern recognition receptors 
than adults and a stronger innate antiviral response.76 77

The nasopharyngeal mucosa of children exhibits a stronger innate immunity 
and expresses more antiviral cytokines than adults.90

Children expose a different 
cytokine response on 
SARS-CoV-2 infection 
than adults

In COVID-19, a cytokine storm leads to acute respiratory distress 
syndrome.63 64

Certain cytokine patterns correlate with COVID-19 severity.91

Proinflammatory cytokine concentrations might be lower in children 
infected with SARS-CoV-2 than in adults.92

Coinfections lead to a 
milder immune reaction, 
for example, because 
of virus competition 
or primed immune 
components

In COVID-19, coinfection with other pathogens is not rare, especially in 
children.93–95
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epithelium,21 (5) antibody testing and (6) sequencing 
of the viral genome. Obtained data are complemented 
with anamnestic and clinical information, lung func-
tion testing, including spirometry and multiple breath 
washout (MBW), which is a standardised method which 
allows to assess the ventilation homogeneity of the lungs 
already in preschool children as well as smell and taste. 
Longitudinal sampling allows monitoring of the immune 
response over the course of disease and beyond. Due to 
the maturation of the immune system during childhood, 
age-specific immune response pattern against SARS-
CoV-2 can be expected.22 23 Thus, participants of all age 
groups are enrolled.

Participant recruitment began in October 2020 and is 
ongoing. Of particular interest is the recruitment of chil-
dren infected with various SARS-CoV-2 virus variants of 
concern.

Study objectives
This study aims to characterise and compare primary 
infections with SARS-CoV-2 in children and adults, and 
to identify age-related determinants of disease course 
and prognosis. The immune system is not only highly 
complex, but immune response patterns also vary 
depending on individual predisposition; moreover, it also 
matures throughout the ageing of an individual. Further-
more, of pivotal interest for the interpretation of these 
data is the correlation between immune response pattern 
and clinical outcome.

METHODS AND ANALYSIS
Study design
RECAST is a prospective observational cohort study at 
Charité – Universitätsmedizin Berlin in Berlin, Germany. 
It is a substudy of the Pa-COVID study of the Charité,24 
aiming to characterise the disease course of patients 
suffering from COVID-19.

Data are collected longitudinally from patients with 
confirmed COVID-19 at three time points, directly after 
the diagnosis and at follow-up visits after 2 weeks and 
4–6 months, and from healthy age-matched controls.

Recruitment started in October 2020 and is planned to 
end in October 2023.

Study population
Inclusion criteria
Main inclusion criteria for the index person are a primary 
acute SARS-CoV-2 infection in a minor (<18 years of 
age) with positive PCR or antigen testing (both will be 
confirmed by PCR testing).

Exclusion criteria
Subjects with pre-existing conditions affecting the 
immune response, such as diseases requiring chemo-
therapy or syndromes with immunodeficiency and 
subjects with concomitant medication that affects the 
immune response, such as systemic steroids, biologicals 

or investigational therapeutics targeting SARS-CoV-2, are 
excluded.

Study procedures
Patient identification and recruitment
A network of participating paediatric outpatient practices 
(n=20) has been established as sentinels to provide access 
to a pool of >25 000 paediatric patients. All children 
who tested positive for SARS-CoV-2 by PCR or antigen 
testing as well as their household members are eligible 
for inclusion.

Healthy controls are recruited from clinical routine 
diagnostic settings if the diagnostic screening for SARS-
CoV-2 was negative.

Medical history, clinical assessment and functional testing
Assessed data include epidemiological and demographic 
parameters, medical history and potential risk factors, 
clinical course—including all diagnostic results of the 
present medical attendance—and household and family 
constellation. A complete list of all items is attached in 
online supplemental appendix table E1.

