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A B S T R A C T   

Evolutionary features of cancer have important clinical implications, but their evaluation in the clinic is currently 
limited. Here, we review current approaches to reconstruct tumour subclonal structure and discuss tumour 
sampling method and experimental design influence. We describe clear-cell renal cell carcinoma (ccRCC) as an 
exemplar for understanding and predicting cancer evolutionary dynamics. Finally, we discuss how understanding 
cancer evolution can benefit patients.   

1. Introduction 

Cancer has long been considered an evolutionary process [1–3], 
where genetic and epigenetic alterations provide a substrate for selec-
tion, facilitating adaptation. In contrast to the adaptation of species, 
cancer adaptation takes place over years to decades, converging onto a 
common set of phenotypes, reflected in the hallmarks of cancer [4]. 
Only a minority of genetic alterations found in any one cancer are 
actively selected (“driver” events) [5], with the majority having no ef-
fect on fitness (“passenger” events). The sources of selection in cancer 
can be endogenous, e.g. the tumour microenvironment (TME), systemic 
immunity; or exogenous, e.g. therapy. The definition of a driver event is 
context-dependent; an alteration that persisted neutrally at first may be 
selected under certain circumstances, e.g. if it confers resistance to 
therapy. Cancer evolution is further constrained by tissue and cellular 
contexts. For example, some cancer genes are only altered in certain 
cancer types (VHL and clear cell renal cell carcinoma (ccRCC); APC and 
colorectal cancer (CRC)), and most show an element of cell/tissue 
specificity (e.g. NRAS and melanoma; KRAS and lung, CRC and 
pancreatic cancers). Further, temporal patterns of selection are often 
conserved, with some cancer genes implicated as founders (clonal al-
terations), and others consistently selected at later stages of evolution 
(subclonal alterations) [6,7]. Another important feature of cancer evo-
lution is epistasis, a non-random interaction of genetic changes. Some 

driver events co-occur suggesting cooperation, while others are mutu-
ally exclusive, either as a result of functional redundancy (e.g. BRAF and 
NRAS mutations in melanoma), or synthetic lethality (e.g. BRCA and the 
base excision repair PARP protein family). Epistatic interactions 
constrain cancer evolution and can lead to conserved, and potentially 
predictable, order and pairing of driver events in cancer. Cancer evo-
lution is also constrained by germline variation, especially in cancer 
susceptibility genes, where cancer evolution proceeds via somatic 
inactivation of the wild-type allele [8]. Broader germline variation has 
also been shown to constrain the repertoire of somatic driver events in 
sporadic tumours [9]. Cancer evolutionary constraints remain poorly 
understood, but likely reflect both cell-intrinsic and cell-extrinsic factors 
[10]. Their understanding could offer substantial patient benefit in 
terms of predicting evolutionary routes, exploiting therapeutic vulner-
abilities and designing cancer prevention strategies. 

The development of primary tumours is associated with distinct 
modes of evolution and evolutionary tempo (Fig. 1). In linear evolution, 
only one population (clone) becomes fixed over time outcompeting all 
others via a “clonal sweep” (Fig. 1). Branched evolution results from a 
gradual process of evolution and fixation of multiple subpopulations 
(subclones), due to similar fitness or distinct adaptive traits, often 
involving small scale alterations. Branched evolution leads to wide-
spread intra-tumour heterogeneity (ITH). Akin to linear evolution, 
punctuated evolution is defined by a clonal sweep but is distinguished 
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by a rapid burst of large-scale alterations which are fixed early in tumour 
evolution. Critically, inferences of evolutionary mode, especially in the 
absence of any intermediate populations can be highly biased, and 
particularly in single sample studies. 

The ability of primary tumour cells to disseminate and seed new 
tumour colonies in distant tissues is referred to as “metastatic compe-
tence”. This progression can also be reckoned as an evolutionary process 
with two general models described. Linear and parallel models of met-
astatic progression differ essentially in when and where they propose 
metastatic competence evolved [11–14]. Linear progression model as-
sumes metastasis competent clones to have emerged late during 
tumorigenesis, representing either a minor or dominant clone in the 
primary tumour. In the parallel progression paradigm, disseminated 
tumour cells lacking metastatic competence leave the primary tumour 
early (before it is clinically detectable) and continue to evolve towards 
metastatic competence. In contrast to the linear model, the degree of 
genetic divergence between the primary and metastasis is expected to be 
high [11]. Finally, the same clone may seed all metastases (mono-
phyletic seeding), or distinct clones may do so, often in an organ-specific 
manner (polyphyletic seeding) [11]. All these distinctions are of critical 
importance for the success of systemic therapy - especially with regards 
to timing, e.g. adjuvant, neoadjuvant, palliative, as well as uniformity of 
response to therapy at different metastatic sites (mixed response, oligo- 
progression). 

