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Central nervous system (CNS) infections occur more commonly in young children than

in adults and pose unique challenges in the developing brain. This review builds on the

distinct vulnerabilities in children’s peripheral immune system (outlined in part 1 of this

review series) and focuses on how the developing brain responds once a CNS infection

occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter

the CNS and initiate a localized innate immune response with release of cytokines

and chemokines to recruit peripheral immune cells that contribute to the inflammatory

cascade. This immune response is initiated by the resident brain cells, microglia and

astrocytes, which are not only integral to fighting the infection but also have important

roles during normal brain development. Additionally, cytokines and other immune

mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells

not only play a role in BBB permeability and peripheral cell recruitment, but also in brain

maturation. Consequently, these immune modulators and the activation of microglia and

astrocytes during infection adversely impact normal neurodevelopment. Perturbations

to normal brain development manifest as neurodevelopmental and neurocognitive

impairments common among children who survive CNS infections and are often

permanent. In part 2 of the review series, we broadly summarize the unique challenges

CNS infections create in a developing brain and explore the interaction of regulators of

neurodevelopment and CNS immune response as part of the neuro-immune axis.

Keywords: microglia, astrocyte, development, central nervous system (CNS) infection, neurological sequelae,

pediatrics

INTRODUCTION

The development of the central nervous system (CNS) is a tightly regulated complex and
dynamic process. The CNS begins to develop in the third week of gestation and continues to
mature postnatally into late adolescence and adulthood (1). The critical periods of perinatal
and early postnatal neurodevelopment, together with adolescent maturation of the brain, are
particularly sensitive to environmental influences. Therefore, it is not surprising that CNS
infections represent a significant source of mortality and morbidity in children worldwide (2–5).
In children, these infections lead to devastating neurological sequelae, such as motor deficits or
cognitive impairment, that can last a lifetime (6–8). Moreover, immunocompromised children
are at higher risk of developing more severe CNS infections with poorer outcomes (9). In this
review, we explore the idea that key components of the CNS immune response are also regulators
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of early neurodevelopment, interacting along the neuro-immune
axis. Moreover, we provide an overview of current evidence
suggesting that this dual role is a key driver of the unique
pediatric (0–18 years) susceptibility to CNS infections and the
resultant sequelae. Specifically, we highlight how a dysregulated
immune response secondary to two CNS infections cause long-
term neurological sequelae.

BLOOD-BRAIN BARRIER

Innate immunity in the CNS begins at the blood-brain barrier
(BBB), a semipermeable barrier consisting of brainmicrovascular
endothelial cells (BMECs), stabilized by astrocytic end-feet and
pericytes. BMECs line the cerebral vasculature and form a cellular
monolayer via tight junctions (TJs) and adherents junctions. The
resulting barrier allows for bidirectional regulation of molecular
flow and hinders the hematogenous entry of pathogens and
toxins (10). The stage at neurodevelopment where the BBB
becomes functional remains unclear. Historically, an immature
BBB was considered to contribute to an increased risk of CNS
infections in children. This notion can be traced back to early
studies of dye-injection experiments and observations of higher
cerebrospinal fluid (CSF) protein concentrations in newborn
animals (11). Conclusions on BBB maturity drawn from these
experiments, however, have since been challenged, andmounting
evidence supports the existence of a functional BBB early in
embryonic development (11).

Nevertheless, even a “mature” BBB is not impregnable. The
predominant cause of meningitis in older infants and children is
Streptococcus pneumoniae, which interacts with the endothelial
receptors polymeric immunoglobulin receptor (pIgR) and
platelet endothelial cell adhesion molecule-1 (PECAM-1 or
CD31) to invade the CNS (12). The gram-positive bacterium
Listeria monocytogenes, a leading cause of meningitis in neonates,
enters the CNS by triggering endocytosis in host epithelial cells
(13, 14) and hijacking infiltrating monocytes (15). The protozoan
parasite Toxoplasma gondii similarly utilizes this “trojan horse”
method of CNS entry via infected dendritic cells and monocytes
(16) while also replicating in endothelial cells (17).

