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The Rho GTPase family proteins are key regulators of cytoskeletal dynamics.
Deregulated activity of Rho GTPases is associated with cancers and neuro-
degenerative diseases, and their potential as drug targets has long been
recognized. Using an economically effective drug screening workflow in
fission yeast and human cells, we have identified a Rho GTPase inhibitor,
O1. By a suppressor mutant screen in fission yeast, we find a point mutation
in the rho1 gene that confers resistance to O1. Consistent with the idea that
O1 is the direct inhibitor of Rho1, O1 reduced the cellular amount of acti-
vated, GTP-bound Rho1 in wild-type cells, but not in the O1-resistant
mutant cells, in which the evolutionarily conserved Ala62 residue is mutated
to Thr. Similarly, O1 inhibits activity of the human orthologue RhoA GTPase
in tissue culture cells. Our studies illustrate the power of yeast phenotypic
screens in the identification and characterization of drugs relevant to
human cells and have identified a novel GTPase inhibitor for fission yeast
and human cells.
1. Introduction
Rho GTPases are a family of highly conserved GTPases that regulate a variety
of cell processes involving the actin cytoskeleton [1,2] and are also potential
targets for cancer chemotherapies [3–5]. These various processes include
adhesion, migration, gene expression, cell division and cell cycle progression
[6–9]. Rho GTPases function as molecular switches cycling between an inactive
GDP-bound state and an active GTP-bound state. The bound GDP is converted
to GTP by guanine nucleotide exchange factors (GEFs), which are critical for
Rho activation, localization and stabilization, as well as for interaction with
effectors [10]. Once activated, Rho GTPases move to the cell membrane and
other cellular compartments to interact with downstream effectors that regulate
the cytoskeleton and the dynamics of nuclear and cellular membranes [11].
GTPase signalling is conferred by conformational changes within the switch I
and II loops, which dictate binding to effector proteins. The switch I and
switch II regions change their conformation when GDP is exchanged for GTP
to bring about signalling downstream to effector proteins. Inactivation of
GTPase signalling is stimulated by the hydrolysis of Rho-bound GTP to GDP
and is promoted by GTPase-activating proteins (GAPs) [12–14]. In addition
to these regulators, guanine nucleotide dissociation inhibitors interact with
the isoprenylated GDP-bound Rho GTPase to interfere with their translocation
from the cytosol to the plasma membrane [15].

The fission yeast Schizosaccharomyces pombe encodes six members of the Rho
GTPase family: Cdc42, Rho1, Rho2, Rho3, Rho4 and Rho5 [16]. The fission yeast
Cdc42 and Rho1 proteins are orthologues of human Cdc42 and RhoA, respect-
ively, and are essential for cell viability [17–19]. Through organizing the actin
cytoskeleton, Cdc42 plays a pivotal role in controlling polar cell growth and
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cytokinesis [17]. Rho1 promotes these events in part through
cross-talk with the Cdc42 pathway and plays a role in cell
wall integrity by regulating glucan synthesis [16,18,20,21].
Rho2, Rho3, Rho4 and Rho5 are not essential for growth,
but they play auxiliary roles for processes related to cell
polarity, integrity and division [22–30]. Rho1 is positively
regulated by at least three GEFs: Rgf1, Rgf2 and Rgf3 [31–
37]. Rgf1 and Rgf2 control the formation of the cell wall,
while Rgf3 is involved in cytokinesis [36,37].

During interphase, the growing ends of fission yeast cells
contain polarized cables and actin patches. Cortical actin is
associated with the deposition of cell wall material at the grow-
ing ends [38]. Rod-shaped fission yeast cells grow exclusively
from the cell ends. Immediately after cell division, the daughter
cells initiate growth in a monopolar manner from the old end,
where cortical actin accumulates. In early G2 when the cells
reach a certain size, actin starts to accumulate at the new end
(the cell end created by cell division) through a process
known as new end take-off (NETO), so that the cell switches
to a bi-directional growth mode [39,40]. Rho1 localized at the
active growth ends is regulated by the GEF Rgf1. Supporting
the role of Rgf1 in Rho1-mediated cell integrity, rgf1Δ cells are
prone to lyse at one of the poles with a phenotype similar to
cells devoid of Rho1. Furthermore, rgf1Δ cells show a defect
in actin reorganization required for the transition frommonopo-
lar to bipolar growth [34]. At mitosis and cell division,
actin patches disappear from the poles and the cytokinetic
actomyosin ring forms at the cell equator. For these processes,
Rho1 couples polarized actin and cell wall biosynthesis through
interacting with multiple targets [18,20,21]. Rho1 is localized
to active cell growth sites, cell ends and the septum.
The depletion of Rho1 activity in growing cells causes the
disappearance of polymerized actin, while an increase in
Rho1 expression produces larger actin foci that are randomly
distributed throughout the cell [20].