Evolutionary features have important clinical implications, yet their 
inference is profoundly impacted by the exact approaches to estimate 
population frequencies over space and time. To motivate a serious 

consideration of the use of evolutionary understanding for clinical de-
cision making and therapeutic advances we first review standard tumour 
sampling and molecular profiling methodologies in the context of clonal 
reconstruction of tumours. We discuss a novel profiling technique, Rep- 
Seq, that could potentially improve clonal reconstruction in a clinical 
setting. We present ccRCC, the focus of our research programme, as an 
exemplar for understanding cancer evolution in patients, however a 
detailed literature review of the ccRCC evolution is beyond the scope of 
this review. Finally, we provide a perspective on the benefits of evalu-
ating cancer evolutionary dynamics for patient management. 

2. Methodologies for studying molecular evolution 

Genomic alterations present in the ‘most recent common ancestor’ 
(MRCA), referred to as “clonal”, are present in all tumour cells of a given 
tumour. In contrast, “subclonal” alterations are present in a subpopu-
lation of tumour cells and hence can be used to identify and track 
distinct lineages in the tumour. The term “subclonal reconstruction” 
refers to the reconstruction of these lineages and their phylogenetic 
relationships from sequencing data [15]. Most methods consider single 
nucleotide variants (SNVs), small insertions and deletions (indels), and 
somatic copy number alterations (SCNAs). There are four key stages in 
any computational workflow for subclonal reconstruction from DNA 
sequencing data: i) SNV discovery, ii) SCNA reconstruction, iii) SNV 
clustering and iv) phylogenetic reconstruction. Variant allele fre-
quencies (VAF) of SNVs along with tumour purity and local copy num-
ber, are used to infer cancer cell fraction (CCF), that is the fraction of 

Fig. 1. Determinants and modes of tumour evolution: The fish plot represents the proportion of cells from different clones over time and depicts the evolutionary 
process of a tumour. Somatic alterations, selection, constraints and genetic drift are the key forces that drive tumour evolution. Somatic alterations include small scale 
mutations (SNVs and small insertions/deletions), copy number changes (gains, losses and loss of heterozygosity), chromosomal aberrations (aneuploidy, whole- 
genome doubling, translocations, chromothripsis and chromoplexy) or changes in the transcriptomic and epigenetic mechanisms. Selective pressures can be 
endogenous, e.g. the tumour microenvironment, or exogenous, e.g. therapy. Factors like epistatic interactions, germline variations and tissue-specific context 
constrain tumour evolution. Genetic drift influences smaller cell populations in particular and impacts tumour evolution. Linear, branched and punctuated evolu-
tionary modes are current models of tumour evolution. The white dots represent driver events in the fish plots and the red dots represent a rapid burst of large-scale 
driver events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sampled cancer cells carrying the SNV. Algorithms that estimate purity 
and ploidy and infer the allele-specific copy number from sequencing 
data make use of the sequencing read depth ratio between tumour and 
reference (normal) samples and the balance between parental alleles. 
Most of the existing methods infer allele-specific copy numbers on a 
single tumour sample, there are computational methods in development 
that infer allele- and clone-specific copy numbers across multiple related 
samples [16]. To define distinct clones, SNVs with comparable CCFs are 
clustered and their phylogenetic relationships are inferred. Computa-
tional methods for subclonal reconstruction including best practices and 
benchmarking are reviewed elsewhere [15,17], however, critical up-
stream factors that impact subclonal reconstruction include i) tumour 
sampling method ii) choice of sequencing assay (bulk or single-cell 
sequencing), and iii) depth and breadth of sequencing (whole genome 
or targeted coding region sequencing) (Table 1). 

2.1. Single-region sampling vs multi-region sampling 

Profiling of single tumour samples especially in large patient cohorts 
has been a compelling approach to decipher the cancer genome and 
maximise statistical power for clinical inference [18]. However, the 
proportion of the tumour volume sampled in these settings is on average 
~ 2% and even lower in the context of routine molecular profiling in 
clinical care (0.0005%; [19]). This tumour under-sampling, coupled 
with the lack of clonal mixing (subclones are typically spatially sepa-
rated in solid cancers) impedes accurate subclonal reconstruction. 
Sampling tumours from a single spatially fixed location underestimates 
clonal complexity and can misinterpret subclonal populations as clonal, 
leading to an “illusion of clonality” [19]. One approach to circum-
venting this issue is spatially separated multi-region sampling [19], 
which has become a tool of choice for research studies evaluating spatial 
and temporal clonal evolution of primary and metastatic tumours. 

