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Abstract

Single-cell RNA sequencing (scRNA-seq) is emerging as an essential technique for studying the physiology
of individual cells in populations. Although well-established and optimized for mammalian cells, research of
microorganisms has been faced with major technical challenges for using scRNA-seq, because of their rigid
cell wall, smaller cell size and overall lower total RNA content per cell. Here, we describe an easy-to-
implement adaptation of the protocol for the yeast Saccharomyces cerevisiae using the 10� Genomics
platform, originally optimized for mammalian cells. Introducing Zymolyase, a cell wall–digesting enzyme,
to one of the initial steps of single-cell droplet formation allows efficient in-droplet lysis of yeast cells,
without affecting the droplet emulsion and further sample processing. In addition, we also describe the
downstream data analysis, which combines established scRNA-seq analysis protocols with specific adapta-
tions for yeast, and R-scripts for further secondary analysis of the data.

Key words Single-cell RNA sequencing, Transcriptomics, Single-cell omics, Yeast, Saccharomyces
cerevisiae, 10� Genomics

1 Introduction

High-throughput single-cell RNA sequencing (scRNA-seq) has
become a well-established technique to study cell-to-cell heteroge-
neity, rare phenotypes and their effect on how populations func-
tion. Various methods have been developed for scRNA-seq, with
different single cell isolation and library preparation strategies
depending on the specific organisms involved [1–10]. Cell isolation
methods range from micromanipulation and index sorting to more
recent microfluidics-based methods. While each method has its
strengths and weaknesses, droplet-based methods, such as Drop--
seq [11, 20] or the 10�Genomics’ microfluidic platform, are often
considered the gold standard because they generally yield higher
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throughput while reducing cost and workload. On the flipside,
these droplet-based methods do require specialized microfluidics
equipment and have been shown to generally detect a lower num-
ber of genes per cell [12]. Currently, the droplet-based method
from 10� Genomics has become one of the most commonly used
commercial systems [4, 13–16]. The platform uses Gel Bead-In-
Emulsions (GEMs), trapping single cells in separate emulsion dro-
plets along with reverse-transcription reagents and a uniquely
labeled primer hydrogel bead. This allows in-droplet barcoding
and reverse transcription into cDNA before pooling and bulk-
level sequencing.

The use of this technique to study microbial cells has, however,
been limited because of practical hurdles, such as the existence of a
rigid cell wall and lower total amount of mRNA per cell. Here, we
provide an easy-to-implement adaptation to the existing 10�
Genomics’ protocol that allows using this technology for scRNA-
seq in Saccharomyces cerevisiae by including an in-droplet cell wall
digesting step. In addition, the bioinformatic pipelines for further
analysis of the data are also described in detail.

2 Materials

2.1 Growth Media

and Sampling Buffers

1. Desired growth medium: autoclaved and filter-sterilized
(0.2 μm filter) (see Notes 1 and 2).

2. 50% glycerol: 1260 g/L glycerol. To make 500 mL, add
250 mL of dH2O to 250 mL (equivalent to 315 g) of glycerol
and filter-sterilize (0.2 μm filter).

2.2 In-Droplet

Spheroplasting and

Cell Lysis

1. 100� Zymolyase stock solution: 100 mg/mL Zymolyase
100 T (Amsbio) dissolved into buffer of a reverse transcriptase
(see Notes 3 and 4). Depending on the version of the kit, a
different stock solution might be required. Filter-sterilize (low
retention syringe filter—0.2 μm pores), keep on ice (alterna-
tively, aliquot the Zymolyase and freeze. Thaw when ready to
use and avoid multiple freeze-thaw cycles).

2. PBS: Phosphate buffered saline, filter-sterilized, pH 7.2. Make
a 10� PBS solution and dilute to 1� in MilliQ H2O. To make
1 L 10� PBS, add into 800 mLMilliQ water: 81 g NaCl, 2.0 g
KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4. Add a stirrer bar, adjust
to pH 7.2 (with HCl solution) and volume up to 1 L with
MilliQ water. Filter-sterilize (see Note 5).

3. 10� Genomics Chromium Single-Cell Reagent Kit protocol,
can be found on the 10� Genomics’ support site, under

https://support.10xgenomics.com/
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2.3 Software

Installations

1. R Statistical Programming Language
https://www.r-project.org

2. R packages.

(a) Seurat. More information on https://satijalab.org/
seurat/.

(b) ggplot2.

(c) dplyr.