Data are collected at first contact and during the 
follow-up visits. Symptoms of post-COVID-19/long-
COVID25 are documented and symptoms of myalgic 
encephalomyelitis/chronic fatigue syndrome are assessed 
with the Canadian consensus criteria,26 27 Chalder Fatigue 
Scale28 and PedsQL Multidimensional Fatigue Scale.29–37 
Loss of smell and taste are assessed with the ‘U-Sniff’ test, 
a 12-item odour identification, the ‘Sniffin’ Sticks’ olfac-
tory threshold test and taste samples for sweet, sour, salty 
and bitter tastes in children aged 6 years or older.38 39 For 
adults, health status and quality of life are assessed with 
the St George’s Respiratory Questionnaire40 and health 
status and mental health are evaluated withthe 9-question 
Patient Health Questionnaire (PHQ-9) 41 and the Post-
traumatic Stress Disorder Checklist for DSM-5 (PCL-5) 
42 questionnaires. For children, quality of life is assessed 
using the Revised questionnaire to assess Health-Related 
Quality of Life in children and adolescents (KINDL) 43.

Disease severity is classified according to clinical features 
using the criteria outlined in the WHO COVID-19 clin-
ical management guideline44 as asymptomatic, mild, 
moderate, severe or critical disease. Also, clinical progres-
sion is classified according to the WHO clinical progres-
sion scale.45 Applied classification scales are shown in 
tables 2 and 3.

Functional testing, including lung function testing 
and MBW, will be conducted at the follow-up visits after 
2 weeks and 4–6 months.

Patient and public involvement
We will disseminate all findings in an appropriate and 
understandable manner to all participants, including 
children. We welcome the collaboration of participants 
and public in the interpretation and dissemination of all 
findings.
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Sample collection
Samples will be collected from SARS-CoV-2 positive partic-
ipants at each of three time points, directly after the diag-
nosis and at follow-up visits after 2 weeks and 4–6 months, 
and once from healthy age-matched controls.

Nasal and pharyngeal swab samples are collected for 
a SARS-CoV-2-PCR, scRNAseq and establishment of air–
liquid cell cultures. In addition, PBMCs are collected 
for single-cell sequencing, whole blood for mass cytom-
etry and plasma and serum for mass-spectrometry-based 
proteomics, and SARS-CoV-2-specific antibody testing.

Study database
For Pa-COVID-19, a study protocol was established that 
harmonises clinical, molecular and immunological 
phenotyping assessment in COVID-19 patients.24 All data 
are added to an electronic case report form (SecuTrial). 
Participants included in RECAST are part of Pa-COVID-19. 
All participants are assigned a pseudonym consisting of a 
six-digit or seven-digit alphanumerical participant code. 
A separate log allows to match each participant and their 
code. Access to SecuTrial requires a username and pass-
word. All local data are secured by password.

Table 2  COVID disease severity

Patient state Descriptor Score

Uninfected Uninfected; no viral RNA detected 0

Ambulatory: mild disease Asymptomatic; viral RNA detected 1

Symptomatic; independent 2

Symptomatic; assistance needed 3

Hospitalised: moderate disease Hospitalised; no oxygen therapy 4

Hospitalised; oxygen by mask or nasal prongs 5

Hospitalised: severe disease Hospitalised; oxygen by non-invasive ventilation (NIV) or high flow 6

Intubation and mechanical ventilation, pO2/pFiO2≥150 or SpO2/FiO2≥200 7

Mechanical ventilation, pO2/pFiO2<150 (SpO2/FiO2<200) or vasopressors 8

Mechanical ventilation, pO2/pFiO2<150 and vasopressors, dialysis or 
extracorporeal membrane oxygenation

9

Dead Dead 10

Abbreviated criteria for COVID-19 disease severity according to WHO COVID-19 Clinical management guideline.44

FiO2, fractional inspired oxygen; pO2, partial pressure of oxygen.

Table 3  WHO clinical progression scale

Disease severity Definition Criteria

Asymptomatic

Mild Symptomatic patients meeting the case definition for COVID-19 without 
evidence of viral pneumonia or hypoxia.