Additional characteristics of tumour sampling can impact subclonal 
deconstruction. Compared to the ex-vivo sampling of surgically resected 
specimens, image-guided tumour biopsies can result in low tumour 
purity and reduce subclone discovery. Profiling of fresh frozen tumour 
samples outperforms formalin-fixed and paraffin-embedded (FFPE) 
samples which are prone to sequencing artefacts which in turn interfere 
with accurate estimates of clonal clusters [20]. 

2.2. Towards representative sampling 

While multi-region sampling has proved a useful tool in the research 
setting it is not a feasible approach in the setting of routine clinical care. 
Thus, the cancer community has long been motivated to develop ap-
proaches to capture the molecular landscape of the whole tumour, such 
as the profiling of cell-free tumour DNA (ctDNA) [21]. While increas-
ingly promising, this approach is still limited in sensitivity especially in 
certain cancer settings [22]. We recently described a novel tumour 
sampling methodology to address both under-sampling and the spatial 
sampling bias in current molecular profiling approaches [19,23]. This 
method, called “representative sequencing” (Rep-Seq) includes ho-
mogenization of residual fixed surgical tumour tissue into a well-mixed 
solution, followed by sequencing. Rep-Seq utilises tumour material that 
is otherwise treated as clinical waste and destroyed and so does not 
interfere with the existing pathology workflows. Compared to single 
tumour region and ctDNA profiling, Rep-Seq has higher reproducibility 
and sensitivity for mutation discovery. Critically, Rep-Seq leads to ac-
curate subclonal reconstruction relative to the ground truth established 
from multi-region profiling [19]. An additional benefit of tumour ho-
mogenization is the preservation of cellular integrity of the tumour tis-
sue, which enables dissociation of the homogenate into single cells. The 
single cells can be flow-sorted to enrich tumour cells thereby, reducing 
redundant sequencing and further improving subclonal reconstruction. 
RepSeq offers a clinically practical solution to address tumour sampling 
bias for a range of downstream molecular readouts. We are currently 

Table 1 
Methodologies for studying molecular evolution: The table summarises the 
factors that affect the stages of subclonal reconstruction.    

SNV discovery and 
SCNA reconstruction 

SNV clustering and 
phylogenetic 
reconstruction 

Tumour 
Sampling 

Single-region Accuracy of variant 
calling depends on 
the sequencing depth 
and purity of the 
tumour. Increasing 
sequencing breadth 
(targeted to whole 
genome) will not 
necessarily ensure 
capturing ITH, as this 
will depend on clone 
distribution of the 
tumour. 

Sampling bias leads to 
underestimating the 
number of sub-clones 
and illusion of 
clonality. Challenging 
to unambiguously 
identify a branching 
phylogeny and the 
resulting phylogenetic 
tree can be less 
informative. 

Multi-region Increases sensitivity 
to study ITH. Certain 
algorithms consider 
multi-sample to 
perform joint variant 
calling to increase the 
sensitivity of variant 
calling in low- 
coverage regions. 
Algorithms 
leveraging multi- 
sample data hold 
potential to increase 
accuracy of 
estimating allele- 
specific copy 
numbers. 

Multi-sample approach 
helps resolve 
phylogenetic 
relationships among 
subclones. Reduces 
illusion of clonality. A 
tool of choice for 
studies evaluating 
spatial and temporal 
clonal evolution, 
however, can be 
limiting in terms of 
cost, logistics and 
clinical feasibility. 

ctDNA ctDNA sampling over 
time enables temporal 
profiling of clonal 
events. Ultra-deep 
sequencing and 
highly sensitive 
algorithms are 
required to identify 
low-frequency 
variants. 

Temporal resolution 
helps resolving minor 
subclones that evolved 
late (for example, 
evolving post- 
treatment resistance). 
However, the limited 
number of SNVs 
identified in this 
approach hampers SNV 
clustering and the 
subsequent phylogeny 
inference. 

Rep-Seq Allows better 
sensitivity to capture 
subclonal variants 
and ITH. A novel 
sampling method 
addressing under- and 
spatial-sampling bias. 

Higher sensitivity to 
subclonal events 
reduces illusion of 
clonality. Phylogenetic 
inference comparable 
to multi-sampling 
approach. 

Choice of 
sequencing 
assays 

Bulk 
sequencing 

Detecting SNVs in a 
limited clonal 
expansion (low-VAF 
SNVs) is problematic. 

Resolving phylogenetic 
relationships among 
subclones can be more 
challenging using bulk 
sequencing compared 
to single-cell. But 
multi-region sampling 
can address this 
limitation. 

Single-cell 
sequencing 

Addresses the time 
bias inherent in bulk 
and identifies lower 
frequency variants 
but requires very high 
number of cells to be 
sequenced to achieve 
that. Low coverage 
per cell leads to 
limited sensitivity in 
detection of 
individual variants. 