3. Cell Ranger.
The software can be found on the 10� Genomics’ support

site, https://support.10xgenomics.com/.

4. bcl2fastq.
The software can be found on the Illumina support site,

https://support.illumina.com/sequencing/sequencing_soft
ware/bcl2fastq-conversion-software/downloads.html.

5. A BASH Shell.
Should be preinstalled for users on Linux/MacOS.

3 Methods

For sample and single-cell library preparation, follow all standard
precautions usually taken to perform RNA- and single-cell work,
for example, dedicated space, pipettes and reagents, and use of filter
tips and nuclease-free reagents.

3.1 Sample

Preparation

1. Grow yeast in media of interest, until density of interest is
reached (see Notes 1, 2, and 6).

2. Freeze 0.5 mL of cell culture mixed with 0.5 mL of ice-cold
50% glycerol at �80 �C until droplet generation using the 10�
Genomics Chromium device (see Notes 7 and 8).

3.2 Single-Cell

Library Preparation

To accommodate in-droplet spheroplasting and lysis of the yeast
cells, a Zymolyase solution is added to the reverse transcriptase mix
before running the Chromium device in the 2.0 or 3.0 version of
the 10� kit and protocol. For version 3.1, cells take up to 18 min at
room temperature to be encapsulated with beads (rather than 6 to
8.5 min for v2.0–3.0), causing premature lysis of cells and high
levels of background mRNA. Adding Zymolyase solution to the
GEM beads therefore works better for v3.1. This approach may
also work for v2.0 and v3.0, but we have not tested this, as older
versions are being phased out by 10� and are not readily available.

1. Thaw cell cultures on ice, measure cell count, and pellet the
cells (900 � g, 30, 4 �C) (see Note 9). Resuspend into ice-cold
filter-sterilized PBS to reach the desired cell count, according
to the 10� Genomics Chromium Single Cell protocol (see
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Note 10). In order to keep the proportion of hydrogel beads
that contain more than one cell low, it is advisable to aim for
1000 to 2000 recovered cells.

2. From here on, follow the well-documented protocol of the
10� Genomics Chromium device, except for adding the
Zymolyase solution to the single-cell master mix (v2.0 and
3.0) or to the beads (v3.1). To add the Zymolyase solution to
the single-cell master mix in v2.0 and 3.0 (which is essentially
the reverse transcription master mix), replace 1 μL of water in
the master mix with Zymolyase stock solution at the appropri-
ate concentration. For v2.0, the total reaction volume will be
100 μL, and the Zymolyase stock solution should be at 100�
(100 mg/mL). For v3.0, the total reaction volume is 80 μL,
hence the Zymolyase stock solution should only be 80�
(80 mg/mL). Then, prepare the microfluidic Chromium Sin-
gle Cell Chip, add the cell suspension to the single-cell master
mix and immediately transfer to the microfluidics chip. Add
hydrogel beads and partitioning oil according to the protocol,
and commence encapsulating the cells with hydrogel beads
using the 10� Genomics Chromium device.

To add the Zymolyase solution to the beads (v3.1, possibly
earlier versions), defrost 70 μL aliquots of hydrogel beads,
remove 1 μL of beads and add 1 μL of 70� Zymolyase. Then
vortex the beads for 30 s, spin down for 5 s and load 50 μL of
beads to the appropriate well according to the Chromium v3.1
protocol. Add cell suspension and reverse transcription master
mix to the chip according to the protocol, and commence
encapsulating the cells with hydrogel beads.

3. After emulsification, perform reverse transcription, cleanup,
cDNA amplification and library construction (see Note 11)
according to the protocol.

4. After library construction and QC, sequence the prepared
libraries (see Note 12).

3.3 Cell Ranger

Pipeline

Cell Ranger consists of a set of analysis pipelines developed by 10�
Genomics (downloadable from the 10� Genomics website) to
process the single-cell RNA-sequencing output (Fig. 1). For some
commands, it is useful to set limits on memory and CPU usage. We
used a Linux 64 bit machine with 32 GB of RAM and Intel Core
i7–4800 CPU to execute the following analysis pipeline.

3.3.1 Demultiplex Raw

Base Call (BCL) into FASTQ

Files

1. Create a sample sheet, as an input comma-separated (csv) file,
containing the following three columns: the sequencer lane
number (“Lane”), the sample name (“Sample”) and the index
position (used in the library construction) from the GEM well
of the 10� 96-well plate (“Index”) (see Note 13).
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2. Convert raw BCL files from the Illumina sequencer to FASTQ
files, separated for each sample and created in the “outs” direc-
tory, using “cellranger mkfastq” (seeNote 14). You can set the
maximal GB the pipeline may request using the “localmem”
option.