Rho GTPases are also critical for growth and division in
human cells. Several Rho GTPases are overexpressed in
human tumours and abnormal Rho GTPase activities are
implicated in a variety of human tumours [41–44]. The upregu-
lation of RhoA is associated with several epithelial human
cancer tissues including breast [45,46], testicular [47], liver
[48], ovarian [49] and gastric carcinoma [50]. The signalling
pathways downstream of Rho GTPases play important roles
in cancer cell invasion [51,52], and it has been proposed that
the Rho GTPase signalling has an oncogenic role with cancer
metastasis [53]. Tumour suppressor functions of RhoA also
suggest a context and cell-type specific function for Rho
GTPases in cancer. As such, Rho proteins have been explored
as potential targets for cancer therapeutics. Small molecule
inhibitors targeting RhoGTPase signalling have been devel-
oped [51,54–56]. Though molecularly targeted drugs that
inhibit Rho GTPases signalling have not yet been widely
adopted for clinical use, their potential value as cancer thera-
peutics continues to drive pharmaceutical research and
development.

Here, taking advantage of fission yeast as amodel organism
to effectively screen drug targets, we report the identification of
a novel small molecule inhibitor of Rho GTPase signalling in
both fission yeast and human cells. From a diverse library of
10 371 small molecules, we have previously isolated 21 com-
pounds that inhibit normal mitotic progression both in a
multiple drug-sensitive fission yeast strain (MDR-sup) [57,58]
and HeLa cells [59]. In this paper, we focus on one of them
(O1) and show that it is an inhibitor of Rho1 andRhoA in fission
yeast and human cells, respectively.
2. Results
2.1. Identification of non-microtubule-targeting small

molecules that perturb mitotic progression in
fission yeast

We previously explored a diverse small molecule chemical
library to identify mitotic inhibitors, combining screens in fis-
sion yeast and HeLa cells, and identified 21 compounds that
interfere with mitotic progression in both cell types. Among
these compounds, we reported 11 tubulin inhibitors [59]. The
remaining 10 compounds showed increases inmitosis duration
(figure 1a) without any significant inhibitory effects on in vitro
tubulin polymerization at a concentration of 5 µM (electronic
supplementarymaterial, figure S1). In a DMSO control,mitosis
duration was 76.5 min, while it was extended by treatment
with the following compounds: 0.5 µM B8; 705.9 min, 2 µM
E8; 705.9 min, F3; 182.6 min, L8; 157.4 min, O1;151.5 min, E1;
138 min, P2; 128.5 min, C8; 131.9 min, F15; 118.2 min, E3;
116.6 min, D16; 109.0 min. Among them, F3 has been reported
as a Cdc25 inhibitor [60], and E3 is a F3 analogue. E1 is an ana-
logue of Rbin-1, which was reported as an inhibitor of Mdn1
required for ribosome biogenesis [61,62]. To test whether
Mdn1 is also a target of E1, the sensitivity to E1 was measured
using twomdn1mutants,mdn1L1113F (slightlymore sensitive to
Rbin-1) and mdn1E1187K (more resistant to Rbin-1) [61]. E1
exhibited similar sensitivity and resistance responses with
Rbin-1, mdn1L1113F cells and mdn1E1187K cells, respectively
(electronic supplementary material, figure S2A). Although E1
was less potent than Rbin-1 in wild-type MDR fission yeast
(IC50 = 3.8 µM [E1]; 0.89 µM [Rbin-1], electronic supplemen-
tary material, figure S2A), E1 might be more specific to
Mdn1 proteins than Rbin-1 since mdn1E1187K exhibited a
more robust growth advantage over wild-type with E1 at the
2–8.3 µM range than with Rbin-1. In HeLa cells, E1 is more
effective than Rbin-1 (IC50 = 16 µM [E1]; > 50 µM [Rbin-1]; elec-
tronic supplementary material, figure S2B), showing delay in
prometaphase/metaphase (electronic supplementarymaterial,
figure S2C,D).