Moderate Pneumonia Clinical signs of (non-severe) pneumonia
Adolescent or adult: fever, cough, dyspnoea, fast breathing
Child: cough or difficulty breathing+fast breathing and/or chest indrawing
Diagnosis can be made on clinical grounds; chest imaging (radiograph, CT 
scan, ultrasound) may assist in diagnosis and identify or exclude pulmonary 
complications.

Severe Severe pneumonia Adolescent or adult: plus one of the following: respiratory rate >30 breaths/
min; severe respiratory distress; or peripheral oxygen saturation (SpO2) <90% 
on room air
Child: plus at least one of the following: Central cyanosis or SpO2<90%; 
severe respiratory distress (eg, fast breathing, grunting, very severe chest 
indrawing); general danger sign: inability to breastfeed or drink, lethargy or 
unconsciousness, or convulsions.

Critical disease Acute respiratory distress 
syndrome
or sepsis/septic shock

Oxygenation impairment, invasive ventilation or bilevel non-invasive 
ventilation (NIV) or continuous positive airway pressure (CPAP) (≥ 5 cmH2O) 
required
or
Infection and ≥2 systemic inflammatory response syndrome criteria

Modified from WHO working group.45
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Sample description
Patients recruited in RECAST are grouped into six age 
categories (table  4). Due to the nature of observatory 
studies and the lack of pre-existing data, it is not possible 
to predict the extent of assumptive differences. Prelim-
inary findings suggest that for most planned analyses a 
sample size of 15 is sufficient. The outlined sample sizes 
should suffice even for comparisons between children of 
different age groups.

PLANNED ANALYSES AND OUTCOMES OF INTEREST
We propose a multiomics workup for all patients. A 
synopsis of the planned analyses is depicted in figure 1.

SARS-CoV-2-specific PCR and antibody testing
All participants are screened for an active SARS-CoV-2 
infection with Real Time Quantitative PCRs (RT-qPCRs) 
targeting E and N genes.46 Antibody testing is conducted 
for all serum and saliva samples with SARS-CoV-2-specific 
IgG-ELISAs and IgA-ELISAs. In case of a reactive screening 
result, confirmatory testing with a recombinant immuno-
fluorescence assay and a plaque reduction neutralisation 
test47 are conducted.

Table 4  Age categories of the RECAST participants

Age group Disease state No Time points

Children Nursery (0–3 years) SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

Kindergarten (3–6 years) SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

Primary school (6–12 years) SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

Secondary school
(13–18 years)

SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

Adults <60 years SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

>60 years SARS-CoV-2− ≥30 1

SARS-CoV-2+ ≥30 3 (days 0, 14, 180)

Total ≥360 ≥ 720

RECAST, REsilience of Children compared to Adults in SARS-CoV-2 infection.

Figure 1  Performed analyses in the RECAST study. The RECAST study consist of eight elements, including the anamnesis 
and clinical data, a comprehensive multiomics workup of the immune landscape of the blood and the upper airways and lung 
function testing. CyTOF, cytometry by time-of-flight; RECAST, REsilience of Children compared to Adults in SARS-CoV-2 
infection.
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Nasal epithelial culture and functional in vitro analyses
Conditional reprogramming allows for the generation of 
long-term cultures of primary airway epithelial cells.48–52 
Without the need of genetic modification or clone selec-
tion, conditional reprogramming enables cell expansion, 
while redifferentiated cultures retain their organ-specific 
phenotype.53 We establish highly differentiated polarised 
in vitro air–liquid interface cultures that reproduce and 
allow for the analysis of physiological in vivo conditions, 
such as heterogeneous cell composition with preserved 
lineage54 as well as functional characteristics, including 
production of airway surface liquid55 56 and mucocil-
iary clearance.57 58 For material collection, FLOQswabs 
(Copan, Italy) are used. Swabs are transferred into 
DMEM/F12 medium (Gibco, USA) and transported to 
our laboratory within 2 hours.