SCNAs are usually 
employed for 
clustering and 
phylogeny inference in 
single-cell studies. In 
comparison to bulk, 
single-cell sequencing 
can reconstruct 
phylogenies with 
higher sensitivity. 

(continued on next page) 
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evaluating Rep-Seq in a prospective clinical cohort HoLST-F 
(NCT03832062) of 500 patients across different cancer types. 

2.3. Bulk sequencing vs single-cell sequencing 

Bulk DNA sequencing has been a common tool of choice for tumour 
evolutionary studies due to its scalability. One of the shortcomings of 
bulk sequencing is the reduced sensitivity to detect low frequency 
(subclonal) alterations. While single-cell DNA sequencing (scDNA-seq) 
approaches improve the sensitivity in principle, the high levels of noise, 
limited genome coverage and sparsity in the data makes detection of 
SNVs challenging. Many single-cell studies leverage SCNAs, which are 
identified more reliably, but amplification techniques used in single-cell 
sequencing can lead to biases in subclonal reconstruction [24]. Aggre-
gating multiple cells that have similar SCNA profiles can be used to 
mitigate this [25,26], but the single-cell resolution is then lost. Another 
limitation of scDNA-seq is that it cannot capture a tumour-wide repre-
sentation of clones, as relatively small numbers of cells are usually 
sampled from a single tumour region. Nevertheless, in comparison to 
bulk sequencing, single-cell sequencing reconstructs phylogenies with 
greater sensitivity and certainty [15,27–29] and can be used as a com-
plement to bulk-sequencing [27]. With the active development of scal-
able sequencing technologies and computational methods for subclonal 
reconstruction from single cells, scDNA-seq is likely to become a major 

tool for tumour evolutionary studies. 

2.4. Depth and breadth of sequencing 

Subclonal reconstruction can be performed from whole-genome 
sequencing (WGS), or targeted sequencing of coding regions (whole 
exome, WES) or selected genes (panel sequencing). The use of WGS 
maximises the number of clonal markers (passenger mutations) 
increasing the power for accurate SNV clustering and phylogenetic 
reconstruction. Further, WGS improves SCNA calling and enables the 
identification of subclonal SCNAs. The costs associated with WGS 
(sequencing and computational) usually limit the sequencing depth to 
<100× [30], which can reduce the detection of subclonal variants. On 
the other hand, the higher depth of sequencing achievable by WES and 
panel sequencing can improve subclone detection and CCF accuracy 
[15]. However, fewer clonal markers, especially in tumours with low 
tumour mutational burden limit accurate clustering and subsequent 
phylogenetic reconstruction. Characterisation of subclonal SCNAs is also 
restricted because a reduced number of genomic loci are captured in 
targeted approaches. The trade-off between the depth and breadth of 
sequencing ultimately needs to account for the study scale and a priori 
understanding of the strength of selection in the cancer type under 
study. For example, the focus on a small number of driver genes is 
justifiable in cancers where clonal expansions are usually associated 
with driver events (e.g. ccRCC) as opposed to those where neutral 
evolution is frequent (e.g. CRC) [31]. 

3. ccRCC as a framework to study cancer dynamics 

Clear-cell renal cell carcinoma (ccRCC) is an exemplary framework 
to understand tumour evolution. First, sporadically occurring ccRCCs 
present a wide range of population sizes. Tumours that are detected 
incidentally during abdominal imaging measure 1–2 cms (the so-called 
small renal masses - SRMs), which corresponds to 10s–100s of millions 
of cancer cells. However, many patients are still diagnosed at an 
advanced stage, with primary tumours >10 cm, equivalent to >trillion 
cancer cells. Population size has a profound effect on mutation supply, 
availability of evolutionary paths, and susceptibility to genetic drift 
[32,33]. Second, ccRCC presents a variety of progression patterns. In the 
context of active surveillance, most SRMs show limited growth and 
almost never metastasise [34], challenging the notion that all SRMs are a 
precursor to more aggressive tumours. In the context of larger tumours, 
metastatic efficiency varies from slow-growing solitary or oligo- 
metastases [35], to rapidly growing widespread metastases. Lastly, 
following curative resection of primary ccRCC some patients develop 
metastases > ten years later, in a single site, typically the pancreas or the 
thyroid. While the observed latency is assumed to represent dormancy, 
the lack of broader metastatic involvement in these patients questions 
this notion. 