In this study, because of its unique chemical structure, we
focused on the compound O1 (figure 1b). O1 extended mitotic
duration in HeLa cells by arresting them in metaphase (elec-
tronic supplementary material, movie) ranging from 126 min
(0.5 µM) to 151.5 min (2 µM), compared with a mean mitotic
duration of the control DMSO-treated cells at 76.5 min (elec-
tronic supplementary material, figure S3). To identify the
target of the compound O1, we conducted a suppressor
mutant screen in fission yeast. We chemically mutagenized
the MDR-sup fission yeast strain and isolated resistant clones
that could grow in the presence of 60 µM O1. Genome
sequence analysis of a backcrossed resistant mutant revealed
a missense mutation in the rho1+ (SPAC1F7.04) gene, resulting
in a mutant Rho1 protein with a threonine in place of a highly
conserved alanine 62 (A62T, figure 2a). The core domain of
Rho1 is composed of three conserved motifs: the phosphate-
binding loop (P-loop), switch I and switch II (figure 2a).
These three motifs are critical for the GTPase activity by coop-
eratively recognizing guanine nucleotides andMg2+ [63]. In the
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Figure 1. Effect of compounds on mitotic progression in HeLa cells. (a) The duration of mitosis was determined by time-lapse microscopy for 24 h in the presence of
0.5 µM (Taxol and B8) or 2 µM (E8, F3, L8, O1, E1, P2, C8, F15, E3, D16) compounds using HeLa cells that were expressing mCherry-tagged histone H2B to mark
chromatin and EGFP-tagged alpha tubulin to mark microtubules. The time in mitosis was measured in 200 cells. DMSO-treated cells are shown as the vehicle control.
Means are shown as ‘+’ and box represents median value delimited by 10th and 90th percentiles. (b) Chemical structures of the 10 mitotic inhibitors screened in
this study.
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crystal structure of humanRhoA (PDB 1A2B), the humanRho1
orthologue,Ala62 is located at the loop of switch II, proximal to
the gamma-phosphate of ATP. We generated a rho1-A62T
mutant by introducing an A62T mutation at the endogenous
rho1+ gene by gene replacement. The mutant strain appears
to grow normally (figure 2b). O1 decreased the average popu-
lation cell length from 12 µm to 10.3 µm in the wild-type strain
after incubation for 6 h at 29°C, whereas no such decrease by
O1 was observed in the rho1-A62T strain, where average cell
size is 12.3 µm in the DMSO control and 11.8 µm in the pres-
ence of O1 (figure 2c). Cell viability after a 6 h incubation
with 20 µM O1 was examined by a colony formation assay.
The rho1-A62T mutant cells showed little decrease in viability
compared with that seen in DMSO control, although viability
did decrease more than 30% in wild-type cells after incubating
with O1 (figure 2d). Cell growth assays in liquid culture also
confirmed that the mutant rho1-A62T conferred resistance to
O1 (figure 2e), but not to cycloheximide, a chemically unrelated
inhibitor (electronic supplementary material, figure S4).
These results suggest that Rho1 is the likely target of O1 in
fission yeast.

