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Biomarkers in body fluids are helpful objective tools in diagnosis, prognosis and

monitoring of (therapeutic) responses of many neurological diseases. Cerebrospinal fluid

(CSF) biomarkers are part of the diagnostic toolbox for infectious neurological diseases.

Tuberculous meningitis (TBM) and Human immunodeficiency virus (HIV), are important

burdens of disease in Africa and can negatively affect brain health. Two thirds of the

world’s population of people living with HIV reside in sub-Saharan Africa and 25% of the

global burden of tuberculosis (TB) is carried by the African continent. Neuroinflammation

and damage of specific neuronal cell types are key constituents in the pathophysiology

of these central nervous system (CNS) diseases, and important potential sources of

circulating biomarkers. In this review, we summarize current research in the use of

biomarkers in TBM and pediatric HIV as case demonstrations for high prevalence

neurological diseases in Africa. Inflammatory molecules, primarily when detected in CSF,

appear to have diagnostic value in these diseases, especially when measured as profiles.

Brain injury molecules, such as S100, Neuron specific enolase and glial fibrillary acidic

protein may have prognostic value in TBM, but more studies are needed. There is a

need for more cost-economic and high sensitivity technologies to drive further biomarker

discoveries and translate into healthcare improvements for these important healthcare

problems in a globally fair way.
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INTRODUCTION

Biomarkers in body fluids are helpful objective tools in diagnosis, prognosis and monitoring of
(therapeutic) responses of many neurological diseases. Cerebrospinal fluid (CSF) biomarkers are
part of the diagnostic toolbox for chronic neurological diseases such as Alzheimer’s disease and
Multiple Sclerosis, and for infectious central nervous system (CNS) diseases such as meningitis
(1, 2). Biomarkers previously tested exclusively in the CSF compartment in neurological diseases,
can nowadays be measured in the systemic blood as well, and blood and CSF neurobiomarkers
are progressively being used as useful endpoint measurements in trials targeting CNS diseases
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(3, 4). Acute and chronic infections, including tuberculous
meningitis (TBM) and Human immunodeficiency virus (HIV),
are important burdens of disease in Africa and can have
detrimental effects on brain health. Two thirds of the world’s
population of people living with HIV reside in sub-Saharan
Africa and 25% of the global burden of tuberculosis (TB) is
carried by the African continent (5, 6). Neuroinflammation and
damage of specific neuronal cell types are key constituents in the
pathophysiology of these CNS diseases, and important potential
sources of circulating biomarkers. Although biomarker research
for infectious CNS diseases is not as intensively studied as for
some other neurological conditions, there are interesting pilot
data from which parallels with widely studied disorders can be
drawn, and which highlight the need for further research into the
diagnostic and prognostic potential of biomarkers in the African
context. In this review, we will summarize current research on
biomarkers in TBM and pediatric HIV as case demonstrations
for high prevalence neurological disease in Africa and discuss
options for biomarker development with consideration for the
unique challenges on the continent.

TUBERCULOUS MENINGITIS

In the World Health Organisation’s 2020 TB Report TB was
remained the deadliest infectious disease globally. In 2019 the
international TB incidence was 10 million, with numerous
countries within Africa ranking amongst those carrying the
largest global burden of TB (6). TBM is estimated to occur in
one out of 100 TB cases (7), and is the most fatal and debilitating
manifestation of TB, leading to high rates of death and disability
in adults and children (8).

Pathogenesis of TBM
Tuberculosis infection occurs after the inhalation of infectious
droplets of aerosolisedMycobacterium tuberculosis (Mtb), which
stimulates an innate immune response in the lung tissue that
leads to the containment of the bacilli within a granuloma (9).
However, in the elderly, immune compromised or very young,
the infection may progress to active TB disease associated with
destruction of the lung parenchyma and dissemination of the TB
bacillus to other organ systems, including the CNS (10). Despite
the protective blood brain barrier (BBB), Mtb gains access to
the brain through numerous postulated mechanisms, including
rearrangement of the actin cytoskeleton of brain microvascular
endothelial cells (11), bacillary endothelial adhesion (12), or the
Trojan Horse wherebyMtb is trafficked into the CNS in infected
innate immune cells (13). The limited resident CNS immunity
facilitates bacillary survival and replication and the development
of silent tuberculous lesions, often referred to as the Rich’s Focus,
which be located on the cortical pia or adjacent to the ventricles
and meninges (14). Rupture of these lesions is thought to result
in granulomatous inflammation.