Fig. 1 Overview of the general bioinformatics pipeline to analyze 10� Genomics single-cell RNA-seq data. The
first part of the analysis consists of a set of pipelines from the Cell Ranger software (10� Genomics) to
process the scRNA-seq raw BCL files into output ready for secondary analysis. Further secondary data
analysis mainly makes use of the Seurat R-package for data exploration and visualization
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$ cellranger mkfastq --run=/path/to/folder_with_BCL_files/ \

--id=mkfastqOut \

--csv=/path/to/sample_sheet_mkfastq.csv \

--localmem=3

3.3.2 Mapping to

Reference Genome and

UMI Counting

1. Build a custom yeast reference genome package using “cellran-
ger mkref.” Following input files are needed: (1) fasta file
containing the genomic DNA sequence for each chromosome,
(2) gtf file annotating the feature loci on the reference genome
(see Note 15).

$ cellranger mkref --genome=S288C \

-- fasta=/path/to/fastafile.fa \

--genes=/path/to/gtffile.gtf

2. Make a separate directory per sample to generate single cell
feature counts. Using ‘cellranger count’, map the reads to the
reference genome, create bam files and carry out UMI (Unique
Molecular Identifier, represents absolute number of observed
transcripts) counting for each gene (see Notes 16, 17, 18,
and 19).

$ cellranger count --id=unique_run_ID_name \

--fastqs=mkfastqOut/outs/fastq_path \

--sample=sample_name \

--transcriptome=S288C \

--expect-cells=2000 \

--localcores=15 \

--localmem=40 \

--chemistry=SC3Pv2

3.3.3 Aggregate Data

from Multiple Samples

1. Create an input csv file which specifies a list of the “cellranger
count” output files; containing 1 row per sample, with a sample
name (“library_id”) and the path to the output of the “cellran-
ger count” command (“molecule_h5”) (see Note 20).

2. Aggregate the counts from the different samples using “cell-
ranger aggr” (see Note 21) to create multiple output files,
among which the filtered feature-barcode matrices MEX file.

$ cellranger aggr --id=unique_run_ID_string \

--csv=aggregation_input.csv

--normalization=none
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3.4 Secondary

Analysis in R

There are multiple tools for secondary data analysis, including
Monocle, Seurat, Scanpy, and Cell Ranger R. We use the Seurat R
package for secondary analysis (see Note 22), the input of which is
the output from the Cell Ranger pipeline (Fig. 1).

3.4.1 Read-In of the

Data, QC and Filtering,

Normalization

1. Read the output generated in the last step of the Cell Ranger
pipeline (more specifically the filtered feature-barcode matrices
MEX) into a matrix, using the ‘Read10x’ function of the Seurat
package.

data_merge <- Read10X(data.dir=’/path/to/filtered_feature_-

bc_matrix’)

This creates a data matrix where each column corresponds
to a single cell, denoted by a molecular barcode followed by a
numerical index (indicating which of the samples this particular
cell comes from), for example, “AAACCTGAGTGATCGG-
1”. Each row in this matrix corresponds to a gene based on
the exon annotation of the .gtf file used in mkref, for example,
“COS7”.

2. Create a Seurat object from this matrix and assign sample
names (based on the numerical index) through a metadata
column. We assigned sample names based on the time point
of sampling. Therefore, we introduced “timepoint” in the
metadata. This can be adapted to the specific setup of the
experiment. When creating the Seurat object, it can be useful
to prefilter out the barcodes (potential cells) with no reads and
with data in less than, for example, 5 cells using “min.cells” and
“min.features” respectively.

min_cells = 1

min_features = 5

data_merge_obj <- CreateSeuratObject(counts=data_merge, min.

cells=min_cells, min.features=min_features)

data_merge_obj@meta.data$timepoint <- ’na’

d a t a _ m e r g e _ o b j @ m e t a . d a t a [ g r e p l ( ’ - 1 $ ’ , c o l n a m e s

(data_merge)),’timepoint’] <- ’sample_name_1’

d a t a _ m e r g e _ o b j @ m e t a . d a t a [ g r e p l ( ’ - 2 $ ’ , c o l n a m e s