Another advantage of the ccRCC framework is a well-defined land-
scape of recurrent driver events that characterise clonal expansions 
[7,36,37]. Loss of the short arm of chromosome 3 (3p loss) is a near- 
ubiquitous first event in ccRCC tumorigenesis. The minimum region of 
loss on 3p encompasses VHL, PBRM1, SETD2 and BAP1, resulting in the 
loss of heterozygosity (LOH) in these tumour suppressor genes (TSGs). 
The second most common driver event, the loss of the remaining VHL 
allele by mutation or methylation, is assumed to be the second event in 
the sequence [38]. Bi-allelic inactivation of VHL results in a pseudo- 
hypoxic state, upregulation of hypoxia-inducible-factor (HIF) targets 
[39], and high levels of angiogenesis. Frequent alterations occur in the 
remaining TSGs on 3p: PBRM1, BAP1, and SETD2, leading to altered 
chromatin states and genome instability [37,40]; other chromatin 
modifiers, including KDM5C and ARID1A, and the components of the 
PI3K pathway (TSC1&2, mTOR and PTEN) [7]. Finally, beyond 3p loss, 
ccRCC is characterised by a set of recurrent copy number losses or gains 
involving whole chromosomes or chromosome arms [41]. Whole- 

Table 1 (continued )   

SNV discovery and 
SCNA reconstruction 

SNV clustering and 
phylogenetic 
reconstruction 

Depth and 
breadth of 
sequencing 

Whole 
genome 
sequencing 

WGS identifies a 
higher number of 
SNVs (passenger 
mutations). Helps in 
understanding 
mutational processes 
better (for instance, 
UV-induced 
mutations in 
melanoma). WGS 
enables highly 
accurate SCNA calls 
and identification of 
subclonal copy 
number events. 

Higher number of 
passenger mutations 
enhances the power of 
clustering making the 
clusters more 
apparent, and thus 
improving the quality 
of phylogeny 
inference. However, 
higher cost of WGS 
usually limits multi- 
region sequencing 
which helps in 
resolving phylogenetic 
relationships. 

Targeted 
(whole exome 
or panel) 
sequencing 

Targeted sequencing, 
usually performed at 
higher depths, allows 
higher sensitivity to 
identify low 
frequency variants. 
Reconstruction of 
subclonal copy 
number events is very 
difficult. 

Fewer SNVs identified 
usually limits the 
quality of clustering. 
However, in samples 
with many SNVs (from 
higher depth) and 
fewer SCNAs, targeted 
sequencing could 
provide better 
resolution of 
phylogenetic 
reconstruction than 
WGS. 

Depth of 
sequencing 

Higher depth of 
sequencing enables 
discovery of low-VAF 
SNVs and improves 
precision of CCF 
estimates. However, 
tumour purity and 
ploidy dictate the 
depth needed to 
detect low-VAF SNVs. 
SNV detection 
methods are more 
affected by depth 
than the SCNA 
profiling algorithms. 

Deeper sequencing 
generally provides 
better resolution of 
phylogenetic 
reconstruction. The 
limit of detection of 
minor subclones is 
increased by higher 
depth. However, 
choosing a sequencing 
depth is a compromise 
between breadth and 
choice of assay of 
sequencing.  
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genome doubling occurs infrequently in ccRCC [42]. 
Chromosome 3p has limited homology in the mouse genome making 

it difficult for the stereotypical ccRCC genetics to be recapitulated in 
mouse models. In addition, the span of time over which these tumours 
evolve is hard to reproduce in pre-clinical models. Thus, dedicated 
studies of the human “model” of ccRCCs are necessary to understand 
how evolutionary features relate to the clinical disease course. 

3.1. VHL disease as a complementary framework 

Every instance of cancer evolution is unique, akin to the evolutionary 
biology concept of the “tape of life”; as posited by Gould in Wonderful 
life: “any replay of the tape of life would lead evolution down a 
pathway radically different from the road actually taken.” [43]. 
Individuals affected by the von Hippel Lindau (VHL) disease, due to 
inherited VHL mutation [44], develop hundreds of clonally independent 
kidney cysts and conventional ccRCC tumours. VHL disease provides a 
ready-made in vivo model of evolutionary repeatability by recording all 
malignant developments starting from identical genetic backgrounds. 
We are currently pursuing an analysis of this readout through a 
collaboration with Marston Linehan's group [45]. VHL disease also 
provides a unique opportunity to understand how the cell of origin and 
tissue context constraints clonal evolution, as in addition to ccRCC, 
kindred develop hemangioblastomas, pancreatic cysts and pheochro-
mocytomas, but not any other cancer types. 