Mycobacterium tuberculosis is recognized by the brain’s
resident immune cells, microglia, through pattern recognition
receptors including toll-like receptors. Activation of microglia
leads to secretion of a number of pro-inflammatory mediators
(discussed below), recruitment of peripheral immune cells and

activation of astrocytes which aid in the immune response (15).
The cerebral immune response is an important determinant of
poor outcome as the formation of thick inflammatory exudate
causes cerebral vasculitis and occlusion as well as hydrocephalus
and raised intracranial pressure. Consequently, the brain is at
high risk of ischaemia and infarcts are seen in almost 70% of
patients (16).

A delay in starting treatment is a major determinant of poor
outcome, yet timely diagnosis of TBM is challenging due to
its non-specific presentation (17). Similarly, clinical tools are
limited in accurately predicting patient outcomes making it
difficult to triage limited resources to patients at greatest risk.
Biomarker studies have, therefore, aimed to identify markers to
improve accurate and early diagnosis and prognosis. Biomarkers
may also serve as valuable proxy measures of novel treatment
efficacy, and to elucidate disease pathophysiology and new
intervention strategies.

Inflammatory Biomarkers
Numerous cytokines and chemokines are elevated in the CSF
of adult and pediatric TBM patients, including tumor necrosis
factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL-10,
IL-6, IL-8, IL-2, monocyte chemoattractant protein (MCP)-
1 and macrophage Inflammatory Protein (MIP)-1α among
others (18–21). Cytokine levels vary across studies, even when
the same testing platform has been used, possibly due to
variations in the timing of sample collection, the synergistic
interplay between pro- and anti-inflammatory cytokines, and
variability in the strain of Mtb (19). Initial concentrations of
pro-inflammatory cytokines like TNF-α and IFN-γ are highest
on hospital admission followed by a subsequent decline over
several weeks. Levels of intrathecal anti-inflammatory cytokines,
such as IL-10, may be low if CSF samples are obtained when the
inflammatory cascade is still developing (22–25). The ubiquitous
finding across all studies is that CSF cytokine levels are elevated
in TBM with some decrease after the initiation of treatment
and inflammation continues despite drug administration. The
degree of the attenuating influence of treatment, however, varies
between cytokines. Combinations of inflammatory biomarkers
could thus add value to the diagnosis of TBM. Numerous studies
in pediatric TBM have examined the diagnostic accuracy of
various combinations of host protein biosignatures in both serum
and CSF taken on hospital admission. Protein combinations
for CSF that have shown promising area under the curve
(AUC), sensitivity and specificity include vascular endothelial
growth factor (VEGF), myeloperoxidase (MPO) and IFN-γ
(AUC = 0.97, sensitivity = 91.3, specificity = 100), as well
as the combination of soluble intracellular adhesion molecule
(sICAM)-1, MPO, CXCL-8 and IFN-γ (AUC = 0.97, sensitivity
= 87, specificity = 95.8) (26). In serum a modified 7-protein
biosignature developed for pulmonary TB [c-reactive protein
(CRP), neural cell adhesion molecule (NCAM)-1, IFN-γ, CFH,
apolipoprotein (Apo)-AI, IP-10 and serum amyloid A (SAA)]
only showed modest sensitivity and specificity for pediatric
TBM, but a 3 -protein signature (adipsin, Aβ42 and IL-10)
was associated with improved diagnostic performance (27).
While the potential of developing a bedside diagnostic tool for
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multiplexed proteins is intriguing, study sample sizes remain
small and further validation is required in larger studies across
the age range.

The association between CSF inflammatory mediators and
various indicators of injury severity and outcome has yielded
conflicting results. Several studies (19, 21, 22, 24, 28, 29) have
found no association between the British Medical Research
Council TBM stage (30) and the levels of TNF-α, IL-10, IL-
1-β, IL-6 or IL-8. However, other studies show a significant
positive correlation between the levels of TNF-α, IL-1β and IFN-
γ and TBM stage (31, 32). Similarly, the association between
CSF inflammatory biomarkers and outcome also is poor (20, 21,
24). Cumulatively these results indicate that while the cerebral
inflammatory response is an important early disease process,
biomarkers of inflammation do not necessarily reflect the degree
of cerebral tissue injury and the severity of the disease; therefore,
biomarkers of brain tissue injury may be important additional
tools to predict and monitor disease severity.