Mass cytometry of whole blood samples
Whole blood is fixed with a proteomic stabiliser for pres-
ervation of surface and intracellular markers. Blood 
samples are stored at −80°C until batch-based analysis. 
Thawed samples are stained in batches of nine patient 
and one anchor reference sample. On barcoding of indi-
vidual samples, they are pooled and stained with metal 
isotype conjugated anti-human antibodies as described 
previously.19 20 CyTOF technology allows for the detection 
of more than 40 different barcodes simultaneously to 
identify cell populations in a high-throughput setting.19 56

Mass spectrometry-based serum and plasma proteomics
A platform technology with semiautomated sample prepa-
ration to allow for ultra-high-throughput liquid chroma-
tography and mass-spectrometry based analyses of the 
proteome has recently been established by members of 
our group.59 In a directed approach, we characterise the 
immune response-related serum and plasma proteome, 
with focus on the acute phase response and the comple-
ment system. However, the plethora of proteome signals 
that are generated per sample also allows for an undi-
rected approach, delivering predictive proteome signa-
tures. To facilitate the computation of such extensive bulk 
data, a deep neural network is employed.60

Single-cell sequencing of nasal epithelial cell samples and 
PBMCs
The nasopharynx is the entry point for an infection 
with SARS-CoV-261 and as such of distinguished concern 
in the exploration of the individual immune response 
pattern. Using scRNAseq of nasal and bronchial samples, 
we were previously able to identify cell types and states 
that correlate with a severe disease course of COVID-19.62 
Here, scRNAseq will be applied to define the composi-
tion and transcriptional activity of immune and epithe-
lial cells in the nasal environment of children and adults 
throughout the various states of SARS-CoV-2 infection. 
Nasal swabs (FLOQswabs, Copan, Italy) are used for 
sample collection. Following sample collection, swabs are 
directly transferred into cold Gibco Dulbecco's Modified 

Eagle Medium: Nutrient Mixture F12 (DMEM/F12) 
(Gibco, USA) and transported to our biosafety laboratory 
within 1 hour for further processing. Library preparation 
is performed according to manufacturer’s protocol (10×) 
and sequencing is performed using the Illumina NextSeq 
6000 platform.

In addition to the analysis of cells in the respiratory 
environment, PBMCs are isolated to study the transcrip-
tional activity of blood cell populations. Cell separation, 
library preparation and comparative single cell transcrip-
tome analyses are conducted according to the manufac-
turer’s protocol. Differential transcriptome profiles of 
immune cells of the blood will help us to characterise the 
distinctive features of the systemic and localised immune 
response to SARS-CoV-2 infections in children and adults.

Lung function testing and MBW
SARS-CoV-2 infections cause severe lung damage in 
adults.63 64 In a large review with 2135 children, 45% (951 
children) were classified with a severity of moderate, 
severe or critical, all with lung involvement per defini-
tion.7 There is evidence that children with acute lung 
injury experience the same lung pathologies as adults.65 
To assess the extent of transient and permanent func-
tional lung impairment, we investigate the lung function 
with spirometry and MBW. MBW measures the lung venti-
lation homogeneity.66 67 This technique is already feasible 
without sedation in children from 2 years of age.67 
Spirometry depends on the cooperation of the partici-
pant and may usually be conducted with children aged 
6 years or older. The technical MBW procedures are in 
accordance with the American Thoracic Society Technical 
Statement.68 Measurements are conducted by personnel 
certified according to European Cystic Fibrosis Society-
Clinical Trial Network (ECFS-CTN certified) and for 
study measurements Exhalyzer D (Ecomedics, Dürnden, 
Switzerland) will be used.69 N2 wash-out is used as tracer 
gas to determine the lung clearance index (LCI) as an 
outcome measure. The LCI increases with lung ventila-
tion inhomogeneity.

Biobanking
Collected material is processed and stored at the central 
biobank of Charité (ZeBanC, https://biobank.charite.​
de). Material that is not immediately used is subjected to 
cryopreservation.