(data_merge)),’timepoint’] <- ’sample_name_2’

d a t a _ m e r g e _ o b j @ m e t a . d a t a [ g r e p l ( ’ - 3 $ ’ , c o l n a m e s

(data_merge)),’timepoint’] <- ’sample_name_3’

. . .

d a t a _ m e r g e _ o b j @ m e t a . d a t a [ g r e p l ( ’ - x $ ’ , c o l n a m e s

(data_merge)),’timepoint’] <- ’sample_name_x’
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3. Plot and inspect major QC metrics (percentage of mitochon-
drial reads, possible doublets, etc.) through violin plots of
distribution values. Seurat automatically calculates QC metrics
(in the metadata: nCount_RNA is number of UMIs, nFea-
ture_RNA is features per cell). The proportion of mitochon-
drial reads could be an important metric for downstream
analyses and interpretation, but needs to be annotated and
calculated manually. In S. cerevisiae, mitochondrial gene
names start with ‘Q’, hence we first define all those genes
starting with ‘Q’ as mitochondrial, and add this to the meta-
data (see Note 23).

data_merge_obj[[’percent.mt’]] <- PercentageFeatureSet(da-

ta_merge_obj, pattern = ’^Q’)

plot1 <- VlnPlot(data_merge_obj, features = c(’nFeature_RNA’,

’nCount_RNA’), ncol = 2, group.by=’timepoint’)

4. The thresholds for filtering out cells can be determined by
looking at the violin plots. We provide an example based on
previously published data [17], in which yeast undergoing a
shift from glucose to maltose were studied. High numbers of
detected genes (nFeature_RNA) could indicate possible doub-
lets. Therefore, the threshold for maximum total number of
genes detected was set to 2000 for sample 1 (Fig. 2) (see Note
24). These thresholds can, within reason, be determined per
sample.

data_merge_obj <- data_merge_obj[,(grepl(’-1$’, colnames(da-

ta_merge_obj)) & data_merge_obj$nFeature_RNA < 2000) |

(grepl(’-2$’, colnames(data_merge_obj)) & data_merge_obj

$nFeature_RNA < 2000) |

(grepl(’-4$’, colnames(data_merge_obj)) & data_merge_obj

$nFeature_RNA < 1500) |

(grepl(’-3$’, colnames(data_merge_obj)) & data_merge_obj

$nFeature_RNA < 1500) |

(grepl(’-5$’, colnames(data_merge_obj)) & data_merge_obj

$nFeature_RNA < 2000)]

5. Normalize the data using the default global-scaling “LogNor-
malize” option, to correct for differences in capture efficiency
between cells and differences in read depth between samples
(see Note 25).

data_merge_obj <- NormalizeData(data_merge_obj)
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Fig. 2 QC plots before and after quality control and filtering for possible doublets
in 5 scRNA-seq samples from [17]. Violin plots for number of detected genes and
number of counts (a) before and (b) after filtering
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6. Detect highly variable genes across the single cells using “Find-
VariableFeatures,” using the default selection method option
“vst.” The selection method defines how to choose the top
variable features. You can decide on “nfeatures” depending on
how many variable genes you want to use to cluster the cells.
The downstream analysis will focus on these genes which will
help highlight biological signals in the data.

data_merge_obj <- FindVariableFeatures(data_merge_obj, se-

lection.method = ’vst’, nfeatures = 300)

7. To improve downstream dimensionality reduction and cluster-
ing, we need to scale (linearly transform) the data, in order to
prevent highly expressed genes from dominating the next steps
of the analysis (see Note 26).

data_merge_obj <- ScaleData(data_merge_obj, verbose = FALSE)

3.4.2 Dimensional

Reduction and Visual

Exploration of Data

1. Run linear dimensional reduction using “RunPCA” on the
scaled data (see Note 27).

data_merge_obj <- RunPCA(data_merge_obj, npcs = 20, verbose =

FALSE)

2. Run UMAP on the dimensionally reduced data, and visualize
using “DimPlot” (Fig. 3). You can also visualize the data with
cells colored by a quantitative feature (such as expression levels
of specific genes/growth markers) using “FeaturePlot”
(Fig. 4).

data_merge_obj <- RunUMAP(data_merge_obj, reduction = ’pca’,

dims = 1:20 , n.epochs = 1000)

DimPlot(data_merge_obj, reduction = ’umap’, group.by = ’time-

point’, pt.size = 0.1)