Brain-Specific Biomarkers
Brain-specific proteins have become valuable tools for diagnosis
and prognostication in other forms of brain injury and infection,
such as traumatic brain injury or stroke (33, 34). The cell-
specificity may indicate the nature of cellular injury, their
concentrations reflect injury severity, and their temporal profile
provides insight into recovery or evolving injury (33). Only
recently, brain-specific injury biomarkers have been investigated
in TBM. A pediatric TBM study found elevated concentrations
of CSF brain biomarkers S100B, glial fibrillary acidic protein
(GFAP) and neuron specific enolase (NSE) which were associated
with infarcts on brain imaging (20). Further, in serial samples
over the first 4 weeks of hospitalization inflammatory mediator
concentrations decreased in all patients, whereas these brain
biomarkers continued to rise in patients who died and their trend
over time was a promising prognostic biomarker (20). Similar
findings have been reported in adult TBM (35) and a follow-
up pediatric TBM study using whole genome transcriptomics
in CSF confirmed the upregulation of genes and pathways
associated with brain injury, including neuroexcitotoxicity (36).
These studies highlight that injury processes initiated by the host
inflammatory response are ongoing despite treatment. Further
investigation into these mechanisms of injury is crucial to
elucidate novel therapies directed at ameliorating brain injury,
and brain-derived biomarkers will be an important tool in
this quest.

Compartmental Differences in Biomarker

Concentrations
Adult and pediatric TBM data indicating that CSF cytokine
concentrations are significantly greater than those seen in serum
(20, 25) suggest compartmentalisation of the immune response
at the site of disease, and a confounding effect of peripheral
organs to serum cytokine levels. The detection of brain-derived
biomarkers in blood is challenging and may additionally be
influenced by their intrathecal concentration, their molecular
weight and half-life (37). Brain-derived proteins can diffuse
into the blood regardless of BBB breakdown (37, 38), but

this is likely augmented when the BBB is compromised (39).
Consequently, serum concentrations reflect only a fraction of
CSF levels and only transiently. Although serum brain-specific
injury biomarkers (such as S100B, GFAP and NSE) work well as
diagnostic and prognostic tools in traumatic brain injury, they
have been challenging to detect in TBM (20). This could be due
to the extent of tissue injury, or the uncertainty around the timing
of blood sampling relative to the onset of brain injury, which in
TBM is likely to result from lasting injury processes rather than
an acute discrete event. However, testing platforms used for TBM
studies to date may have lacked adequate sensitivity to detect low
quantity brain injury markers in blood. Newly developed assays
with improved sensitivity (34) may warrant re-evaluating the
role of serum-based brain biomarkers, especially as CSF requires
invasive sampling.

Cerebrospinal fluid reflects changes in the brainmore robustly
than serum, implying that there is compartmentalisation within
the CNS. Ventricular CSF, sampled as part of the management
of TBM associated hydrocephalus, demonstrates significantly
higher brain injury biomarker concentrations than lumbar
CSF, while inflammatory biomarkers are greater in the lumbar
compartment (20). This is similarly reflected in transcriptomic
data, which showed upregulation of pathways associated with
brain injury in the ventricular CSF and those associated with
inflammation in the lumbar CSF (36). This likely reflects
a decrement in brain-derived proteins along the brain-spine
axis (37, 40) and the contribution of spinal sub-arachnoid
inflammation present in as many as 76% of TBM patients (16).
These data suggest that biomarker diagnostic, treatment, and
prognostic thresholds must take the CSF compartment source
into account.

(NEURO)INFLAMMATORY MARKERS IN

PEDIATRIC HIV

Pathogenesis of Pediatric HIV
Infection with HIV can cause a range of brain disorders,
of which neurocognitive impairments is the most common
phenomenon. HIV infects the CNS via transmigration of
infected CD4+ cells and monocytes across the BBB (41, 42).
Microglial cells and perivascular macrophages are cell types that
subsequently become the source of chronic infection in the CNS
(43). The pathogenesis of HIV-associated neurodevelopmental
impairments in children is not fully understood. An aberrant
immune regulation, characterized by chronic low-grade
neuroinflammation is accepted to be a key mechanism that
contributes to impaired brain functioning in children (44, 45)
and adults (46) living with HIV. Viral proteins (e.g. Tat and
gp120) that are released from infected cells activate microglial
cells and astrocytes to produce pro-inflammatory cytokines and
chemokines that impair neuron functioning when exposed over
a chronic period.