3.2. Evolutionary trajectories in primary ccRCCs 

Given the frequent surgical resection of ccRCC primary tumours in 
the curative and metastatic (cytoreductive) setting, we could prospec-
tively recruit and sample tumours at all stages of evolution in the context 
of the TRACERx Renal study (TRAcking renal cell Cancer Evolution 
through Therapy NCT03226886) [46]. We employed a multiregional, 
spatially aware sampling approach to maximise the recovery of distinct 
clonal populations. Taking advantage of the narrow repertoire of driver 
genes in ccRCC, we used a targeted gene panel to profile 1000s of 
samples, aiding robust clonal resolution. Further, because the driver 
SCNAs in ccRCC involve entire chromosomes/chromosomal arms and 
we sequenced to high depth (>600×), we successfully used off-target 
reads to infer SCNAs. Despite the relatively low number of clonal 
markers recovered by the gene panel, the phylogenies obtained were 
highly concordant with those based on WES and WGS multi-region data 
[37], consistent with the strong role of selection in ccRCC [31]. In the 
interim analysis of the TRACERx Renal cohort, we analysed >1200 
primary tumour regions from 100 patients, observing that genetic di-
versity (measured as an ITH score) and chromosomal complexity 
(measured as weighted genome integrity index, wGII) were predictors of 
clinical outcome [37]; (Fig. 2). These evolutionary features provided 
distinct routes to progression, but also interacted such that both low 
ITH/high wGII and high ITH/high wGII tumours associated with worse 
outcomes. We found highly conserved patterns of driver event ordering, 

Fig. 2. Evolutionary trajectories in clear-cell renal cell carcinoma (ccRCC). Schematic illustration of seven evolutionary subtypes in ccRCC with the driver event 
ordering, clonal diversity (ITH) and genome instability (wGII) underpinning the phenotypic variation. The asterisk * represents parallel evolution of clones with 
various SETD2 mutations. ITH, intratumour heterogeneity; wGII, weighted genome integrity index; SCNA, somatic copy number alterations; PI3K, PI3K-AKT- 
mTOR pathway. 
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co-occurrence and mutual exclusivity pointing at the strong role of 
epistasis in shaping evolution of ccRCC. Following VHL inactivation, 
mutational order was often unidirectional, where PBRM1 mutations 
preceded SETD2 mutations, driver SCNA events, or PI3K pathway mu-
tations [37]; (Fig. 2). The reason for this ordering was recently suggested 
in a pre-clinical model by Karki et al. 2021, to be the co-dependency of 
PBRM1 and SETD2 in cancer progression via the dysregulation of 
microtubule methylation [47]. We observed extensive parallel evolu-
tion, especially of SETD2 mutant clones, with >10 distinct SETD2 mu-
tations detectable in some tumours [37]. The high frequency of parallel 
evolution provides further evidence of the strong role of selection in 
ccRCC and could also be a function of the large population size, as was 
suggested in non-cancer models [48]. 

We observed all modes of evolution in ccRCC. Tumours with VHL as 
the sole driver had low wGII and ITH and appeared to evolve linearly. 
The time from MRCA to clinical diagnosis in these cases was >30 years 
suggesting long periods of tumour growth with limited evolutionary 
potential. Clinically they associated with indolent behaviour and spe-
cifically SRMs [37], suggesting this evolutionary entity could be suitable 
for surveillance. Branched evolutionary trajectories were characterised 
by an initial 3p loss/VHL mutation followed by expansion of PBRM1 
mutant clones and additional subclonal driver events, resulting in high 
ITH and subclonal wGII. These tumours also evolved over long periods 
of time [37], consistent with gradual evolution. They grew to a large 
size, were highly vascularised and associated with limited metastatic 
progression. Patients with such tumours appeared to benefit from 
cytoreductive nephrectomy (removal of the primary tumour in the 
context of metastatic disease) or metastasectomy (surgical resection of 
metastasis), suggesting ongoing metastatic threat from the evolving 
primary tumour in situ. Finally, we observed punctuated evolution 
where an early fitness peak led to a clonal sweep resulting in low ITH 
and high wGII. While the tumours grew to a similar size to those with 
branched evolutionary mode, they did so rapidly with the evidence of 
high proliferation and the median time of four years from MRCA to 
diagnosis [37]. This evolutionary short-cut was achieved via three paths: 
1. Acquisition of multiple driver events within the MRCA (clonal mu-
tations in VHL and ≥ 2 clonal mutations in BAP1, SETD2, PTEN or 
PBRM1), the order of which could not be discerned in the absence of any 
intermediate populations. 2. VHL mutation followed by BAP1 mutation 
leading to a rapid clonal sweep, highlighting BAP1 as a strong driver of 
tumour growth [37]. 3. Bypassing VHL inactivation (VHL wild type 
tumour). These patients tended to present with rapid relapse following 
surgery with curative intent, likely due to occult widespread metastases 
hence the lack of impact from the removal of the primary tumour. 
TRACERx Renal is an observational study, however, these findings also 
reconcile the results of prospective interventional studies of cytoreduc-
tive nephrectomy (SURTIME), which reported that ~20% of patients 
progressed four weeks after surgery [49]. We posit that these patients 
likely had primary tumours characterised by punctuated evolution. 