2.2. O1 perturbs actin organization in fission yeast
To investigate the possible effects of O1 on NETO and cell m-
orphology, the localization of actin was determined using
rhodamine-conjugated phalloidin. With a control DMSO
treatment, a bipolar actin distribution was only seen in approxi-
mately 15% of cells shorter than 9 µm, but was observed in
approximately 90% of cells longer than 9 µm, demonstrating
that NETO was triggered before reaching a cell length of
9 µm. By contrast, in the presence of O1, approximately 30%
of cells longer than 9 µm were bipolar (figure 3a,b). In the O1-
resistant mutant rho1-A62T cells, early NETO was restored,
with more than 60% of cells showing a bipolar distribution in
cells longer than 9 µm (figure 3c).
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Figure 2. Growth phenotypes of rho1-A62T in fission yeast cells. (a) Location of the O1 resistance-conferring mutation is indicated. The mutation was in the switch
II region which is important for GTP/GDP binding. (b) Doubling time of rho1-A62T cells and the corresponding isogenic MDR-sup wild-type cells produced from
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150 for each sample. (d ) Percentage of colony-forming units of the rho1-A62T strain compared with that of the wild-type strain. Cells incubated with 20 µM O1 for
6 h at 29°C were washed twice and diluted and counted, and the same number of cells was plated on YES medium and incubated for 3 d at 29°C. (e) Wild-type
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2.3. O1 reduces the amount of cellular GTP-bound Rho1
in fission yeast cells

To further investigate the effect of O1 on the Rho1 protein, we
examined if O1 affects the in vivo amount of the GTP-bound
Rho1 protein.Wild-typeMDR-sup cells carrying haemaggluti-
nin (HA)-Rho1were incubatedwith 20 µMO1 for 6 h, and then
the amount of the activated GTP-bound Rho1 was analysed by
precipitation with the GST-Rhotekin-binding domain, which
only binds to GTP-bound Rho1 but not GDP-bound Rho1.
Anti-HA western blots revealed that cell lysates treated with
O1 had less GTP-bound Rho1 protein (figure 4a, lane 1
versus 2). The whole-cell lysates had similar amounts of total
Rho1 protein, suggesting that O1 did not affect the stability
of Rho1 (figure 4a, lower panel). By contrast, O1 did not
affect the amounts of GTP-bound Rho1 protein in rho1-A62T
cells, while the total amount of Rho1 was not changed by the
A62Tmutation (figure 4a, lane 3 versus 4; figure 4b), consistent
with the idea that O1 directly destabilizes the Rho1–GTP inter-
action without affecting protein stability, and that the A62T
mutation rescues the interaction.

We next addressed if O1 influences the subcellular localiz-
ation of the Rho1 and Rho1A62T proteins using constitutively
expressed GFP-Rho1 and Rho1A62T in fission yeast MDR-sup
wild-type and rho1-A62T mutant strains. GFP signals of Rho1
and Rho1A62T proteins were seen in the plasma membrane,
and were slightly enriched at the cell tips and at the septum
in both strains, as previously described [20,64,65]. Their local-
izations were not affected by O1 (electronic supplementary
material, figure S5). These results suggest that O1 reduces the
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amount of GTP-bound Rho1 protein without affecting Rho1
protein localization.

2.4. The expression of mutant RhoAA61T protein alters
the sensitivity to O1 in human cells

The fission yeast Rho1 GTPase and its orthologue human
RhoA GTPase share a high degree of sequence similarity
with 89% amino acid identity in the N-terminal half of protein
containing the P-loop, switch I and switch II, which form the
GTP-binding pocket. The Rho1 Ala62 in fission yeast corre-
sponds to Ala61 in human RhoA (figure 5a). To test whether
the target of O1 could be RhoAGTPase in human cells, we gen-
erated human embryonic kidney Flp-In-293 cell lines stably
expressing FLAG-tagged wild-type RhoA, mutant RhoAA61T

protein and a vector only control. The IC50 of O1 in vector
only cells and RhoA-expressing cells were, respectively,
3.3 µM and 4.7 µM, while the cells expressing in mutant
RhoAA61T, the IC50 was 6.9 µM (figure 5b). The decreased O1
sensitivity with RhoAA61T suggests that O1 targets RhoGTPase
protein in both fission yeast and human cells.

2.5. O1 inhibits cellular RhoA activity in tissue culture
cells

To further examine if O1 effectively inhibits RhoA in human
cells, a RhoA activation assay in an S100 extract from HeLa
cell was performed using G-LISA RhoA [66]. In this assay,
RhoA-GTP, but not RhoA-GDP, can be detected. To trap the
cellular RhoA in the activated form in the presence or absence
of O1, non-hydrolysable GTPγS was added to HeLa cell
extracts and the amount of RhoA-GTPγS was measured.
Two RhoA inhibitors that interfere with RhoA-RhoGEF inter-
action, Rhosin (targeting RhoA) and Y16 (targeting the
RhoGEF LARG), were used as controls [67,68]. The IC50 of
O1 in human cells was comparable to Rhosin and Y16
(IC50 = 6.22 µM (O1); 6.33 µM (Rhosin); 4.75 µM (Y16), elec-
tronic supplementary material, figure S6). Neither Rhosin
nor Y16 exhibited any growth inhibition of fission yeast
cells (electronic supplementary material, figure S7). The frac-
tion of GTPγS-bound form of RhoAwas reduced by 30% with
30 µM O1, comparable to Rhosin and Y16 (figure 6a).

