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Abstract: Neuroactive amino acids derivatised at their carboxylate groups with a photolabile ni-
troindolinyl group are highly effective reagents for the sub-µs release of neuroactive amino acids
in physiological solutions. However, the same does not apply in the case of calcium ion chela-
tors. In this study, nitroindolinyl-caged BAPTA is found to be completely photostable, whereas
nitroindolinyl-caged EDTA photolyses only when saturated with calcium ions.

Keywords: nitroindoline cages; calcium chelators; chemical synthesis; photolysis; photostability

1. Introduction

Localised fluctuations of free Ca2+ concentrations play critical roles in essential physio-
logical processes [1–5], such as neurotransmission, skeletal and cardiac muscle contraction,
hormone secretion, chemotaxis and blood clotting. In order to achieve sudden jumps of
calcium ions in an experimental set up, a number of different photolabile molecules that
bind Ca2+ have been developed over the last 35 years [6–13]. Flash irradiation of these
compounds with near-UV light causes either fragmentation or other structural change,
which results in a fast change in their calcium affinity, thereby resulting in the rapid release
of Ca2+ ions in solution and triggering a biological response. This concept is illustrated
by the first of these reagents, DM-nitrophen, which is a photolabile derivative of EDTA
(Figure 1) [12]. However, despite the canonical scheme of the photolysis shown in Figure 1,
it is notable that compounds incorporating an N-(2-nitrobenzyl)glycine moiety, as in DM-
nitrophen, are susceptible to a side reaction of photo-decarboxylation. For DM-nitrophen, a
detailed study showed this comprised approximately 10% of the total amount of the com-
pound photolysed in the absence of Ca2+, and significantly more (16.5%) in the presence of
saturating Ca2+ [14].

The advantages and drawbacks of the various reagents for the photorelease of Ca2+

developed over the years since the introduction of DM-nitrophen have been discussed [15]
and the field can be considered to be well matured. In contrast, photochemical means to ef-
fect rapid decreases in Ca2+ concentration have been less well described, yet Ca2+ signalling
is widespread and includes processes (reviewed by Berridge et al. [16] including muscle
function, fertilisation, axis formation, cell differentiation, proliferation, transcriptional acti-
vation and apoptosis. Although much research has focuses on the initiation of processes due
to a rise in the Ca2+ concentration, there must be a subsequent fall to reset the system. To
our knowledge, the only reagents described to reduce Ca2+ concentrations experimentally
are restricted to studies by the Tsien laboratory [17] and to a preliminary communication by
Ferenczi et al. [18]. All of the reagents explored in these reports are based on photochemistry
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in which the calcium affinity of the chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-
tetraacetic acid (BAPTA) is weakened by the incorporation of a photolabile modification.
BAPTA itself has Kd ~0.11 µM at pH 7 and, in the strategies previously explored, block-
ing one of its chelating carboxylate groups weakens Kd by approximately three orders of
magnitude [17,18]. A similar reduction is discussed below for the nitroindoline deriva-
tive of EDTA 24. We aimed to extend this approach, using the 7-nitroindolinyl caging
group previously developed by us for caging L-glutamate [19,20] and other amino acids
(Figure 2) In this event, irradiation of the compounds synthesised showed surprisingly
little photosensitivity and the results are described herein.
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2. Results and Discussion

Our extended programme for the development of effective photocleavable cages of
biologically active compounds included the investigation of the photolysis mechanism(s)
of nitroindoline-caged compounds [21,22]. Having established that nitroindolinyl groups
covalently linked to neuroactive amino acids can release biologically active compounds
on a sub-microsecond time scale upon flash photolysis, we embarked on the synthesis of
nitroindoline-caged calcium chelators that could potentially cause rapid calcium uptake
upon photorelease. A summary of the results of this work has been disclosed in a re-
view [23] and full details of the synthesis and photochemical evaluation are described here.

We envisaged that it would be optimal to construct the BAPTA framework and cova-
lently attach the photolabile nitroindoline cage towards the end of the synthesis process. We
initially planned the synthesis by employing our first developed nitroindoline cage bearing
a CH2CO2Me group at the 5-position of the ring [19]. Thus, 2-nitrophenol was easily alky-
lated to 2-(2-nitrophenoxy)ethanol 1, which was reduced to 2-(2-aminophenoxy)ethanol 2.
Double alkylation gave 3, which was tosylated to 4 and converted to bromide 5. Bromide
displacement of 5 with 2-nitrophenol gave the desired compound 6 in a moderate yield
(Scheme 1).
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However, two by-products 6a and 6b were also isolated from this reaction. We
speculate that, in competition with the expected intermolecular bromide displacement by
the 2-nitrophenoxide, 5 had also undergone an intramolecular cyclisation process to form a
quaternary benzoxazonium species, with subsequent dealkylation by 2-nitrophenoxide to
give by-products 6a and 6b (Scheme 2).
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Compound 6 was then reduced to aniline 7. In straightforward steps, indoline 8 [19]
was acylated to give the bromoacetyl indoline 9, which, after nitration, gave the photolabile
precursor 10. Alkylation of amine 7 with 10 gave 11 but a number of attempts to achieve
a final N-alkylation of 11 with t-butyl bromoacetate gave only a complex mixture of
uncharacterised products (Scheme 3).



Molecules 2022, 27, 2645 4 of 16

Molecules 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

Compound 6 was then reduced to aniline 7. In straightforward steps, indoline 8 [19] 
was acylated to give the bromoacetyl indoline 9, which, after nitration, gave the photola-
bile precursor 10. Alkylation of amine 7 with 10 gave 11 but a number of attempts to 
achieve a final N-alkylation of 11 with t-butyl bromoacetate gave only a complex mixture 
of uncharacterised products (Scheme 3). 

 

Scheme 3. Reagents and Conditions: (a) H2, Pd-C, EtOH, RT; (b) BrCH2COBr, DIPEA, CH2Cl2 −78 
°C to RT; (c) NaNO3, TFA, RT; (d) MeCN, DIPEA, reflux; (e) BrCH2CO2But, MeCN, K2CO3, reflux. 

To probe the failure of the required N-alkylation of the secondary amine of 11, we 
prepared the less congested amine 12. Treatment with a slight excess of t-butyl bromoace-
tate and either sodium hydride or DIPEA showed that C-alkylation on the 5-substituent 
of the indoline was the principal product 13, whereas a large excess of the alkylating rea-
gent and a higher reaction temperature gave the doubly alkylated product 14 (Scheme 4). 