HIV Exposed Uninfected Children
World-wide and specifically in sub-Saharan Africa, important
progress has been made in reducing vertical transmission
of HIV to infants through the implementation of effective
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and widespread prevention of mother-to-child transmission
(PMTCT) programmes (47, 48). While PMTCT success has
resulted in the decline in pediatric HIV infection, discussed
below, the number of HEU infants, i.e. perinatally exposed
but not infected children, has rapidly risen. In 2018, the
global population of HEU children was estimated to be 14.8,
13.2 million of whom resided in sub-Saharan Africa (49).
Maternal HIV infection during pregnancy may have negative
consequences for the development of the HEU child. Although
HIV uninfected, the large population of HEU children is at
increased risk of morbidity and mortality in general (50–52).
Moreover, HEU children are at risk of impaired behavioral and
neurocognitive functioning (53, 54). The prevalence of cognitive
delay between 1 % and 31% and severe motor delay from
0 to 39% in HEU children was reported in a meta-analysis
(55). A recent neuroimaging study showed that cortical surface
area and thickness within frontal regions were associated with
cognitive development, and in temporal and frontal regions
with language development in HEU children (56). Impaired
educational performance in HEU children (57) is a growing
concern since these children may fail to progress academically
and to acquire appropriate skills to sustain employment as adults
in low- and middle-income countries (LMICs).

Our understanding of the pathogenesis of
neurodevelopmental deficits in HEU children remains
limited. This is in part due to the lack of appropriate
animal models or post-mortem brain tissues from HEU
children for neurobiological research. Evaluations of human
systemic immune markers have provided important insights
on the involvement of aberrant (neuro)immune regulation on
neurocognitive delays in HEU children. In a South African birth
cohort, increased granulocyte-macrophage colony-stimulating
factor (GM-CSF), IFN-γ, IL-10, IL-12p70, IL-1β, IL-2, IL-4, IL-6
and neutrophil gelatinase-associated lipocalin (NGAL) in HEU
infants, predicted worse motor functioning at 2-years follow-up
(58). Interestingly, in this study maternal HIV infection was
associated with lower levels of inflammatory markers in mothers
and their children (e.g. IL-1β, IL-2, IL-4 and IFN-γ) compared
to HIV uninfected mothers and their children (58), suggesting
a suppressed immune profile in HEU children in this South
African cohort. Similarly, another study with a Zimbabwean
cohort also found decreased IL-6 levels in HEU children
compared to HIV unexposed children (59). On the other hand,
contradictory findings in European and American populations
were reported. Increased circulating levels of IL-8 and IL-1βwere
detected in HEU infants as compared to unexposed infants in the
Netherlands (60). Significantly increased levels of plasma IL-4
were found in Brazilian HEU children aged 6 to 12 years (61).
Further, in Brazilian HEU neonates, increased circulating levels
of IFN-γ and TNF-α compared to HIV unexposed neonates
were reported (62). The conflicting findings between continents
may be attributed to differences in HIV subtypes. HIV subtype
Clade B is predominantly present in America, Western Europe,
Australia and Asia and represents about 12% of the world’s
HIV infected population (63) whereas HIV subtype Clade C is
present in countries of Southern Africa and India (64). Clade
C tends to exert immunosuppressive effects as compared to

the pro-inflammatory effects exerted by Clade B (52), which
may explain the lower levels of inflammatory biomarkers
reported in the Southern African cohorts. These studies
underscore the importance of research on the involvement of the
(neuro)immune system in neurodevelopmental delays in various
African populations such as in Southern Africa, considering
the expanding numbers of HEU children of mothers with
predominantly HIV subtype Clade C, which represents about
50% of all HIV infections (64).