RhoA is known to be activated during serum activation
[69]. To examine if O1 interferes with this process, mouse
fibroblast (Swiss 3T3) cells were treated with or without
30 µM O1 in serum-free media for 24 h, followed by stimu-
lation with 10% calf serum for 15 min. O1 suppressed
serum-induced RhoA-GTP formation was found to be com-
parable to that seen with Rhosin and Y16 (figure 6b). Upon
serum stimulation, RhoA plays a critical role in the cell cytos-
keleton and cell shape reorganization [6]. Figure 5c shows
that the addition of O1 strongly inhibited reorganization of
the actin cytoskeleton—both stress fibre and focal adhesion
complex formation of the cells were reduced, and cells lost
their fibroblastic elongated shape to acquire a more rounded
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morphology. The median end-to-end cell length after serum
stimulation was 142.5 µm in a DMSO control and was shor-
tened to 81.2 µM in the presence of 10 µM O1 (figure 6d ).
Given the role of RhoA in actin cytoskeleton and adhesion,
these results support the conclusion that O1 is an inhibitor
of RhoA in mammalian tissue culture cells.
3. Discussion
Natural and synthetic small molecules that target the cell div-
ision machinery are useful tools for dissecting the processes
of the cell cycle and cell division. Fission yeast is a powerful
organism for chemical and genetic screening, and facilitates a
rapid economical workflow. For primary drug screening, we
used the drug-sensitive MDR-sup fission yeast strain to
identify chemical compounds which inhibit cell growth.
The subsequent secondary screening in HeLa cells reduced
the numbers of drugs, which are also effective in human
cells. Cell cycle specific effects of these selected drugs were
then monitored by live imaging in HeLa cells to select
drugs that inhibit mitotic processes [34,70]. Among those
drugs, we identified O1, which, to the best of our knowledge,
is the first inhibitor of Rho1 in fission yeast and will be a
useful reagent to dissect the cell cycle and other cellular
roles involving Rho1.

Several lines of evidence indicate that O1inhibits Rho1 by
interfering with stable formation of Rho1–GTP. The mutation
(Ala62 in fission yeast, Ala61 in human) located in the switch
II region of Rho1/RhoA made cells resistant to O1. In human
cells, the highly conserved residue Gly62 in the switch II of
RhoA coordinates the γ-phosphate of GTP. Since the resistant
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mutation Ala61 is located next to Gly62, it is reasonable to
suggest that O1 binds to the switch II region and interferes
with GTP binding to RhoA or GDP dissociation from
RhoA. Alternately, O1 may affect its regulators either by inhi-
biting GEFs that facilitate GDP dissociation or by activating
GAPs that stimulate GTP hydrolysis. In fission yeast, because
the deletion of Rgf1 decreases the amount of GTP-bound
Rho1, Rgf1 is considered the Rho1-GEF that is responsible
for most of the GTP-bound Rho1 in the cells [5,6]. Since
another GEF Rgf2 functions redundantly with Rgf1, rgf1Δ
cells are viable but fail to activate bipolar growth showing
monopolar actin distribution after mitosis. These phenotypes
resemble the phenotypes observed when cells are treated
with O1. If O1 had inhibited Rho1-GEFs (or activated
Rho1-GAP) rather than Rho1, its resistant mutation in Rho1
should have increased the cellular amount of Rho1–GTP
even in the absence of O1. However, this was not observed
in rho1-A62T cells. Unlike rho1-A62T mutant, which appears
to be normal except for its resistance to O1, rho1 hypomorph
mutants are very sick and show many defective cellular phe-
notypes [20,65,71]. By contrast, fission yeast cells treated with
20 µM O1 showed only mild phenotypes such as a 35%
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decrease in viability after 6 h. This is in line with our obser-
vation that O1 reduces the amount of GTP-bound Rho1 by
about 30%. Therefore, it is most likely that O1 binds to the
switch II region of Rho1 protein, but not to Rho1A62T,
which alone does not affect binding to GTP γ-phosphate.
Although a rho1-A62T mutant did not show any phenotypes
in normal growth conditions at 29°C, because Rho1 Ala62 is
highly conserved, it is possible that the A62T mutation affects
the function and/or stability under different conditions.