To avoid the unwanted alkylation, we changed to a 5-methyl substituted indoline, 
and the synthesis then proceeded smoothly to give 17, which, upon treatment with an 
excess of t-butyl bromoacetate, gave the protected caged BAPTA 18 in a reasonable yield. 
Surprisingly, we also isolated a substantial amount of the tetrabutyl ester of BAPTA 18a 
(Scheme 5). Evidently, hydrolysis by water, which formed from K2CO3 during alkylation, 
had caused some hydrolysis of the amide, and the released free carboxylate then underwent 
esterification to give 18a. Deprotection with TFA successfully gave the target nitroindolinyl-
caged BAPTA 19. (Scheme 5). 

 

Scheme 3. Reagents and Conditions: (a) H2, Pd-C, EtOH, RT; (b) BrCH2COBr, DIPEA, CH2Cl2
−78 ◦C to RT; (c) NaNO3, TFA, RT; (d) MeCN, DIPEA, reflux; (e) BrCH2CO2But, MeCN,
K2CO3, reflux.

To probe the failure of the required N-alkylation of the secondary amine of 11, we
prepared the less congested amine 12. Treatment with a slight excess of t-butyl bromoacetate
and either sodium hydride or DIPEA showed that C-alkylation on the 5-substituent of the
indoline was the principal product 13, whereas a large excess of the alkylating reagent and
a higher reaction temperature gave the doubly alkylated product 14 (Scheme 4).

To avoid the unwanted alkylation, we changed to a 5-methyl substituted indoline,
and the synthesis then proceeded smoothly to give 17, which, upon treatment with an
excess of t-butyl bromoacetate, gave the protected caged BAPTA 18 in a reasonable yield.
Surprisingly, we also isolated a substantial amount of the tetrabutyl ester of BAPTA 18a
(Scheme 5). Evidently, hydrolysis by water, which formed from K2CO3 during alkylation,
had caused some hydrolysis of the amide, and the released free carboxylate then underwent
esterification to give 18a. Deprotection with TFA successfully gave the target nitroindolinyl-
caged BAPTA 19 (Scheme 5).
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Having prepared our target NI-caged BAPTA chelator, we next examined its near-UV
photolysis properties. Surprisingly, sequential irradiations of a solution of 19 monitored
via UV spectroscopy, as described in the Experimental Section, showed no change ascrib-
able to the expected nitroindolinyl photocleavage, either with or without Ca2+ present
(Figure 3). Control irradiation of NI-caged glutamate under identical conditions confirmed
the expected photolysis, as previously reported (data not shown) [19].
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It appears that the photostability of 19 is likely to arise from quenching of the excited
state of the nitroindolinyl group by the electron-rich aryl ring(s).We have previously
observed an apparently similar quenching in the electron-rich 1-acetyl-4-dimethylamino-7-
nitroindoline [24] and efficient formation of a low-lying triplet state in N,N-dimethylamino-
4-nitroaniline has been reported elsewhere [25].

After the failure to record any measurable photolysis of NI-caged BAPTA 19, we
changed our focus to the synthesis of MNI-caged EDTA. We chose to employ the more effi-
cient 4-methoxy-7-nitroindolinyl (MNI) cage, previously developed in our laboratory [20,24].
Thus, nitration of N-bromoacetyl indoline 20 gave essentially only the 7-nitro isomer 21,
which reacted with secondary amine 22 to give the tri-tert-butyl ester 23. Deprotection with
TFA afforded the desired MNI-caged EDTA 24 (Scheme 6).

We then exposed MNI-caged EDTA 24 to sequential near-UV irradiation in the absence
(A) and presence (B) of Ca2+. Clean photolysis of 24 was only observed in solution (B),
producing good isosbestic points and the characteristic appearance of the nitrosoindole
photoproduct formation, as evident from the cumulative appearance of the new peak
maximum at 413 nm (Figure 4). Irradiation in the absence of Ca2+ evidently caused
photolytic changes, as shown by the progressive rise in absorption near 340 nm, but
the product(s) were not investigated further. It is likely that, in the absence of Ca ions,
irradiation of 24 can instigate electron transfer from the aliphatic tertiary amino groups
to the excited state of the nitroindoline moiety and thus block the expected photolysis
pathway. Such single-electron transfer is likely to trigger decarboxylation of 24, as reported
to occur for cation radicals of α-amino acids [14,26]. In solution (B), as the caged chelator
has a Kd for calcium of ~10 µM (cf., the similar Kd value for the related pentadentate
chelator N-methylethylenediaminetriacetic acid [27]), the large excess of Ca2+ would cause
full saturation. Thus, the lone electron pairs on each of the tertiary amino groups would
be unavailable for single-electron transfer and the normal 7-nitroindolinyl photolysis can
operate, as shown by the appearance of the 413 nm band upon irradiation. Notably,
the 5,7-dinitroindolinyl-caged BAPTA amide reported previously [17] exhibited the same
photolytic behaviour as 24 and only photolysed in the presence of excess Ca2+.
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Figure 4. Sequential irradiations of 24. (A) plus 2.5 mM EDTA, pH 6.86; (B) plus 2.5 mM Ca2+, pH 6.86.

3. Experimental Section
1H NMR spectra were determined on Varian Unityplus 500 or JEOL FX90Q spec-

trometers in CDCl3 solution with TMS as an internal reference, unless otherwise specified.
Elemental analyses were carried out by MEDAC Ltd., Surrey, UK. Electrospray mass spectra
were recorded at the School of Pharmacy, University of London. Merck 9385 silica gel was
used for flash chromatography. Analytical HPLC was performed on a 250 mm × 4 mm
Merck Lichrospher RP8 column or a 125 mm × 4 mm Whatman Partisphere SAX column.
The flow rate was 1.5 mL min−1 with either column. Preparative HPLC was carried out
on a 2 cm × 30 cm column (Waters C18 packing, Cat. No. 20594) at a 2 mL min−1 flow
rate. Details of mobile phases are given at relevant points in the text. Triethylammonium
bicarbonate (TEAB) solution was prepared by bubbling CO2 into an ice-cold aqueous
solution of 1 M triethylamine until the pH stabilised (pH ~7.4). Preparative anion-exchange
chromatography used a column of DEAE-cellulose (2 cm × 20 cm). Detection for all an-
alytical and preparative chromatography was at 254 nm. Organic solvents were dried
over anhydrous Na2SO4 and evaporated under reduced pressure. Hexanes (bp 40–60 ◦C)
were redistilled before use. Photolysis experiments were performed in a Rayonet RPR-100
photochemical reactor fitted with 16 nm × 350 nm lamps.
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3.1. 2-(2-Nitrophenoxy)ethanol 1

To a solution of 2-nitrophenol (6.95 g, 50 mmol) in acetone (200 mL) was added
anhydrous K2CO3 (13.82 g, 100 mmol), NaI (0.5 g), and freshly distilled 2-bromoethanol
(31.24 g, 250 mmol) and the mixture was heated under reflux for 8 h. After cooling to rt
the solid was filtered, washed with fresh acetone and the filtrate concentrated in vacuo.
The residue was dissolved in CH2Cl2, washed with 1 M aq. NaOH, brine, dried, and
evaporated to give brown oil. Fractional distillation under reduced pressure afforded 1 [28]
(8.18 g, 89%) as a pale oil, bp 138 ◦C/0.5 mmHg.