Perinatally HIV Infected Children
Despite successful PMTCT programmes, millions of children
are still born with HIV today (49). Children born with HIV
(perinatally HIV, PHIV) show neurocognitive impairments
as compared to uninfected peers, despite long term HIV
suppression by combination antiretroviral therapy (cART).
Studies reported a prevalence of severe cognitive delay between
21% to 35% and severe motor delays ranging from 14 to
81% in perinatally HIV infected children (55). The cause
of these poorer neurocognitive outcomes as compared to
peers is not well defined, but alterations in cerebral volume,
white matter (WM) integrity, neurometabolites, and regional
perfusion suggest underlying cerebral insults (65–68). HIV
encephalopathy, a neurological disorder typical for children
born with HIV is characterized by cerebral atrophy, basal
ganglia calcifications, and white-matter abnormalities seen on
conventional computed tomography or magnetic resonance
imaging (MRI) (69). Even without these macrostructural imaging
abnormalities, such as WM lesions (WML), microstructural WM
injury as demonstrated by changes in diffusion values with
diffusion-tensor imaging (DTI) is present in well treated PHIV-
infected children (67, 69).

Long term HIV related immune activation may further
contribute to this CNS pathology. HIV related systemic immune
activation as indicated by systemic inflammation, monocyte and
endothelial activation, with raised CRP, MCP-1, soluble CD14
(sCD14), soluble intercellular adhesion molecule-1 (sICAM-1)
and vascular cell adhesion molecule-1 (sVCAM-1), IL-1, IL-6,
IL-8, IL-10, IL-18, TNF-α), and soluble TNF receptor II (sTNF-
RII) concentrations is reported in well treated PHIV (70–73). In
HIV infected adults, elevated sCD14 levels in CSFwere associated
with increased levels of CSF neurofilament light-chain (NfL)
levels and reduced brain tissue levels of the neurometabolite
N-acetylaspartate (NAA) (74, 75).

In general, in children and more specifically in PHIV
children, reports on intrathecal markers are scarce. In a
recent Dutch cohort study, well treated PHIV children
had increased systemic CRP, IFN-γ, IP-10, and MCP-1 as
compared to controls, indicative of immune activation and
inflammation. These children had suppressed HIV viral load
levels in both blood and CSF (76). Intrathecal markers of
immune activation and inflammation such as sCD14, and
IL-6, and NFH were not elevated in CSF, but relative
elevation of these markers within the normal range were
associated with poorer cerebral and cognitive outcomes,
indicating that immune activation and neurodegeneration may
play a role in pediatric HIV related cerebral insults (76).
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In addition to associations of immune activation markers
and neurodegeneration, an association between HIV related
inflammation and neuroretinal thinning (as measured by
Optical Coherence Tomography) in a cohort of cART treated
perinatally HIV-infected children was detected (77). Ongoing
immune activation, inflammation, and neuronal injury could
therefore occur simultaneously with retinal thinning in PHIV.
Taken together, one may postulate that chronic HIV related
immune activation, inflammation and microstructural neuronal
injury may precede functional neurocognitive impairments and
macrostructural MRI abnormalities.

TB and HIV Co-infection
People living with HIV are 18 times at risk to develop active TB
disease as compared to HIV uninfected people (6). Interestingly,
HEU children are also at significant risk at TB infection (78, 79).
HIV and TB coinfection in children has become an important
challenge to diagnose and manage globally. Moreover, TB and
HIV coinfection potentially exacerbate each other’s negative
effects on the CNS. Evidence from a computed tomography
imaging study showed that PHIV children with clinically
diagnosed TBM presented with higher ventricular enlargement,
gyral enhancement and cerebral atrophy as compared to HIV-
negative children (80). Even though the effects of TB co-infection
on cognitive functioning in PHIV or HEU children is unclear,
a study in Zambian adults with HIV showed that co-infection
with TB significantly contributed to impaired cognitive function
as compared to people with HIV but without TB (81). It is
therefore reasonable to hypothesize that TB andHIV co-infection
in children will lead to poorer brain health and neurocognitive
performance than these infections independently. The immune
system may play a pivotal function in the potentiating effects
between HIV and TB infections (82), and possibly their effects
on the brain. For example, the proportion of peripheral blood
CD14+CD16+ monocytes are higher in TB and HIV coinfected
patients as compared to people living with HIV but without TB
infection (83). CD14+CD16+ monocytes that are infected with
HIV, migrate across the BBB, which is the primary mechanism
by which HIV infects the CNS (84), resulting in cognitive
impairment. Hence, TB infection may facilitate neurocognitive
disorders in HIV patients by increasing the CD14+CD16+

monocyte subset. In human post-mortem brain tissues, it was
found that patients with TB and HIV co-infection had increased
markers of activated microglia and astrocytes in certain brain
regions as compared to patients that only had TB or HIV (85).
Therefore, TB and HIV co-infection can have an additive effect
on neuroinflammatory regulation, which is potentially reflected
by peripheral blood (neuro)inflammatory markers. Literature
on the associations of biomarkers of neuroinflammation and
neuronal injury with impaired brain health in children with
TB and HIV coinfection is lacking and an important topic for
future studies.