Treating HeLa cells with O1 causes mitotic delay with
defective spindle formation. This phenotype was not expected
since the established role for RhoA in animal cells is in cytokin-
esis [72] as GTP-bound RhoA increases from anaphase to
telophase [73]. Indeed, the depletion of RhoA by siRNA in
HeLa cells results in binuclear cells with defects in cytokinesis
[74] . Microinjection of C3 transferase into HeLa cells, which
inhibits RhoA, RhoB and RhoC also blocks cytokinesis [64].
By contrast, it was reported that treatment of Rhosin to
MCF7 cells induces apoptosis but did not cause cell cycle
arrest [67]. Another Rho family protein, Cdc42, has been impli-
cated in kinetochore-microtubule attachment [75], and so it is
possible that O1 also targets Cdc42. Indeed, introduction of a
mutation that confers resistant to fission yeast Rho1 into
human RhoA gave only a modest resistance to O1 in HeLa
cells. Therefore, although this partial effect may be due to the
presence of endogenous RhoA, it is possible that O1 has
additional targets such as Cdc42.

There has been interest in developing small molecule
inhibitors for the Rho GTPase signalling pathway as potential
therapeutic targets [54] because of their roles in cancer
initiation, cancer progression and cancer metastasis [53]. Con-
sistent with this idea, studies have demonstrated roles of Rho
GTPases in cancer [76]. However, Rho GTPases may have
both oncogenic and tumour suppressor functions, suggesting
a context and cell-type specific function for Rho GTPases in
cancer. Inhibiting a specific Rho GTPase in a specific context
by a small molecule may open up the potential of Rho
GTPases as therapeutic targets and prognostic tools for
cancer patients. As such, it is important to develop small mol-
ecule inhibitors targeting Rho GTPases, and to accumulate
evidence from studies in appropriate model systems. Based
on our success in O1 identification, we suggest that the con-
secutive phenotypic screening with fission yeast and human
cells, followed by effective isolation and characterization of
fission yeast-resistant mutants will be an attractive pipeline
to identify inhibitors targeting the Rho GTP pathways.
4. Materials and methods
4.1. Yeast strain, growth conditions and growth assay
Experiments were conducted in yeast extract (YE)medium con-
taining adenine, leucine, uridine and histidine to a final
concentration of 0.15 g l−1. The Schizosaccharomyces pombe
SAK933 strain (h90 ade6 leu1 ura4-D18 GFP-atb2≪ kanr
sid4-mcherry≪ hygr caf5 :: bsdR pap1Δ pmd1Δ mfs1Δ bfr1Δ
dnf2 Δ erg5::ura4+) [58,59] used for screening in this study
was grown at 29°C. All experiments were performed in expo-
nential growth. The A62T mutation was introduced into on
rho1+ by PCR and the linear DNA used to transform a MDR-
sup strain, SAK950 [58] (h + ade6-M216 leu1 ura4-D18 caf5::
bsdR pap1Δ pmd1Δ mfs1Δ bfr1Δ dnf2 Δ erg5::ura4+) using
the kanMX6 selection marker, and construction was confirmed
by sequence analysis. To make GFP- and HA-tagged Rho1
strains, pJK148 plasmids containing N-terminally GFP or a
HA epitope-tagged Rho1 or Rho1A62T under control of its
native promoter and with its terminator (kindly provided by
Pilar Pérez) were used to insert HA-Rho1 or Rho1A62T and
GFP-Rho1+ or Rho1A62T in the leu1 locus of MDR-sup wild-
type or rho1-A62Tmutant strains. In a growth assay, logarithmi-
cally growing cells were diluted to OD= 0.1 and 10 times
dilution was used. One millilitre of the cell culture mixed
with the compound at several dilution series was incubated
for 15 h at 29°C. The optical density was measured to calculate
the growth ratio and DMSO control was used for control.