FeaturePlot(data_merge_obj, c(’GENE_NAME1’,’GENE_NAME2’,’-

GENE_NAMEX’), pt.size = 0.5, cols = c(’gray50’,’red’), reduc-

tion= ’umap’)

3.4.3 Clustering and

Differential Gene

Expression

1. Cluster the cells using a graph-based approach. This method
first calculates the k-nearest neighbors, then constructs the
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shared nearest neighbors’ graph. The resolution parameter (see
Note 28) determines the number of clusters (Fig. 5).

data_merge_obj <- FindNeighbors(data_merge_obj, dims = 1:20)

data_merge_obj <- FindClusters(data_merge_obj, resolution =

0.1)

DimPlot(data_merge_obj, pt.size = 0.1)

2. Find specific biomarkers that define clusters via differential
expression. The parameter “logfc.threshold” is used to limit
the testing to genes which show a specific fold-difference
between the groups of cells. You can test for markers of a
specific cluster (specified in ident.1) or you can find markers
distinguishing clusters from each other (e.g., ident.1 ¼ 2,
ident.2 ¼ 3 in this example will find markers differing between
cluster 2 and cluster 3). You can further limit the list of markers
by extracting only genes with specific average log-fold changes
or adjusted p-values you define. Export as a csv-file.

Fig. 3 Visualization of dimensionally reduced data, colored by sample using
“DimPlot.” UMAP dimensions were created using 20 principal components
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diff_exp_res <- FindMarkers(data_merge_obj, ident.1 =

2, ident.2 = 3, logfc.threshold = 0.01)

diff_exp_res <- diff_exp_res[abs(diff_exp_res$avg_logFC)>

0.25 & diff_exp_res$p_val_adj<0.05, ]

write.csv(diff_exp_res, ’diff_exp_res.csv’, row.names = F)

3. Upload this csv-file to a Gene Ontology webtool, such as
Gorilla (http://cbl-gorilla.cs.technion.ac.il/) to identify and
visualize enriched GO terms in your gene list.

4 Notes

1. We never autoclave sugar stock solutions to avoid Maillard
reactions and to obtain accurate sugar concentrations.

2. To avoid possible clogging of the 10� Genomics device, it is
recommended to filter-sterilize all growth media and buffers.

Fig. 4 Visualization of dimensionally reduced data, with cells colored by expression level of the specific marker
genes MAL11, MAL12, HXK1, and MAL33, using “FeaturePlot”
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Fig. 5 Clustering of cells based on k-nearest neighbors. The top graph (a) shows
clustering using a resolution of 0.1, resulting in a lower number of clusters
retrieved compared to the bottom graph (b) using a resolution of 0.5
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3. Zymolyase cannot be dissolved in water at our target concen-
tration. We specifically used the Quantiscript RT Buffer from
the QuantiTect reverse transcription kit, and diluted the buffer
from a 5� to a 1� concentration before use. Alternatively,
dissolving in PBS should also work.

4. After dissolving the Zymolyase, the solution should be dark but
completely homogeneous with no visible solid particles. If
filter-sterilizing does not work well and clogs the filter, mixing
the concentrated Zymolyase well before adding to the master
mix without filter-sterilizing seems to work as well.

5. Alternatively, you can use PBS + 400 μg/mL BSA as recom-
mended for sample preparation in the 10� Cell Preparation
Guide. Both seem to work equally well.

6. When setting up the experiment, make sure to calculate in
advance the minimal cell concentration and volume you
would need to sample to recover 1000–2000 cells (according
to the Cell Suspension Volume Calculator Table in the 10�
protocol).

7. Freezing the cells using liquid nitrogen is possibly even better,
but from our experience �80 �C when working with ice-cold
buffers should be sufficient.

8. Make sure to mix the sample well and extract an aliquot to
obtain an accurate cell count before freezing.

9. Limit time between thawing and the Chromium run as much as
possible. If needed, wash once in PBS (+ BSA) buffer prior to
counting and diluting. If you encounter clumps of cells during
cell counting, dependent on your yeast strains and experimen-
tal conditions, sonicating for 40–60 s in a water bath sonicator
can help resolve this. If time needed for thawing, resuspension
and counting becomes quite long, it might be a good idea to
use RNAlater (Qiagen) [4].

10. If you have multiple samples you might want to bring all
samples to a similar cell count so you can combine all samples
with the reverse transcription master mix at the same time.

11. Make sure you write down the 10� Sample Index name while
constructing the library, this is important information for the
downstream analysis, especially if you are running multiple
samples.