3.2. 2-(2-Aminophenoxy)ethanol 2

A solution of 2-(2-nitrophenoxy)ethanol 1 (7.33 g, 40 mmol) in conc. HCl (100 mL)
was cooled to 0–5 ◦C and treated portionwise over 1 h with freshly activated zinc powder
(13.07 g, 200 mmol). The mixture was then stirred at rt for 2 h, before it was poured into
ice-water (200 mL) and basified to pH 12 with 4 M aq. NaOH. The precipitated white solid
was filtered, washed with water and the filtrate extracted with CH2Cl2. The combined
organic phases were washed with brine, dried, and evaporated to give a light brown solid.
Recrystallisation (EtOAc-hexanes) and decolourisation with charcoal afforded 2 (4.42 g,
72%) as white plates, mp 88–89 ◦C (lit. [28] mp 90.9 ◦C).

3.3. Di-tert-butyl 2,2-((2-(2-hydroxyethoxy)phenyl)azanediyl)diacetate 3

To a solution of 2-(2-aminophenoxy)ethanol 2 (3.06 g, 20 mmol) in MeCN (200 mL)
was added anhydrous K2CO3 (5.53 g, 40 mmol) and t-butyl bromoacetate (9.75 g, 50 mmol)
and the mixture was heated under reflux. The reaction progress was followed by TLC
(EtOAc-hexanes (2:3)) and after 6 h more t-butyl bromoacetate (9.75 g) was added and
reflux was continued for 20 h. After cooling to rt, the solid was filtered, washed with
fresh MeCN, and the filtrate concentrated in vacuo. The residue was dissolved in EtOAc,
washed with saturated aq. NaHCO3 and brine, dried, and evaporated to give colourless
oil (8.88 g). Flash chromatography (EtOAc-hexanes (2:3)) afforded 3 (6.21 g, 81%) as a
colourless viscous oil; νmax/cm−1 (Film) 3425, 2980, 2930, 1735, 1600, 1500, 1370, 1150, 745;
1H NMR (90 MHz) δ 6.86 (4H, br s, ArH), 4.06 (2H, t, J = 4.0 Hz, ArOCH2), 4.00 (4H, s,
NCH2), 3.78 (2H, t, J = 4.0 Hz, CH2OH), 1.45 (18H, s, CMe3).

3.4. Di-tert-butyl 2,2-((2-(2-(tosyloxy)ethoxy)phenyl)azanediyl)diacetate 4

A solution of the alcohol 3 (4.70 g, 12.3 mmol) in dry pyridine (20 mL), cooled to
0–5 ◦C, was treated with p-tosyl chloride (4.69 g, 24.6 mmol) and stirred for 20 h, allowing
the solution to reach an ambient temperature gradually. The mixture was poured into ice
water and stirred at 0 ◦C for 2 h. The precipitated white solid was filtered, washed with
cold water, and dried in a vacuum desiccator, affording 4 (5.15 g, 78%) as a white solid. A
sample of the product was recrystallised from cold ether-hexanes to give white fine needles,
mp 78–79 ◦C; νmax/cm−1 (Nujol) 1760, 1740, 1600, 1360, 1250, 1180, 1150, 940, 755; 1H NMR
(500 MHz) δ 7.82 (2H, d, J = 8.5 Hz, H-2′ and H-6′), 7.33 (2H, d, J = 8.5 Hz, H-3′ and H-5′),
6.90 (1H, dt, J = 7.9, 1.2 Hz, H-5), 6.85 (2H, dt, J = 7.9, 1.2 Hz, H-4 and H-6), 6.74 (1H, dt,
J = 7.3, 1.2 Hz, H-3), 4.34 (2H, t, J = 4.9 Hz, ArOCH2, 4.21 (2H, t, J = 4.9 Hz, CH2OSO2), 3.96
(4H, s, 2 × NCH2) 1.41 (18H, s, 2 × CMe3). Anal. Calcd for C27H37NO8S: C, 60.54; H, 6.96;
N, 2.61; found: C, 60.36; H, 6.96; N, 2.57.

3.5. Di-tert-butyl 2,2-((2-(2-bromoethoxy)phenyl)azanediyl)diacetate 5

To a solution of the tosylate 4 (5.47 g, 10.2 mmol) in acetone (200 mL) was added
lithium bromide (7.97 g, 91.8 mmol) and the mixture was stirred at rt for 18 h. The solvent
was evaporated, and the residue was dissolved in water and washed with CH2Cl2. The
combined organic phases were washed with saturated aq. NaHCO3 and brine, dried, and
evaporated, affording 5 (4.53 g, 100%) as a light brown oil, which was used in the next
step without further purification; 1H NMR (90 MHz) δ 6.87 (4H, br s, ArH), 4.30 (2H, t,
J = 6.5 Hz, ArOCH2), 4.04 (4H, s, NCH2), 3.60 (2H, t, J = 6.5 Hz, CH2Br), 1.43 (18H, s, CMe3).
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3.6. Di-tert-butyl 2,2-((2-(2-(2-nitrophenoxy)ethoxy)phenyl)azanediyl)diacetate 6

To a solution of the bromide 5 (1.02 g, 2.29 mmol) in acetone (25 mL) was added 2-
nitrophenol (0.64 g, 4.58 mmol), NaI (20 mg), and anhydrous K2CO3 (1.27 g, 9.16 mmol) and
the mixture was heated under reflux for 22 h. The solid was filtered, washed with acetone
and the filtrate evaporated. The residue and the solid were dissolved in water and washed
with ether. The combined organic phases were washed with 1 M aq. NaOH and brine,
dried and evaporated. Flash chromatography (EtOAc-hexanes ((1:9)→(2:8)→(3:7))) gave
three products. The first eluted material was tert-butyl 2-(2,3-dihydro-4H-benzo[b][1,4]oxazin-
4-yl)acetate 6a (203 mg, 35%) as white crystals, mp 59–60 ◦C (hexanes); νmax/cm−1 (Nujol)
1740, 1610, 1585, 1370, 1350, 1310, 1260, 1240, 1215, 1150, 1110, 995, 745; 1H NMR (90 MHz)
δ 6.88–6.40 (4H, m, ArH), 4.22 (2H, t, J = 5.0 Hz, H-2), 3.84 (2H, s, NCH2), 3.42 (2H, t,
J = 5.0 Hz, H-3), 1.40 (9H, s, CMe3). Anal. Calcd for C14H19NO3: C, 67.45; H, 7.68; N, 5.62;
found: C, 67.51; H, 7.76; N, 5.60.