4.2. Isolation of O1 resistant mutants
For mutagenesis, the SAK950 strain treated with 1-methyl-3-
nitoro-1-nitrosoguanidine in TM buffer (50 mM Tris, 50 mM
Maleic acid, 7.5 mM (NH4)2SO4, 0.4 mM MgSO47H2O pH6.0)
for 15 min, and incubated in YE medium for 3 h, cultured in
YE medium containing 60 µM O1 at 29°C for two weeks in a
96-well plate maintained in log phase growth. Two resistant
clones were isolated and backcrossed with SAK950 wild-type
for eight times. Sequencing of these clones revealed that
these clones had a point mutation A62T in the rho1+ gene. To
reconstruct the A62T point mutation in rho1+, a DNA fragment
containing the A62T point mutation was transformed into the
SAK950 strain. Homologous recombination between the rho1
mutant fragment and the rho1+ gene produced a rho1
mutant strain. The replacement of rho1+ gene by the rho1-
A62Tmutation was confirmed by sequencing after amplifying
the genome segment using PCR.

4.3. Mammalian cell lines
All mammalian cell lines were incubated at 37°C in a humidi-
fied incubator containing 5% CO2 maintained in log phase
growth and were routinely monitored for mycoplasma by
PCR (Universal Mycoplasma Detection Kit, ATCC). HeLa cell
line, Flp-In-293 cells (gifted from Sohail Tavazoie) and Swiss
3T3 cells (gifted from Sohail Tavazoie) were grown in
DMEM (Thermo Fisher Scientific) supplemented with 10%
TET-tested FBS (Atlanta Biologicals) and penicillin-streptomy-
cin (100 u ml−1, GIBCO). To generate a stable cell line, parent
293 cells were plated onto 6-well plates and cultured for 24 h
and cells were co-transfected using 2 µl of TransIT-2020
reagent (Mirus) with 0.3 µg of construct and 1.0 µg of pOG44
(Thermo Fisher Scientific). After 24 h, cells were plated to
60 mm dishes and subject to selection with 50 µg ml−1 hygro-
mycin B and 10 µg ml−1 blasticidin for a month. A RhoA
point mutation A61T was introduced through site-directed
mutagenesis PCR using Q5 Site-Directed Mutagenesis Kit
(New England Biolabs, cat. no. E0554).

4.4. Time-lapse microscopy
Live cell imaging was performed in a LCV110U VivaView FL
incubator microscope (Olympus) equipped with an X-Cite-
exacte illumination source (Excelitas Technologies) and Orca-
R2 CCD camera (Hamamatsu Photonics) at the Rockefeller
University Bio-Imaging Resource Center. For screening,
images were acquired with a 20X objective every 15 min for
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24–48 h in the differential interference contrast, m-cherry and
GFP channels [59].

4.5. In vitro tubulin polymerization assay
A Tubulin Polymerization HTS Assay Kit (Cytoskeleton,
BK011P) was used according to the manufacturer’s instruc-
tions. All components were added to a 96-well microtiter
plate (Corning Costar, cat. no. 3686), then the tubulin reaction
mixture was quickly added to the wells, and tubulin
polymerization initiated and monitored every 1 min at 37°C
for 1 h by recording fluorescence of excitation wavelength
at 340 nm and emission at 450 nm. The tubulin reaction mix-
ture was composed of 80 mM PIPES (pH 6.9). 1 mM MgCl2,
1 mM EGTA, 1 mM GTP and 2 mg ml−1 of highly purified
porcine brain tubulin heterodimer (Cytoskeleton, cat. no.
T240) [59].

4.6. Actin staining in fission yeast
Filamentous actin was visualized using Rhodamine-phalloidin
staining using a modification of the method as described [77]
with a fixation time for 5 min and using 3.7% fresh paraformal-
dehyde (Electron Microscopy Sciences, USA). Rhodamine-
phalloidin 488 (Molecular Probes) was added to the permeabi-
lized cells by vortexing in 100 µl 1% Triton X- 100 in PBS for
1 min and washed 3 x with PBS, and incubated with gentle
rotation for 50 min at room temperature. The fluorescent
images were obtained by using a fluorescence microscope
(inverted Olympus IX-70 microscope).