Thus, in the context of ccRCC there is a clear relationship between 
the mode and tempo of evolution and the clinical phenotype and patient 
outcomes, providing strong evidence for the use of evolutionary un-
derstanding in clinical decision making. 

3.3. Evolution of metastatic competence 

In the TRACERx Renal study, we analysed clonally resolved primary 
tumours with matched metastatic tumours to understand which clones 
can metastasise, and to determine if metastatic potential was established 
at the primary site. Metastasis-competent clones had the same burden of 
driver mutations but were more aneuploid, with higher wGII and higher 
proliferation index, compared to non-metastasising clones [50]. 
Consistent with the linear model of metastatic progression, metastases 
showed little ongoing evolution [11]. Losses of chromosomes 9p and/or 
14q were highly enriched in metastasising clones, and their presence 
drove increased overall mortality [50]. The two events frequently co- 

occurred suggesting cooperation. Intriguingly, genome engineered 
ablation of 9p21 in a mouse model of ccRCC resulted in the early 
emergence of chromosomal instability and selection of other aneu-
ploidies, most prominently loss of 12q, syntenic to human 14q [51]. 

The timing of the emergence of these high-risk events was dependent 
on the evolutionary mode. In branched evolution, they emerged late, 
and metastatic competence was confined to a primary tumour subclone. 
In punctuated evolution, they were fixed early, and metastatic compe-
tence dominated the primary tumour mass [50] (Fig. 2). Punctuated 
evolution resulted in monoclonal metastatic seeding, while metastatic 
divergence (polyclonal seeding) was observed with branched evolution 
of the primary tumour [50]. Considering the relationship between the 
tempo and extent of metastases and evolutionary modes it might simply 
reflect the prevalence of metastatic competence in the primary tumour 
(widespread in punctuated evolution and limited in linear evolution), 
especially given the inherent inefficiency of the metastatic process [52]. 
However, clonal interference (multiple clones emerging in a population 
at the same time and interfering with each other) could potentially 
constrain the metastasising clone, as has been shown in pre-clinical 
models [53] and contribute to the patterns observed. 

Metastases were invariably seeded by the most aggressive, chromo-
somally complex clone in the primary tumour, with one exception. 
Pancreatic metastases were seeded by the ancestral clone, harbouring 
only bi-allelic VHL loss without 9p or 14q loss. Pancreatic metastases 
tend to be indolent and emerge late, often as an exclusive metastatic site 
in ccRCC [54]. The limited fitness of the founder clone reconciles the 
lack of cross-organ seeding in these patients and raises the possibility 
that slow growth, rather than dormancy, underpins the late emergence 
of pancreatic metastases. 

Metastatic cancer remain largely incurable, and our insights in 
ccRCC provide an evolutionary understanding of the metastatic process 
relevant to predicting the risk and extent of metastatic disease, with 
clear implications for patient surveillance, timing and nature of thera-
peutic interventions. 

3.4. Spatial dynamics of clonal evolution 

Understanding of cancer evolution is incomplete without the 
knowledge of how clones expand and interact in space and over time. 
The unique sampling framework in our cohort yields spatial maps, 
where each genetically defined clone is mapped back to an area in the 
tumour. We integrated spatial, genomic, immunohistochemistry and 
clinical data to evaluate the spatial characteristics of clonal growth in 
ccRCC [55]. Clones harbouring SCNA drivers associated with the largest 
clonal expansions, confirming their significant fitness advantage relative 
to smaller scale alterations. Clones at the tumour centre, compared to 
the periphery, represented an aggressive phenotype, characterised by 
higher Fuhrman grade, proliferation, SCNA burden, metastatic compe-
tence, and necrosis [55]. This suggests a harsh, hypoxic TME at the 
tumour core which selects highly fit/proliferative clones, with the sub-
sequent high cell turn-over and death making the TME even harsher. In a 
corresponding mathematical model, the occurrence of necrosis at the 
tumour centre supports expansion of highly aneuploid clones estab-
lishing a vicious cycle of repeat selection of the most aggressive clones 
[55]. 

We further applied mathematical modelling to understand the 
different modes of evolution we observed in patients' tumours (see 3.2) 
[56]. We observe that surface growth (active growth at the tumour 
surface) enables more extensive subclonal diversification and branch-
ing; while volume growth (uniform growth throughout the tumour) 
associates with punctuated evolution. In both modelling and experi-
mental data, parallel evolution and hotspots of microdiversity (diversity 
within a single tumour region) emerged towards the tumour edge [56]. 
Temporal features of tumour evolution are challenging to discern 
without serial tumour biopsies which are impractical in most cases. We 
thus used our model to “re-wind” the simulation and find the early 

H.A. Pallikonda and S. Turajlic                                                                                                                                                                                                             



BBA - Reviews on Cancer 1877 (2022) 188759

7

indicators of subclonal diversification. Intriguingly we observed 
budding structures on the tumour surface indicating recent clonal ex-
pansions, in the early stages of tumour growth [56]. When we evaluated 
radiological images from patients with early stage ccRCC we also 
observe budding structures sometimes corresponding to the areas of 
confirmed microdiversity, indicating a recent clonal expansion [56]. 
Surprisingly, radiological imaging appears to bear a footprint of clonal 
dynamics. 