The second eluted material was tert-butyl 2-(2-nitrophenoxy)acetate 6b (182 mg, 31%) as
a viscous oil, which after treatment with TFA gave 2-(2-nitrophenoxy)acetic acid (139 mg) as
white crystals, mp 155–156 ◦C (EtOAc-hexanes), (lit. [29] 160–162 ◦C).

The third eluted material was 6 (527 mg, 46%) as white crystals, mp 101–102 ◦C
(EtOAc-hexanes); νmax/cm−1 (Nujol) 1750, 1735, 1610, 1530, 1370, 1250, 1150, 745; 1H NMR
(500 MHz) 7.84 (1H, dd, J = 8.1, 1.6 Hz, H-3′), 7.53 (1H, dt, J = 8.4, 1.8 Hz, H-5′), 7.17 (1H,
dd, J = 8.6, 1.0 Hz, H-6′), 7.05 (1H, dt, J = 8.1, 1.1 Hz, H-4′), 6.96–6.87 (4H, m ArH), 4.47–4.42
(4H, m, OCH2), 4.02 (4H, s, NCH2), 1.40 (18H, s, CMe3). Anal. Calcd for C26H34N2O8: C,
62.14; H, 6.82; N, 5.57; found: C, 62.27; H, 6.86; N, 5.55.

3.7. Di-tert-Butyl 2,2-((2-(2-(2-aminophenoxy)ethoxy)phenyl)azanediyl)diacetate 7

A solution of 6 (2.01 g, 4 mmol) in a mixture of EtOH-EtOAc (2:1, 120 mL) was
hydrogenated at rt and atmospheric pressure over 10% Pd-C (400 mg). Hydrogen uptake
ceased within 30 min, the catalyst was filtered and the filtrate evaporated, affording 7
(1.55 g, 82%) as white crystals, mp 98–99 ◦C (EtOH); νmax/cm−1 (Nujol) 3470, 3390, 1750,
1735, 1600, 1505, 1375, 1225, 1150, 945, 745; 1H NMR (90 MHz) δ 6.88–6.60 (8H, m, ArH),
4.35 (4H, s, OCH2), 4.06 (4H, s, NCH2), 3.86 (2H, br s, NH2), 1.40 (18H, s, CMe3). Anal.
Calcd for C26H36N2O6: C, 66.08; H, 5.68; N, 5.93; found: C, 66.12; H, 7.71; N, 5.92.

3.8. Methyl 2-(1-(2-bromoacetyl)indolin-5-yl)acetate 9

A solution of methyl 2-(indolin-5-yl)acetate 8 (1.25 g, 6.5 mmol; prepared as previously
described [19]) in dry CH2Cl2 (40 mL) and cooled to −78 ◦C was treated under nitrogen
with DIPEA (1.74 mL, 10 mmol) and a solution of bromoacetyl bromide (1.61 g, 8 mmol)
in dry CH2Cl2 (20 mL) was added dropwise over 1 h. The solution was stirred at −78 ◦C
for 1 h, then allowed to warm to rt, diluted with CH2Cl2 and washed successively with
1 M aq. HCl, saturated aq. NaHCO3 and brine, dried and evaporated to give a brown oil,
which crystallised after trituration with ether affording 9 (1.32 g, 65%) as white crystals,
mp 86–87 ◦C (EtOAc-hexanes); νmax/cm−1 (Nujol) 1745, 1730, 1670, 1380, 1205, 1170; 1H
NMR (90 MHz) δ 8.12 (1H, d, J = 8.1 Hz, H-7), 7.28–6.96 (2H, m, H-4 and H-6), 4.16 (2H,
t, J = 8.1 Hz, H-2), 3.92 (2H, s, CH2Br), 3.66 (3H, s, CO2Me), 3.56 (2H, s, CH2CO2Me), 3.14
(2H, t, J = 8.1 Hz, H-3). Anal. Calcd for C13H14BrNO3: C, 50.02; H, 4.52; N, 4.49; found: C,
50.21; H, 4.70; N, 4.44.

3.9. Methyl 2-(1-(2-bromoacetyl)-7-nitroindolin-5-yl)acetate 10

To a stirred solution of NaNO3 (221 mg, 2.6 mmol) in TFA (12 mL) was added 9
(749 mg, 2.4 mmol) and the mixture was stirred at rt for 4 h. The red/brown solution was
poured into ice-cold water and extracted with EtOAc. The combined organic phases were
washed with saturated aq. NaHCO3, brine, dried and evaporated to give a red viscous
oil, which, after trituration with Et2O, afforded 10 (679 mg, 79%) as yellow crystals, mp
102–103 ◦C (EtOAc-hexanes); νmax/cm−1 (Nujol) 1730, 1670, 1530, 1395, 1375, 1270, 1015;
1H NMR (90 MHz) δ 7.52 (1H, br s, H-6), 7.36 (1 H, br s, H-4), 4.28 (2H, t, J = 8.1 Hz, H-2),
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3.92 (2H, s, CH2Br), 3.68 (3H, s, CO2Me), 3.62 (2H, s, CH2CO2Me), 3.22 (2H, t, J = 8.1 Hz,
H-3). Anal. Calcd for C13H13BrN2O5: C, 43.72; H, 3.67; N, 7.84; found: C, 43.60; H, 3.62;
N, 7.84.

3.10. Di-tert-butyl 2,2-((2-(2-(2-((2-(5-(2-methoxy-2-oxoethyl)-7-nitroindolin-1-yl)-2-oxoethyl)
amino)phenoxy)ethoxy)phenyl)azanediyl)diacetate 11

A mixture of the aniline 7 (354 mg, 0.75 mmol), methyl 1-bromoacetyl-7-nitroindoline-
5-acetate 10 (268 mg, 0.75 mmol) and DIPEA (97 mg, 0.75 mmol) in dry MeCN (15 mL)
was heated under reflux in a nitrogen atmosphere for 4 h. After cooling to rt, the solvent
was evaporated and the residue dissolved in EtOAc was washed with 100 mM Na phos-
phate, pH 5.0. The organic phase was dried and evaporated to give a brown oil. Flash
chromatography (EtOAc-hexanes (1:1)) afforded 11 (446 mg, 79%) as yellow crystals, mp
129–130 ◦C (EtOAc-hexanes); νmax/cm−1 (Nujol) 3430, 1740, 1680, 1605, 1530, 1380, 1145,
745; 1H NMR (500 MHz) δ 7.55 (1H, s, H-6), 7.34 (1H, s, H-4), 6.94-6-86 (4H, m, ArH),
6.83-6-81 (2H, m, ArH), 6.69 (1H, dt, J = 7.7, 1.1 Hz, ArH), 6.62 (1H, dd, J = 7.7, 1.1 Hz,
ArH), 5.21 (1H, t, J = 5.1 Hz, NH), 4.39–4.36 (4H, m, ArOCH2), 4.26 (2H, t, J = 8.1 Hz, H-2),
4.11 (2H, d, J = 5.1 Hz, NCH2CON), 4.06 (4H, br s, NCH2), 3.70 (3H, s, CO2Me), 3.62 (2H, s,
CH2CO2Me), 3.11 (2H, t, J = 8.1 Hz, H-3), 1.41 (18H, s, CMe3). Anal. Calcd for C39H48N4O11:
C, 62.55; H, 6.46; N, 7.48; found: C, 62.56; H, 6.57; N, 7.41.