12. Take into consideration that all lanes on the sequencer should
be 10� samples, since this sequencing run has specific para-
meters especially for these types of samples. In terms of read
depth, we found that we got about 90% sequence saturation
with 20,000 reads/cell.
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13. If one 10� library has been sequenced on different flow cells/
sequencers, the “cellranger mkfastq” command will have to be
run separately for each sequencing run using separate sample
sheets.

14. The “cellranger mkfastq” command is in essence a wrapper
around Illumina’s “bcl2fastq” software. Therefore, before run-
ning this command, you should make sure you have installed
the ‘bcl2fastq’ software (downloadable from the Illumina
website).

15. Both the fasta file and the gtf file can be downloaded from
UCSC genome browser (fasta file from the ‘Sequence and
Annotation Downloads’ section, the gtf file from the ‘Table-
Browser’ section). Note that Cell Ranger only uses the exon
feature in the gtf for its calculations. In S. cerevisiae, the exon
annotation does not contain the 3’UTR which results in reads,
that fall entirely within the 3’UTR, not being assigned. Losing
these reads can be avoided by including 3’UTR annotations in
the exon feature of the .gtf file, similar to the approach used
in [4].

16. You can run the “cellranger count” command in parallel for
different samples in separate terminal windows.

17. Set the expected number of cells option to the expected value
based on the calculation table in the protocol of the 10�
Genomics Chromium device. If you need to combine multiple
sequencing runs of the same GEM well, you need to input
multiple fastq files, separated by a comma here.

18. You can put limits on memory and cpu usage of this command.
This is the most computationally intensive step of the analysis.
On a laptop with a Core i7–4800 CPU, and 32GB of RAM,
these commands of “cellranger count” took about 30 h to run.
Of course, this will be dependent on your read depth, and
possibility of using parallel processing.

19. The “chemistry” option allows you to specify which assay
configuration and reagent kit you used. In principle, it should
be detected automatically.

20. This path would be something like: unique_run_ID_name/
outs/molecule_info.h5.

21. In principle, you can normalize across samples to equalize the
average read depth per cell between groups before merging.
We did not use aggregation normalization between samples
since we knew that the RNA content of cells drops during the
time course of our specific sampling scheme, and were there-
fore able to verify that the total UMI count generally decreased
during the time course as expected. We later normalize each
cell by the total UMI count prior to clustering and calculating
differential expression.
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22. ggplot2 and dplyr are two additional R packages that we use
here. Most of the analysis using Seurat is based on the, well-
explained, Seurat Guided Clustering Tutorial (https://
satijalab.org/seurat/articles/pbmc3k_tutorial.html).

23. High levels of mitochondrial reads are generally flagged in
mammalian cells as a sign of apoptosis, and therefore a thresh-
old for proportion of mitochondrial reads is usually set as an
extra filter to remove dead cells [18]. However, in yeast, large
variation in mitochondrial reads more often indicates
biological variability, which is why we here do not filter but
rather include the proportion of mitochondrial reads for fur-
ther downstream analysis.

24. Another, perhaps more intuitive, option would be filtering on
the total number of counts instead. Having doublets would
result in more mRNA in a droplet, higher counts and thus
detection of more genes, making nCount_RNA and nFea-
ture_RNA highly correlated. Here again, using a per sample
filter, based on the distribution of nCount, would be best.

25. If the total mRNA per sample changes in your experiment,
then this normalization step will cause relative differences
between samples for specific genes that may not have absolute
changes. If needed, you could further remove technical noise
with imputation [19].

26. Here, the default method has been used. There is an option
“vars.to.regress” to regress out specific features to remove
unwanted sources of variation (such as mitochondrial gene
expression, number of detected molecules), which might be
valuable to use.

27. We decided on the number of PCs (here 20) by visual inspec-
tion of the UMAP clustering generated from a few different
options. We chose the minimal number that maintains the
expected UMAP projection shape. The section on determining
dimensionality of the dataset from the Seurat Guided Cluster-
ing Tutorial provides a discussion on other approaches includ-
ing the use of Jack Straw plots (JackStrawPlot), Elbow plots
(ElbowPlot), and analyzing dimensionality heatmaps
(DimHeatmap).

28. Based on results from previous experiments, we tweaked this
parameter to have the 4 expected clusters. According to the
Seurat Guided Clustering Tutorial, a range between 0.4 and
1.2 usually gives good clustering.
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