Virulence factors which enable host extracellular matrix-
pathogen interactions and the resulting neuroinflammatory
response can also disrupt the BBB at the molecular level. For
example, Group B Streptococcus upregulates Snail1 on BMECs
which in turn represses the expression of TJ proteins including
occludin, zonula occludens, and claudin-5, leading to a leaky
BBB (18). Additionally, the parasite Plasmodium falciparum,
the major cause of pediatric cerebral malaria (CM), does not
cross the BBB. Rather, P. falciparum binds to endothelial cells,
triggering an inflammatory cascade that ultimately leads to
BBB damage, vascular leakage, and often lethal cerebral edema
(19). Even peripheral infections such as sepsis can lead to
neuroinflammation with similar BBB damage, as demonstrated
by the absence of occludin on brain autopsies from septic
patients (20).

Once pathogens compromise the BBB or/and enter the CNS,
the CNS must mount a sufficient immune response to control

the infection. Unfortunately, the host immune response may
become dysregulated and initiate various injury cascades that
compromise normal neurodevelopment.

AT THE JUNCTION OF CNS IMMUNITY
AND NEURODEVELOPMENT: THE
NEURO-IMMUNE AXIS

Recent evidence describing dynamic interactions between the
CNS and immune system together with the discovery of the
CNS lymphatic system (i.e., glymphatic system and meningeal
lymphatics) (21, 22) have rendered it necessary to rethink
the long-held notion that the CNS is an immune privileged
site (23, 24). Instead, it is now suggested that the CNS is a
site of active, highly regulated immune surveillance (25). This
framework is essential to contextualizing processes whereby
microglia, astrocytes, and secreted immune mediators are
intimately involved in neurodevelopment (26) (summarized in
Figure 1).

Furthermore, the proliferation and maturation of microglia
and astrocytes themselves are shaped by complex local and
systemic cues which originate from diverse sources, ranging
from the developing CNS itself to the maternal microbiome
(27, 28). In response to key signals including but not limited to
transforming growth factor-β (TGF-β) and colony-stimulating
factor-1 (CSF-1), microglia undergo distinct, sequential stages
of differentiation with morphological, transcriptomic, and
functional transformations (29, 30). Similarly, recent studies
have further characterized the temporo-spatial heterogeneity of
transcriptomic profiles in astrocytes during perinatal synaptic
development (31), circuitry-specific synaptic association (32),
and even throughout normal aging (33, 34). Amidst the complex
milieu that is the developing CNS, further appreciation of the
roles of immunologically active glia and signaling molecules
in neurodevelopment is quintessential to understanding
the susceptibility of the pediatric CNS to infections and
devastating sequelae.

Microglia
Microglia are resident immune cells of the CNS and an important
defense against invading pathogens and tissue injury. Microglial
distribution in the brain is heterogenous, ranging from 0.5 to
16.6% of cells in the parenchyma (35). The colonization of the
developing brain by embryonic microglia precedes neurogenesis,
astrogliogenesis, and vasculogenesis, alluding to the crucial role
of microglia in mediating early developmental and homeostatic
processes of the CNS (36).

Microglia are dynamic cells that constantly survey their
microenvironment and respond to environmental cues. Under
pathological conditions they undergo a phenotypic shift from the
ramified (or “quiescent”) form to the ameboid (or “activated”)
form (37). Their intrinsic role as active surveyors and phagocytes
of the brain parenchyma makes microglia key players in synaptic
pruning (38–40). Synaptic pruning constitutes the elimination
of excess connectivity and its functional structures (i.e., synaptic
terminals, axonal and dendritic branches), and is a critical process

Frontiers in Neurology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 805786

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kim et al. Neuro-Immune Axis During CNS Infections

FIGURE 1 | The neuro-immune axis in the developing brain. Astrocytes, microglia, and secreted immune mediators have dual roles during normal brain development

and the immune response triggered by CNS infections. During normal brain development, they are integral to synaptic pruning, regulation of dendritic

(Continued)
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FIGURE 1 | growth/morphology, neurogenesis, astrogliogenesis, angiogenesis, myelination, and glial differentiation. However, amid the immune response during

infection, brain development becomes dysregulated which can lead to neurological, neurodevelopmental, and psychiatric sequelae. The lower panel summarizes the

roles of resident immune cells (microglia and astrocytes) and secreted immune mediators (TNF super family, MMP, IL-6) during normal brain development compared to

dysregulated brain development during CNS infection. Abbreviations: BBB, blood-brain barrier; CM, cerebral malaria; CNS, central nervous system; MMP, matrix

metalloproteinases; TBM, tuberculous meningitis; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factors. Created with BioRender.com and

CorelDRAW Graphics Suite 2021.

during the prenatal and postnatal maturation of neural circuitry.
Accordingly, depletion of microglia leads to defective pruning
in the developing auditory brainstem (41), the visual cortex
(42), and the somatosensory cortex (43). To date, numerous
studies have identifiedmicroglia-specific signalingmolecules that
underpin the normal development of neural circuitry including
complement receptor 3-C3 (44), the chemokine CX3CL1-
CX3CR1 (45), and CD47-SIRPα signaling (46).