3.11. Methyl 2-(1-((2-methoxyphenyl)glycyl)-7-nitroindolin-5-yl)acetate 12

A mixture of methyl 1-bromoacetyl-7-nitroindoline-5-acetate 10 (832 mg, 2.3 mmol),
o-anisidine (283 mg, 2.3 mmol), and DIPEA (297 mg, 2.3 mmol) in dry MeCN (50 mL) was
heated under reflux in a nitrogen atmosphere for 3 h. After cooling to rt, the solvent was
evaporated and the residue was dissolved in CH2Cl2 and washed with aq. 100 mM Na
phosphate, pH 5.0. The organic phase was dried and evaporated to give a brown oil. Flash
chromatography (EtOAc-hexanes (3:2)) afforded 12 (735 mg, 80%) as yellow needles; mp
166–167 ◦C (EtOAc-hexanes); νmax/cm−1 (Nujol) 3420, 1750, 1735, 1675, 1600, 1530, 1155,
745; 1H NMR (500 MHz) δ 7.57 (1H, br s, H-6), 7.39 (1H, br s, H-4), 6.87 (1H, dt, J = 7.3, 1.5
Hz, H-5′), 6.78 (1H, dd, J = 7.8, 1.5 Hz, H-3′), 6.71 (1H, dt, J = 7.3, 1.5 Hz, H-4′), 6.53 (1H, dd,
J = 7.8, 1.5 Hz, H-6′), 5.11 (H, t, J = 4.9 Hz, NH), 4.29 (2H, t, J = 8.1 Hz, H-2), 4.07 (2H, d,
J = 4.9 Hz, CH2N), 3.85 (3H, s, OMe), 3.71 (3H, s, CO2Me), 3.64 (2H, s, CH2CO2Me), 3.25
(2H, t, J = 8.1 Hz, H-3). Anal. Calcd for C20H21N3O6: C, 60.14; H, 5.30; N, 10.02; found: C,
60.11; H, 5.28; N, 10.40.

3.12. 4-(tert-Butyl) 1-methyl 2-(1-((2-methoxyphenyl)glycyl)-7-nitroindolin-5-yl)succinate 13

To a solution of 12 (80 mg, 0.2 mmol) in dry DMF (5 mL) was added sodium hydride
(60% dispersion in mineral oil; 8 mg, 0.2 mmol) and t-butyl bromoacetate (43 mg, 0.22 mmol)
and the mixture was refluxed under nitrogen. The progress of the reaction was followed by
TLC (EtOAc-hexanes (3:2)). After 3 h more t-butyl bromoacetate was added (43 mg) and the
heating continued for further 1 h. The solution was diluted with water (50 mL) and washed
with EtOAc. The combined organic phases were washed with saturated aq. NaHCO3,
brine, dried, and evaporated to give brown oil. Flash chromatography (EtOAc-hexanes
(1:1)) gave 13 (51 mg, 50%) as a pale oil; 1H NMR (500 MHz) δ 7.58 (1H, d, J = 1.4 Hz, H-6),
7.39 (1H, d, J = 1.4 Hz, H-4), 6.86 (1H, dt, J = 7.3, 1.3 Hz, H-5′), 6.77 (1H, dd, J = 7.3, 1.3 Hz,
H-3′), 6.71 (1H, dt, J = 7.3, 1.5 Hz, H-4′), 6.53 (1H, dd, J = 7.8, 1.5 Hz, H-6), 5.10 (1H, br s,
NH), 4.28 (2H, t, J = 8.1 Hz, H-2), 4.07 (2H, d, J = 2.9 Hz, COCH2NH), 4.05 (1H, dd, J = 9.5,
6.0 Hz, CH2CHCO2Me), 3.81 (3H, s, OMe), 3.68 (3H, s, CO2Me), 3.23 (2H, t, J = 8.1 Hz, H-3),
3.09 (1H, dd, J = 16.7, 9.5 Hz, half of CH2CHCO2Me), 2.61 (1H, dd, J = 16.7, 6.0 Hz, half of
CH2CHCO2Me), 1.41 (9H, s, CMe3).

3.13. 4-(tert-Butyl) 1-methyl 2-(1-(N-(2-(tert-butoxy)-2-oxoethyl)-N-(2-methoxyphenyl)glycyl)-7-
nitroindolin-5-yl)succinate 14

To a solution of 12 (100 mg, 0.25 mmol) in dry MeCN (10 mL) was added anhydrous
K2CO3 (138 mg, 1 mmol) and t-butyl bromoacetate (488 mg, 2.5 mmol) and the mixture was
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heated under reflux. After 2 h, more t-butyl bromoacetate was added (488 mg, 2.5 mmol)
and the heating continued for a further 16 h. The solid was filtered off, washed with MeCN
and the filtrate evaporated. The residue was dissolved in EtOAc and washed with saturated
aq. NaHCO3, brine, dried, and evaporated to give a brown oil. Flash chromatography
(EtOAc-hexanes (2:3)) gave 14 (70 mg, 44%) as a pale oil; 1H NMR (500 MHz) δ 7.57 (1H,
br s, H-6), 7.36 (1H, br s, H-4), 6.96 (2H, dt, J = 7.3, 1.3 Hz, H-5′ and H-3′), 6.90 (1H, dt,
J = 7.3, 1.3 Hz, H-4′), 6.84 (1H, dd, J = 7.3, 1.5 Hz, H-6′), 4.30 (2H, s, NCH2CO2), 4.28 (2H, t,
J = 8.1 Hz, H-2), 4.02 (1H, dd, J = 9.5, 6.0 Hz, CH2CHCO2Me), 3.98 (2H, s, NCOCH2N), 3.82
(3H, s, OMe), 3.68 (3H, s, CO2Me), 3.13 (2H, t, J = 8.1 Hz, H-3), 3.09 (1H, dd, J = 16.7, 9.5 Hz,
half of CH2CHCO2Me), 2.59 (1H, dd, J = 16.7, 6.0 Hz, half of CH2CHCO2Me), 1.42 (9H, s,
CMe3), 1.41 (9H, s, CMe3).