Thus, combining mathematical modelling and large-scale real- 
tumour analyses is very powerful and clinically relevant. The model can 
be accurately parameterized from the primary data, while features 
which remain hidden in the primary data can be explored through in 
silico tumour evolution. Our findings indicate that spatially aware 
tumour sampling could detect clinically relevant clones: metastasising 
clones in the tumour-centre and emergent parallel evolution and 
microdiversity in the periphery. Finally, radiological features may pre-
dict future evolutionary steps in early-stage tumours which could aid 
risk stratification and clinical management. 

3.5. Future directions 

In the follow up analyses of the TRACERx Renal cohort involving 200 
patients, we will refine the evolutionary classification to detect less 
common evolutionary trajectories. In the interim analysis we recovered 
successful clonal expansions through bulk sequencing, with the sensi-
tivity to detect variants present in ~5 million cells. In the future, we will 
incorporate the features of microdiversity through microclone (sensi-
tivity to detect variants present in 100–1000s of cells) and single cell 
sequencing, to systematically map clone fitness and evolutionary po-
tential/ evolvability of individual tumours. To explore evolutionary 
constraints, we will dissect the individual contribution of the driver 
events in pre-clinical models and test the fitness costs of reversing their 
order and combination. We are investigating the TME through spatial 
biology approaches to define clone-specific and evolutionary mode 
specific niche and derive stable eco-evo predictions. Evolutionary pre-
dictions in routine practice will require scalable methods that consider 
vast intratumor heterogeneity (e.g. Rep-Seq). Increasingly, the appli-
cation of artificial intelligence could capture evolutionary features from 
routinely available histological and radiological data which offer reso-
lution of spatially distributed features. 

4. Conclusion and perspective 

The focus of our group is fundamentally understanding cancer evo-
lution. However, the ultimate objective is to improve patient outcomes 
by leveraging our understanding of cancer dynamics. Targeted therapies 
and immune checkpoint inhibition have drastically improved cancer 
outcomes in the last decade. However, many patients relapse following 
surgery with curative intent and/or adjuvant therapy, while metastatic 
tumours remain largely incurable due to the emergence of resistance to 
systemic therapies. Understanding clonal evolution that had already 
taken place, especially its mode and tempo, offers the opportunity to 
predict the next evolutionary step, and possibly re-direct the tumour to a 
more favourable outcome. The knowledge of evolutionary constraints 
can shed light on tumour vulnerabilities, such as synthetic lethality, that 
can be exploited for novel therapies. 

Evolutionary dynamics can inform flexible strategies of therapeutics 
to limit tumour adaptation and/or prevent resistance, such as ‘adaptive 
therapy’ [57] or ‘sucker's gambit’ [58]. Such strategies require dynamic 
monitoring, and approaches such as Rep-Seq could be implemented in a 
clinical setting to inform the optimal ctDNA panels to facilitate such 
monitoring. 

It has become clear that the clonality of drug targets (for example 
HER2 in early-stage breast cancers [59] and FGFR in gastric cancers 
[60]) can impact treatment responses, while clonal neoantigens are 
superior to subclonal neoantigens in generating anti-immune responses 

following immune checkpoint inhibitor therapy [61]. Thus evaluating 
evolutionary features could predict the likelihood of emergence of 
resistance prior to therapy initiation and inform upfront combinatorial 
approaches. 

The heterogeneity in transcriptional cell states, epigenetic profiles 
and interactions of tumour clones with the TME provide critical cues in 
our understanding of cancer evolution. Ultimately, a holistic under-
standing can only be achieved by an integrated approach involving 
multi-omics, spatial biology approaches, histopathology and radiology. 

In conclusion, understanding the dynamics of cancer evolution will 
benefit patient management and clinical decision-making by using an 
‘evolution-aware’ framework. While our current knowledge of tumour 
evolution is growing, a comprehensive tumour evolution ‘rule book’ is 
far from complete. Transformational, large-scale clinical studies coupled 
with pre-clinical models and cutting-edge methods are required to 
realise this aspiration. In the meanwhile, methods that can accurately 
capture tumour evolution must be considered for clinical adoption 
through prospective studies. 
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