In order to respond to environmental cues, microglia express
extensive molecular tools critical to sampling and interpreting
brain milieu. For example, pattern recognition receptors (PRRs)
expressed on microglia cell membranes, such as toll-like
receptors (TLRs), enable microglia to mount a rapid response
to microbial invasion and endogenous cellular damage. These
receptors recognize pathogen-associated molecular patterns
(PAMPs) and damaged-associated molecular patterns (DAMPs)
(47, 48). Moreover, microglia express a cluster of genes,
dubbed the microglial “sensome,” that allow them to sense CNS
perturbations and include genes encoding purinergic receptors
(e.g., P2RY12, ADORA3, TMEM173), cytokine and chemokine
receptors (e.g., CSF1R, TGFBR1, IFNGR1, CX3CR1, CMKLR1),
and Fc receptors (e.g., FCGR3, FCER1G) (49, 50).

During CNS infections, microglia clear bacteria via receptor-
mediated phagocytosis (51, 52), identify and destroy virus-
infected neurons (53), and even pave the way for remyelination
post-infection by clearing debris and recruiting oligodendrocytes
(54). In addition, microglia mediate a broader immune response
by secreting key signaling molecules including proinflammatory
cytokines and chemokines in a pathogen-specific manner.
For instance, microglial activation by lipopolysaccharide (LPS)
results in significantly different expression of tumor necrosis
factor (TNF) and interleukin (IL)-1α/β compared to stimulation
by neurotropic Semliki Forest virus (55). Furthermore, microglia
can also cross-present viral antigens from infected neurons
to recruit CD8+ T cells (56) and phagocytose infiltrating
neutrophils to counteract ischemic injury (57).

Astrocytes
Astrocytes comprise up to 30% of the mammalian CNS. Once
thought to be mere scaffolds holding neurons together, astrocytes
are now recognized for their dynamic roles in BBB maintenance,
neuroinflammation, neurotransmission, and other essential CNS
processes (58–60).

Although microglia are important for synaptic pruning,
astrocytes are vital to the establishment and fine-tuning of
synapses and broader cortical circuitry (61). Therefore, the
role of astrocytes during neurodevelopment has primarily been
studied in the context of synaptogenesis and synaptic pruning,
leading to the identification of various astrocyte-expressed

prosynaptogenic molecules (62). For example, astrocytic
extracellular glycoproteins called thrombospondins (TSPs)
have been characterized to promote excitatory synaptogenesis
via interaction with the neuronal α2δ-1 receptor (63, 64).
Additionally, the protein SPARCL1 (hevin) is highly expressed
by astrocytes during critical periods of early synaptic refinement
and is sufficient to selectively induce excitatory synapse
formation (65–67). Furthermore, astrocytic ephrin-A3 activates
EphA4 receptors on neuronal dendritic spines (DS) and regulates
DS morphology and lifetime (68, 69). Notably, many of these
molecules are now being examined for their roles during
CNS injury and infection. For instance, TSP-1 and TSP-2 are
antiangiogenic factors and are upregulated after intracerebral
hemorrhage (70). Astrocytic hevin is also pivotal during synaptic
remodeling after ischemic injury in an adult stroke model
(71). This suggests the sustained importance of astrocytes
in synapse integrity beyond perinatal and early postnatal
neurodevelopment, though the effect of infection warrants
further investigation.

Astrocytes are also indispensable to CNS innate immunity.
They constitute an integral component of the BBB, the first
line of defense against pathogen invasion (59). Ensheathment
of cerebral microvasculature by astrocytic terminal processes
(“end-feet”) is critical to BBB integrity (72). While neurotropic
pathogens can bypass this barrier, its integrity during infection
and inflammation remains a crucial bulwark against pathological
leukocyte infiltration and hematogenous entry of additional
pathogens. During neuroinflammation and ischemia, astrocytes
secrete factors such as vascular endothelial growth factors
(VEGFs) and matrix metalloproteinases (MMPs), that contribute
to BBB disruption (73–76). Conversely, astrocyte-derived factors
including sonic hedgehog can support BBB recovery (77).
Therefore, astrocytes play a pivotal role in regulating BBB
permeability and can help or harm BBB integrity during
brain insults.