3.14. 2-Bromo-1-(5-methylindolin-1-yl)ethan-1-one 15

To an ice-cold solution of 5-methylindole (1.31 g, 10 mmol) in acetic acid (50 mL)
NaCNBH3 (2.48 g, 30 mmol) was added portionwise over 10 min (exothermic reaction)
and the mixture was then stirred at rt for 0.5 h. Water (2–3 mL) was added and the solvent
removed in vacuo. The residue was dissolved in EtOAc and washed with saturated aq.
NaHCO3, brine, dried, and evaporated to give 5-methylindoline (1.33 g, 100%) as a light
brown oil, which was immediately used in the next step; 1H NMR (90 MHz) δ 7.08–6.64
(2H, m, H-4 and H-6), 6.48 (1H, d, J = 8.1 Hz, H7), 3.48 (2H, t, J = 7.2 Hz, H-2), 3.20 (1H,
s, NH exchangeable with D2O), 2.95 (2H, t, J = 7.2 Hz, H-3), 2.22 (3H, s, Me). The crude
5-methylindoline was dissolved in dry CH2Cl2 (50 mL), cooled to −78 ◦C, and treated under
nitrogen with DIPEA (2.1 mL, 12 mmol), and a solution of bromoacetyl bromide (2.22 g,
11 mmol) in dry CH2Cl2 (50 mL) was added dropwise over 1 h. The solution was stirred at
−78 ◦C for 1 h, then allowed to warm to rt, diluted with CH2Cl2 and washed successively
with 1 M aq. HCl, saturated aq. NaHCO3 and brine, dried, and evaporated to give 15
(2.14 g, 84%) as pale yellow crystals, mp 116–118 ◦C (EtOAc-hexanes); νmax/cm−1 (Nujol)
1650, 1595, 1490, 820, 645; 1H NMR (90 MHz) δ 8.00 (1H, d, J = 8.1 Hz, H-7), 7.08–6.76 (2H,
m, H-4 and H-6), 4.15 (2H, t, J = 7.2 Hz, H-2), 3.91 (2H, s, CH2Br), 3.17 (2H, t, J = 7.2 Hz,
H-3), 2.30 (3H, s, Me). Anal. Calcd for C11H12BrNO: C, 51.99; H, 4.76; N, 5.52; found: C,
51.77; H, 4.81; N, 5.34.

3.15. 2-Bromo-1-(5-methyl-7-nitroindolin-1-yl)ethan-1-one 16

A solution of 15 (2.03 g, 8 mmol) in TFA (30 mL) was cooled to 0–5 ◦C and treated
with NaNO3 (0.75 g, 8.8 mmol), and the mixture was stirred at that temperature for 2 h.
The dark red/brown solution was poured into ice-cold water and extracted with EtOAc.
The combined organic phases were washed with saturated aq. NaHCO3 and brine, dried,
and evaporated to give 16 (0.83 g, 35%) as yellow crystals, mp 165–166 ◦C (EtOAc-hexanes-
charcoal); νmax/cm−1 (Nujol) 1670, 1530, 1340, 1225, 865, 780, 645; 1H NMR (90 MHz) δ
7.45 (1H, br s, H-6), 7.26 (1H, s, H-4), 4.31 (2H, t, J = 7.2 Hz, H-2), 3.95 (2H, s, CH2Br), 3.20
(2H, t, J = 7.2 Hz, H-3), 2.38 (3H, s, Me). Anal. Calcd for C11H11BrN2O3: C, 44.17; H, 3.71;
N, 9.37; found: C, 44.46; H, 3.74; N, 9.18.

3.16. Di-tert-butyl 2,2-((2-(2-(2-((2-(5-methyl-7-nitroindolin-1-yl)-2-oxoethyl)amino)phenoxy)
ethoxy)phenyl) azanediyl)diacetate 17

A mixture of aniline 7 (473 mg, 1 mmol), 1-bromoacetyl-5-methyl-7-nitroindoline 16
(299 mg, 1 mmol) and DIPEA (129 mg, 1 mmol) in dry MeCN (20 mL) was heated under
reflux in a nitrogen atmosphere for 4 h. After cooling to rt, the solvent was evaporated and
the residue was dissolved in EtOAc and washed with aq. 100 mM Na phosphate, pH 5.0.
The organic phase was dried and evaporated to give brown oil. Flash chromatography
(EtOAc-hexanes (1:1)) afforded 17 (478 mg, 69%) as yellow crystals, mp 139–141 ◦C (EtOAc-
hexanes); νmax/cm−1 (Nujol) 3420, 1740, 1670, 1600, 1530, 1370, 1245, 1140, 745; 1H NMR
(500 MHz) δ 7.45 (1H, d, J = 0.5 Hz, H-6), 7.21 (1H, d, J = 0.5 Hz, H-4), 6.95-6-86 (4H, m,
ArH), 6.83-6-81 (2H, m, ArH), 6.68 (1H, dt, J = 7.7, 1.5 Hz, ArH), 6.62 (1H, dd, J = 7.7, 1.5 Hz,
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ArH), 5.21 (1H, br s, NH), 4.40–4.35 (4H, m, ArOCH2), 4.24 (2H, t, J = 8.1 Hz, H-2), 4.10 (2H,
s, NCH2CON), 4.06 (4H, br s, NCH2), 3.08 (2H, t, J = 8.1 Hz, H-3), 2.35 (3H, s, Me), 1.41
(18H, s, CMe3). Anal. Calcd for C37H46N4O9: C, 64.33; H, 6.71; N, 8.11; found: C, 63.93; H,
6.71; N, 7.96.

3.17. Di-tert-butyl 2,2-((2-(2-(2-((2-(tert-butoxy)-2-oxoethyl)(2-(5-methyl-7-nitroindolin-1-yl)-2-
oxoethyl)amino)phenoxy)ethoxy)phenyl)azanediyl)diacetate 18

To a solution of 17 (345 mg, 0.5 mmol) in dry MeCN (15 mL) was added anhydrous
K2CO3 (276 mg, 2 mmol) and t-butyl bromoacetate (975 mg, 5 mmol) and the mixture was
heated under reflux. After 2 h more t-butyl bromoacetate was added (975 mg) and the
heating continued for a further 16 h. The solid was filtered off, washed with MeCN and
the filtrate evaporated. The residue was dissolved in EtOAc and washed with saturated
aq. NaHCO3 and brine, dried, and evaporated to give a brown oil. Flash chromatog-
raphy (EtOAc-hexanes (2:3)) gave two products. The first eluted material, a viscous oil
which crystallised after trituration with Et2O-hexanes, identified as tetra-tert-butyl 1,2-
bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate 18a (132 mg, 38%), white crystals, mp
113–114 ◦C (hexanes); νmax/cm−1 (Nujol) 1755, 1740, 1720, 1505, 1250, 1035, 755; 1H NMR
(90 MHz) δ 6.68 (8H, br s, ArH), 4.35 (4H, br s, ArOCH2), 4.06 (8H, br s, NCH2), 1.41 (36H,
s, CMe3). Anal. Calcd for C38H56N2O10: C, 65.12; H, 8.05; N, 4.00; found: C, 65.27; H, 8.14;
N, 3.98.