Ethics and dissemination
All procedures in this study are in compliance with the prin-
ciples of the 1964 Declaration of Helsinki and its amend-
ments. We act in adherence to the principles of Good 
Clinical Practice (International Council for Harmonisa-
tion, 1996). The study was reviewed and approved by the 
Charité Ethics Committee (EA2/066/20). All participants 
enrolled give written informed consent in person, for 
participants minor of age the written informed consent 
of the legal guardian is also required.
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Study procedures never interfere with the medical 
management of participants. Samples required for 
medical management always have priority. There is no 
direct benefit for patients participating in the study. 
Results from the study might improve our understanding 
of the disease and benefit the public health.

Data are monitored regularly. Informed consent forms 
are audited by a monitor appointed by the Charité Clin-
ical Trial Management Unit. Data monitoring of collected 
data is performed in the course of the study.

As established for Pa-COVID,24 we reiterate the funda-
mental principle in this study that all contributors and 
researchers who have access to samples commit to unre-
stricted data sharing. In accordance with FAIR data prin-
ciples, all data collected shall be findable, accessible, 
interoperable and reusable.70

Results originating from nasal epithelial culture 
and functional in vitro analyses, mass cytometry, mass 
spectrometry-based proteomics, single-cell sequencing 
and lung function testing and MBW as well as clinical data 
will be will be disseminated separately or in context in a 
variety of ways including abstracts, posters and presenta-
tions at conferences and published manuscripts in peer-
reviewed journals. As soon as all analyses are completed, 
a comprehensive review will be published to put the find-
ings in context of each other.

Discussion
The SARS-CoV-2 pandemic has accelerated scientific 
research in the field of virology and related immuno-
biology for nearly 2 years, yet many crucial questions 
remain unanswered. Soon after the emergence of the 
virus it became apparent that, while children are just as 
likely to be infected with SARS-CoV-2 as adults, they are 
less severely affected.4–8 71 RECAST is an observational 
study that aims to elucidate the differences between chil-
dren and adults in primary SARS-CoV-2 infections using 
a multiomics approach. Revealing age-dependent differ-
ences will help to develop better suited therapeutics and 
vaccination strategies beyond SARS-CoV-2 infections.

Previous multiomics approaches conducted with spec-
imen from adult donors served to elucidate the immune 
response in COVID-19,62 72 to identify predictors of severe 
disease courses73 74 and to isolate possible targets for 
therapy.62 74 75 Multiomics-based studies focusing on SARS-
CoV-2 infections in children remain rare and are limited 
to small participant numbers and only analyse a limited 
number of multiomics dimensions: A study including 
24 infected children analysed the single-cell transcrip-
tional landscape in the upper airways76; with single-cell 
multiomic profling of matched nasal, tracheal, bronchial 
and blood samples of 19 infected children, a study char-
acterised the immune landscape with focus on the upper 
airways77; the plasma proteomic and metabolomic data 
of 18 infected children was analysed in another study78; 
clinical characteristics and serum markers were analysed 
in a larger group that summarised children and young 
adults and T cell response in a paediatric subgroup of 11 

participants was examined79; and a study with 24 infected 
children analysed the T cell response and specific anti-
body response.80 Even though these studies contributed 
greatly to a better understanding of age-related immune 
response patterns in COVID-19, there is still a substan-
tial demand for research. Especially studies analysing 
the immune response over the whole age and severity 
spectrum applying a multiomics approach are needed. 
In addition, mechanistic investigations, revealing the 
causal relationship between the different immune 
defence layers, are missing. In RECAST, we will conduct 
a full multiomics workup with at least 120 infected chil-
dren, a larger number of participants than in previously 
published multiomics studies. Moreover, we will conduct 
follow-up visits for 6 months to profile the development of 
age-specific immune response patterns over the course of 
time. Biobanking and long-term storage of samples will be 
used to perform subsequent mechanistic studies on first 
data collection and hypotheses formulation. The recruit-
ment of family members, both infected and non-infected, 
allows to assess the effect of genetic relationships. The 
combination of high resolution multidimensional immu-
nological methods with clinical endpoints in the RECAST 
study will enable us to contribute to the understanding 
of the increased resilience of children to SARS-CoV-2 
infections.
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