Following infection or injury, astrocytes undergo a
morphological, transcriptomic, and functional shift through a
process referred to as “reactive astrogliosis” (78–80). Reactive
astrogliosis is often categorized by the dichotomous A1/A2
system, which many consider too simplistic (80, 81). Typically,
A1 astrocytes upregulate proinflammatory genes which mediate
neurotoxic outcomes in response to neuroinflammation,
and A2 astrocytes are induced upon ischemic injury
and favor a neuroprotective transcriptomic profile that
promotes tissue repair. The cytokines TNF, IL-1α, and the
complement component 1 subcomponent q (C1q), secreted
by activated microglia, robustly induce an A1 phenotype
(81). Interestingly, the A1 shift is associated with alterations
in prosynaptogenic factors (i.e., TSP and hevin) which may
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prove pathological if it occurs during critical periods of
neurodevelopment (81).

Similar to microglia, astrocytes express a variety of PRRs
such as TLRs, mannose receptor, and nucleotide-binding and
oligomerization domain-like receptors (NLRs) which allow
them to respond directly to PAMPs and DAMPs (82).
For instance, Staphylococcus aureus infection augments TLR2
mRNA expression in astrocytes, and TLR2 knock out mice
exhibit attenuated release of TNF and IL-1β (83). Pathogenic
activation of astrocytic PRRs and downstream immune signaling
pathways may, however, pathologically alter neurodevelopment.
Astrocytic TLR4 recognizes LPS, which leads to the expression
of TNF, IL-15, and IL-27 through TLR4-MyD88 signaling
(84). Early postnatal activation of astrocytic TLR4-MyD88
promotes hippocampal excitatory synaptogenesis and dendritic
branching which may underpin increased seizure susceptibility
accompanying many CNS infections (85).

Secreted Immune Mediators
During the CNS immune response to infection, microglia,
astrocytes, neurons and BMECs secrete a plethora of cytokines,
chemokines and MMPs. The roles of these mediators in innate
immunity are well documented, therefore, we will concentrate
on their involvement during neurodevelopment. Due to the wide
breadth of these secreted factors, we will focus on three classical
examples: the TNF superfamily (TNFSF), MMPs, and IL-6.

The TNFSF consists of 19 cytokines which interact
with the TNF receptor superfamily (TNFRSF) (86). Today,
TNFSF/TNFRSF are known to have variegated roles beyond
innate immunity and inflammation. Most members of TNFSF
and TNFRSF are constitutively expressed in the mammalian
CNS and play non-immunological roles critical to healthy brain
development such as neuronal and glial cell population control
(87). In addition, they regulate axonal and dendritic growth both
in the CNS (88) and peripheral nervous system (89). TNF, the
best understood member of this family, regulates neurogenesis,
astrogliogenesis, and angiogenesis (90–92). Indeed, TNF−/−

mice display reduced numbers of neurons and microglia, and
pharmacological TNF inhibition impairs learning and memory
in in vivo models (93). However, human studies have associated
chronic expression of TNF with the development and severity of
autism and schizophrenia (94).

MMPs are a family of endopeptidases which mediate
broad physiological processes (e.g., bone remodeling, wound
healing, embryonic development) via the proteolytic cleavage
of extracellular matrix proteins, cytokines, and chemokines.
Research into the role of MMPs in the developing brain and
spinal cord has revealed their homeostatic and spatiotemporal
specific expression, and their roles in neuronal migration,
proliferation, andmyelination (95–99). Increased levels of MMP-
9, one of the most widely studied MMPs, has been linked to
various neurodevelopmental disorders; from autism spectrum
disorder (100), Fragile X syndrome (101), to schizophrenia
(102). In animal models of meningitis, MMP-9 activity has
also been shown to contribute to intracerebral hemorrhage
and BBB disruption (103, 104). Similarly, elevated MMP-9 and

the ratio of MMP-9 to tissue inhibitor of MMP-1 (TIMP-
1) have been observed in the CSF of pediatric patients with
bacterial meningitis, including tuberculous meningitis (TBM)
(105–107). Interestingly, increased MMP-9 during treatment
in pediatric TBM patients was associated with improved
outcomes, hypothesized to be secondary to MMP’s role in
neurodevelopment (107).