4.7. In vivo analysis of Rho1 activity
The amount of GTP-bound Rho1 proteins was analysed using
a Rho1–GTP pull down assay. Wild-type, rho1-A62T mutant
MDR-sup strains integrated HA-Rho1 or HA-Rho1A62T in
Leu locus were grown in YE medium and 107 early-log
phase cells were obtained as described previously [34,71by
using 100 µl of lysis buffer (50 mM Tris-HCl pH 7.5 20 mM
NaCl 1 mM ETA 0.05% NP-40 10% glycerol 0.1 mM DTT
1 mM PMSF and 1X complete protease inhibitor cocktail
Roche 11873580001]). Ten micrograms of Rhotekin-RBD
Beads (Cytoskeleton, Inc. #RT02) were used immunoprecipi-
tated the GTP-bound HA-Rho1 or HA-Rho1A62T. The extracts
were incubated with GST-RBD beads by rotation at 4°C for
2 h. The beads were washed with lysis buffer four times,
and samples were then subjected to gel electrophoresis and
western blotting with 1 : 2000-diluted anti-HA (12CA5)
mAb to detect HA-Rho1 or Rho1A62T. For checking the total
amount of HA-Rho1 or Rho1A62T, 20 µg of whole-cell total
protein was used for western blot with anti-HA mAb
and detected using the Odyssey Infrared Imaging System
(LI-COR Biosciences).

4.8. Actin staining in Swiss 3T3 cells
The cells were fixed with 3.7% formaldehyde in PBS for
15 min and permeabilized with 0.1% Triton X-100 for
20 min. The cells were stained with Rhodamine-phalloidin
488 (Molecular Probes) for F-actin and DAPI for DNA. The
fluorescent images were obtained by using a fluorescence
microscope (Inverted Olympus IX-70 microscope).
4.9. G-LISA RhoA activity assay
For the quantitative analysis of active RhoA-GTP levels,
assays were performed using G-Lisa RhoA Activation kit
(Cytoskeleton, cat. no. BK124.) according to manufacturer’s
instructions. This assay uses RhoA-GTP-binding proteins
linked to the wells of a 96-well plate. Active, GTP-bound
RhoA in cell lysates binds to the wells while inactive GDP-
bound forms are removed during wash steps. The amount
of bound RhoA-GTP was detected by using primary anti-
RhoA antibody followed by a secondary antibody conjugated
to FRP. The signal was read by measuring at 490 nm using a
microplate reader a Synergy Neo2 (Bio Tek).

4.9.1. Rhoa activation by GTPγS

Non-hydrolysable GTP analogue, GTPγS (Cytoskeleton, cat.
no. BS01) was added to HeLa cytosolic extracts, S100 [78] to
give a 5 µM final GTPγS concentration and incubated at
room temperature for 15 min with gentle rotation. The reac-
tion was stopped by transferring the tube to 4°C and
adding 1/10th volume of STOP buffer (supplied) and was
then used for the G-LISA assay.

4.9.2. Rhoa activation by serum stimulation

Cells grown in DMED plus 10% fetal bovine serum were
starved in serum-free medium for 24 h and incubated in the
presence or absence of the compound at indicated concen-
trations for 30 min and subsequently stimulated with 10%
FBS for 15 min. For G-LISA RhoA activity measurement,
cells were harvested in lysis buffer (20 mM Tris-HCl, pH
7.6, 100 mM NaCl, 1% TritonX-100, 10 mM MgCl2, 2 mM
NaF and a protease inhibitor cocktail). Lysates were normal-
ized, equal amounts of protein were incubated for the assay.

4.10. Measurements of viability
Cells were plated in 384-well plates at a density of 800 cells per
well in 22.5 µl ofmedia. After 24 h, 2.5 µl drugdiluted inmedia,
was added to each well. Following 5 days of incubation, viabi-
lity was assessed using CellTiter-Glo (Promega) according to
the manufacture’s protocol. Luminescence in each well was
measured using a Synergy Neo2 plate reader (BioTek).
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