DISCUSSION AND OUTLOOK

The presented literature suggests that TBM and HIV are
associated with increased intrathecal immune responses, the

temporal profile and extent of increase are likely dependent on
the disease mechanisms. The pathogenesis of TBM and pediatric
HIV differs. TBM represents a more acute infection while neuro-
HIV follows a more chronic infective process. In both cases
diagnosing these conditions and determining their impact on
the brain is difficult. By discussing these two conditions this
review hopes to offers insights into the generalizable use of
biomarkers across the spectrum of CNS infection, those which
are acute and often short-lived with treatment, as well as those
which persist and manifest over the longer term. In addition
to the classical increased pro-inflammatory cytokines, TBM is
characterized by cytokine changes induced by acute neuronal
and vascular damage, whereas pediatric HIV involves a chronic
low-grade neuroinflammatory response to products of CNS
HIV infection.

Given the relevance of early inflammatory increases in
pathologies like TBM, blood-based inflammatory biomarkers are
highly needed. However, in view of the current lack of brain-
specific inflammatory biomarkers, this is a challenge. A possible
solution could be the analysis of inflammatory mediators or their
transcripts in brain-derived exosomes in plasma (86, 87), which
could confer desirable brain-specificity in blood.

Given the dynamic character of the immune-response and
the involvement of several immune-related markers, it is likely
that profiles or arrays of different markers should be measured.
Novel multiplexing technologies enable such profile analysis,
and different platforms are available. While these technologies
may differ in sensitivity of detection of low circulating levels of
these inflammatory molecules in CSF, they also differ in costs of
instrumentation, reagents and level of automation. It is expected
that some of the more affordable technologies may even become
available in bed-side point of care formats, which is especially
relevant in LMICs. Once the wet-analysis is finalized, profile
analysis requires statistical tools for interpretation, for which
algorithms or Apps could be developed to enable interpretation
for the individual patient.

To date, few studies have taken advantage of novel
ultrasensitive technologies to measure brain-injury biomarkers
in blood, especially Neurofilament Light (NfL). From the studies
performed in TBM, it appears that brain injurymarkers may have
prognostic value, which is now robustly being shown for NfL
in other chronic and acute diseases, such as SARS-CoV2-related
encephalitis (4, 88, 89). With reference to pediatric diseases,
blood biomarkers NfL and GFAP are increased in children with
acute demyelinating disorders and have potential value for the
decision who to treat, and to monitor therapeutic responses
(90). Interestingly, levels of these biomarkers are relatively high
in healthy newborns and children, which may allow the use
of less expensive technologies. For example, Beerepoot et al.
showed that levels of blood based neurobiomarkers NfL and
GFAP concentrations show a U shape across the lifespan: they
are high in newborns, and the lowest levels probably are reached
around age 15, after which they increase again (90).

Biomarker studies in any disease requires an infrastructure
of biobanking and systematic recording of clinical and other
relevant disease characteristics, in addition to sufficient
funding to perform such studies. In addition, pre-analytical
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aspects may be another challenge. For some biomarkers,
samples are ideally processed within a couple of hours
after collection (91). Different processing solutions should
thus be defined for specific biomarkers for use in a
variety of settings. Fortunately, a stringent pre-analytical
protocol is not required for some biomarkers, like NfL and
GFAP (91).

In conclusion, there is clearly a strong need for and
demonstrated value of fluid biomarkers to aid precise biological
diagnosis of neuroinfectious disorders highly prevalent on the
African continent. With the current technological developments
in other disease areas, more technological opportunities become
within reach to measure disease relevant proteins in accessible
matrices. It is of utmost importance that these technologies are

transformed into tools that can be implemented in resource-low
conditions to enable access to these healthcare improvements in
a globally equitable way that maximizes benefit to patients.
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