The second eluted material was 18 (163 mg, 40%) which was isolated as a brown film
and used in the next step without further purification; 1H NMR (90 MHz) 7.39 (1H, br
s, H-6), 7.02 (1H, br s, H-4), 6.96–6.56 (8H, m, ArH), 4.33 (4H, br s, ArOCH2), 4.12 (2H, t,
J = 8.0 Hz, H-2), 4.06 (2H, s, NCH2CO), 4.02 (6H, s, NCH2), 2.86 (2H, t, J = 8.0 Hz, H-3), 2.31
(3H, s, Me), 1.40 (27H, s, CMe3).

3.18. 2,2-((2-(2-(2-((Carboxymethyl)(2-(5-methyl-7-nitroindolin-1-yl)-2-oxoethyl)amino)
phenoxy)ethoxy)phenyl)azanediyl)diacetic acid (NI-Caged BAPTA) 19

A solution of the crude brown film 18 (163 mg, 0.202 mmol) in TFA (10 mL) was stirred
at rt for 4 h. The red-brown solution was concentrated in vacuo and the residue dissolved in
water (80 mL). The pH was raised from 1.92 to 7.2, via the careful addition of 1 M aq. NaOH,
and extracted with ether (3 × 80 mL). The aqueous solution (89 mL) was first concentrated
in vacuo and then filtered through a 0.2 mm cellulose membrane and analysed via reverse-
phase HPLC (mobile phase 25 mM Na phosphate, pH 6.0 + 30% MeCN at 1.5 mL/min). A
major peak eluted at tR 5.4 min and a minor peak at tR 6.4 min. The solution was made up
to 25 mM Na phosphate, pH 6.0, and loaded onto a preparative HPLC column. The column
was eluted first with 25 mM Na phosphate, pH 6.0 for 1 h (all flow rates 1.5 mL/min)
and then with 25 mM Na phosphate, pH 6.0 + 30% MeCN. Fractions containing pure
product were analysed, combined, and quantified via UV spectroscopy: λmax (25 mM Na
phosphate, pH 7.0/nm 345 (ε/M−1cm−1 2700)) to give 19 (NI-caged BAPTA) (48 µmol). The
contaminated fractions were re-analysed via standard anion exchange HPLC (mobile phase
50 mM ammonium phosphate, pH 6.0 + 10% MeCN at 1.5 mL/min), showing a minor
peak at tR 2.8 min and a major peak at tR 6.0 min. The solution was then concentrated,
and the residue dissolved in water (87 mL) and the pH was adjusted to 7.42. The aqueous
solution was then purified via anion-exchange chromatography using a linear gradient
formed from 10 to 500 mM TEAB (each 250 mL). Fractions containing the product, which
were eluted at ~240 mM TEAB were analysed as above. Pure fractions were combined,
concentrated, and re-evaporated from MeOH. The residue was dissolved in water (1 mL)
and quantified via UV (11.2 mM, 11 µmol). The total yield of isolated pure product 19 was
59 µmol (29%). A portion of the product was exchanged to sodium salt with Dowex-50.
The sodium salt had 1H NMR (500 MHz D2O; acetone ref.) 7.45 (1H, br s, H-6), 7.23 (1H, br
s, H-4), 7.12–7.07 (1H, m, ArH), 7.04–6.94 (2H, m, ArH), 6.94–6.86 (1H, m, ArH), 6.86–6.75
(2H, m, ArH), 6.52–6.58 (1H, m, ArH), 6.45–6.52 (1H, m, ArH), 4.37 (4H, br s, ArOCH2),
4.20–4.16 (2H, m, NCH2CO2), 4.00 (2H, t, J = 7.9 Hz, H-2), 3.82 (2H, s, NCH2CON), 3.80
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(4H, br s, NCH2), 2.86 (2H, t, J = 7.9 Hz, H-3), 2.36 (3H, s, Me).); LRMS (FAB): Calcd for
(C31H29N4O11 + 2H)−: 635; found: 635.

3.19. 2-Bromo-1-(4-methoxy-7-nitroindolin-1-yl)ethan-1-one 21

To a well-stirred suspension of claycop (1.28 g) in a mixture of CCl4 (8 mL) and
Ac2O (4 mL) was added 1-bromoacetyl-4-methoxyindoline 20 (0.54 g, 2 mmol; prepared
as previously described [30]), and the mixture was stirred at room temperature for 4 h.
The mixture was diluted with EtOAc (60 mL) and washed with saturated aq. NaHCO3
and brine, dried, and evaporated to yellow crystals. Recrystallisation (EtOAc) gave 21
(0.45 g, 72%) as fine yellow crystals, mp 172–173 ◦C (EtOAc-hexanes); 1H NMR (90 MHz,
d6-DMSO) δ 7.70 (1H, t, J = 9.0 Hz, H-6), 6.68 (1H, t, J = 9.0 Hz, H-5), 4.26 (2H, t, J = 8.1 Hz,
H-2), 4.32 (2H, s, CH2Br), 3.92 (3H, s, OMe), 3.06 (2H, t, J = 8.1 Hz, H-3). Anal. Calcd for
C11H11BrN2O4: C, 41.93; H, 3.52; N, 8.89; found: C, 42.16; H, 3.61; N, 8.62.

3.20. Di-tert-butyl 2,2-((2-((2-(tert-butoxy)-2-oxoethyl)(2-(4-methoxy-7-nitroindolin-1-yl)-2-
oxoethyl)amino)ethyl)azanediyl)diacetate 23

A mixture of 21 (156 mg, 0.49 mmol), N,N,N′-tris(tert-butyloxycarbonylmethyl)ethane-
1,2-diamine 22 (219 mg, 0.54 mmol, prepared as previously described [31]) and diisopropy-
lethylamine (84 mg, 0.65 mmol) in dry MeCN (15 mL) was stirred at room temperature
under a nitrogen atmosphere for 24 h. The precipitated white solid was filtered off and
the filtrate was evaporated. The residue was dissolved in EtOAc (50 mL), washed with
saturated aq. NaHCO3 and brine, dried, and evaporated to give a brown oil. Flash chro-
matography (EtOAc-hexanes-Et3N (40:55:5)) afforded 23 (283 mg, 91%) as a pale viscous
oil; 1H NMR (500 MHz) δ 7.75 (1H, d, J = 8.9 Hz, H-6), 6.62 (1H, d, J = 8.9 Hz, H-5), 4.44 (2H,
t, J = 8.1 Hz, H-2), 3.90 (3H, s, OMe), 3.79 (2H, s, NCH2CON), 3.46 (4H, s, 2 × NCH2Boc),
3.04 (t, J = 8.1 Hz, H-3), 2.81–2.93 (4H, m, NCH2CH2N), 1.45 (9H, s, CMe3), 1.42 (18H, s,
CMe3). HRMS (FAB): Calcd for (C31H49N4O10 + H)+: 637.3449; found (M + H)+ 637.3425.

3.21. 2,2-((2-((Carboxymethyl)(2-(4-methoxy-7-nitroindolin-1-yl)-2-oxoethyl)amino)ethyl)
azanediyl)diacetic acid (MNI-caged EDTA) 24

A solution of 23 (255 mg, 0.4 mmol) in TFA (20 mL) was stirred at rt for 4 h. The
red-brown solution was concentrated in vacuo and the residue was dissolved in water
(50 mL). The pH was raised from 1.22 to 7.36 via the careful addition of 1 M aq. NaOH
and extracted with ether (3 × 50 mL). The aqueous solution (50 mL) was concentrated in
vacuo, filtered through a 0.2 mm membrane and analysed via reverse-phase HPLC (mobile
phase 15 mM Na phosphate, pH 6.0, 2 mM EDTA + 10% MeCN at 1.5 mL/min, at tR
6.2 min). The aqueous solution was then diluted with water (800 mL, conductivity 125 mS)
and purified via anion-exchange chromatography using a linear gradient formed from 10
to 250 mM TEAB (each 250 mL). Fractions containing the product, which were eluted at
~135 mM TEAB, were analysed as above. Pure fractions were combined, concentrated, and
re-evaporated from MeOH. The residue was dissolved in water (20 mL) and the pH was
raised from 5.58 to 7.36, filtered through a 0.2 mm membrane, and lyophilised. The residual
powder was dissolved in water (7 mL) and quantified by means of UV spectroscopy:
λmax 330 nm (ε 4800 M−1cm−1), affording 24 (37.7 mM, 264 µmol, 66%). A fraction was
exchanged to its sodium salt with Dowex-50. The sodium salt had 1H NMR (500 MHz D2O
acetone ref.) 7.86 (1H, d, J = 9.0 Hz, H-6), 6.92 (1H, d, J = 9.0 Hz, H-5), 4.33 (2H, t, J = 7.9 Hz,
H-2), 4.05 (2H, s, NCH2CON), 3.97 (3H, OMe), 3.88 (4H, s, NCH2), 3.67 (2H, s, NCH2), 3.51
(2H, t, J = 5.1 Hz, NCH2CH2N), 3.28 (2H, t, J = 5.1 Hz, NCH2CH2N), 3.12 (2H, t, J = 7.9 Hz,
H-3). HRMS (FAB): Calcd for (C19H24N4O10 + Na)+, 491.1376; found: (M + Na)+ 491.1390.
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3.22. Sequential Irradiations of NI-Caged BAPTA 19

Two separate solutions of 19 (0.5 mM)—one in 25 mM MOPS, pH 7.09 containing
5 mM dithiothreitol plus 2.5 mM EDTA and the other in 25 mM MOPS, pH 7.09 containing
5 mM dithiothreitol plus 2.5 mM Ca2+—were irradiated for increasing lengths of time (0, 0.5,
1, and 2 min) in 1 mm path-length cells in a Rayonet Photochemical Reactor (16 × 350 nm
lamps). No photolysis was detected via UV spectroscopy in either solution (Figure 3). As
control experiments, two separate solutions of methyl 1-[S-(4-amino-4-carboxybutanoyl)]-
7-nitroindoline-5-acetate, NI-caged glutamate (0.5 mM) were irradiated under the same
conditions described above. The expected 7-nitrosoindole (λmax 413 nm) was observed, as
previously reported [18] (data not shown).

3.23. Sequential Irradiations of MNI-Caged EDTA 24

Two separate solutions of 24 (0.5 mM) in 25 mM MOPS were prepared as follows;
(A) plus 2.5 mM EDTA, pH 6.86; (B) plus 2.5 mM Ca2+, pH 6.86. Each solution was
irradiated separately for increasing lengths of time (0, 0.5, 1, 2, and 4 min) in 1 mm path-
length cells in a Rayonet Photochemical Reactor (16 × 350 nm lamps). UV spectra for each
sample were recorded (Figure 4).

3.24. Estimated Extent of Photolysis of MNI-Caged EDTA 24 by HPLC

Two separate solutions of 24 (0.5 mM)—one in 25 mM MOPS, pH 7.02 plus 2.5 mM
EDTA and the other in 25 mM MOPS, pH 7.09 plus 2.5 mM Ca2+—were irradiated for
0.25 min in 1 mm path-length cells in a Rayonet Photochemical Reactor (16 × 350 nm
lamps). The extent of photolysis was determined via reverse-phase HPLC (mobile phase
15 mM Na phosphate, pH 6.0 + 10% MeCN, 1.5 mL/min). Quantification was based on
peak heights compared to those of unphotolysed controls. The extent of photolysis of the
solution containing 2.5 mM EDTA was 30.1% and that of the one containing 2.5 mM Ca2+

was 49.1%.

4. Conclusions

Our aim in exploring 7-nitroindolinyl-caged calcium chelators as tools for rapidly
lowering Ca2+ concentrations in physiological media was to exploit the sub-microsecond
time scale of photolysis of this caging technology. Previously reported examples [17,18] of
caged calcium chelators exhibited photolysis rates that were significantly slower, at best in
the ~250 µs range.

Synthesis of the nitroindolinyl-caged BAPTA 19 was relatively straightforward but
lengthy, and ultimately fruitless, as it was not susceptible to photolysis either with or
without the presence of calcium. In contrast, nitroindolinyl-caged EDTA 24 was readily
accessed via a short synthetic route but clean photolysis to release free EDTA only occurred
in the presence of saturating Ca2+, thus enabling no capacity to bind additional Ca2+. It
appears that in both the BAPTA and EDTA cases, strong electron-donating centres are
capable of quenching the excited state of the nitroindoline. Our experiments, and those
of previous investigators, seem to have exhausted the options for conventional caging of
calcium chelators. An intriguing possibility would be a photoisomerisable scaffold that
could bring together two spatially separated iminoacetate groups, thereby assembling
a complete hexadentate ligand. If this could be achieved, it would have an additional
advantage of minimal Ca2+ affinity in the pre-irradiated form. Although attractive as a
concept, present resources place this beyond our capability.
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