IL-6 is a cytokine of the interleukin family with both
proinflammatory and anti-inflammatory properties that is
constitutively expressed at low levels by microglia, neurons,
astrocytes, and BMECs (108). In the developing CNS, IL-
6 is an essential regulator of neurogenesis (109, 110) and
promotor of glial differentiation (111). Notably, neural stem
cells are known to self-regulate progenitor pools via autocrine
IL-6 signaling, and transient exposure to increased maternal
IL-6 is sufficient to dysregulate neural precursor cell pools in
the developing forebrain (112). Under pathological conditions,
IL-6 levels dramatically increase in the CNS and may be
neuroprotective. For instance, microglial IL-6 prevents neuronal
loss of neural progenitor cells during herpes simplex virus type 1
infection (113), and endogenous upregulation of IL-6 in response
to cerebral ischemia is neuroprotective against excitotoxicity
(114). However, elevated IL-6 levels in the fetal brain after
maternal immune activation is a key mediator of transcriptional
and behavioral alterations in the adult offspring brain (115,
116).

NEUROLOGICAL SEQUELAE: A
CONSEQUENCE OF THE NEURO-IMMUNE
AXIS?

Both the immune system and neurodevelopment are tightly
regulated and versatile processes that must respond to changing
microenvironmental cues. Therefore, as outlined above, it is
not surprising that they share mechanistic overlap (117) which
has left the developing brain vulnerable. It is becoming well
accepted that infections during pregnancy and childhood can
profoundly affect neurodevelopmental outcome of offspring as
well as later in adolescence and adulthood (118). Below we
highlight two CNS infections to exemplify how components of
these processes are dysregulated and associated with adverse
clinical outcomes.

Cerebral Malaria
CM is one of the deadliest forms of malaria affecting children
under 5 years in low- and middle-income countries (LMICs)
disproportionately. Despite aggressive antiparasitic therapy and
parasite clearance, over 50% of children surviving CM suffer
from neurocognitive deficits, seizures, and neurobehavioral
disorders (19, 119, 120). Both activated microglia and reactive
astrocytes have been linked to the pathobiology of CM in
both in vivo models and post-mortem human studies (121).
The classical proinflammatory cytokines TNF and IL-6 have
also been associated with CM outcomes in human studies
(122). Specifically, higher CSF levels of TNF correlate with
coma duration and long-term neurocognitive impairments (123).
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Additionally, IL-6 has been linked to severity, where children
with CM have increased levels of serum IL-6 compared to those
with uncomplicated malaria (124).

Tuberculous Meningitis
TBM is the most aggressive form of extrapulmonary TB.
Like CM, children from LMICs are those most at risk.
Pediatric survivors of TBM also suffer from neurodevelopmental
deficits in locomotor, personal-social, and language function
despite intensive antimicrobial treatment (125, 126). Although
numerous factors drive pathogenesis, preclinical and clinical
studies suggest the host inflammatory response as a primary
contributor to clinical manifestations and sequelae in TBM (127,
128). A study utilizing a murine model showed uncontrolled
tissue pathology without the use of treatment targeting
neuroinflammation (129), and a rabbit model of pediatric TBM
has demonstrated elevated levels of activated microglia in the
brains of infected rabbits compared to those of healthy rabbits
(130).

Furthermore, a study of South African children with
TBM performed transcriptomic analysis and found
compartmentalized immune response with increased cytokine
signaling in lumbar CSF and increased neuronal excitotoxicity
associated with glutamate release in ventricular CSF (131).
This glutamate dysregulation within the ventricular milieu
may be a manifestation of injury to astrocytes, who are
known to be key regulators of glutamate homeostasis (132).
In fact, glial fibrillary acidic protein (GFAP), an astrocyte
surface marker, along with neuronal injury biomarkers [e.g.,
S100B and neuron-specific enolase (NSE)] increased in the
CSF of pediatric TBM patients with poor outcomes (133).
While serum S100B levels fail to reflect the progressive
injury in TBM (133), serial measurement of S100B has been
proposed to have prognostic value in pediatric patients after
traumatic brain injury (134). Hence, sequential evaluation
of plasma/serum S100B may prove more informative
in TBM.

Adjunctive Therapies
In both CM and TBM, appropriate antimicrobial therapy does
not prevent devastating neurological injury and highlights the
need for adjunctive therapy. Currently, there are no approved
adjunctive host-directed therapeutics for CM and to date,
corticosteroids are the only standard of care host-directed
therapy for TBM. Yet, corticosteroids cause side effects and,
although they improve TBM mortality, they do not reduce

neurological sequelae in survivors and exhibit poor BBB
penetration (126, 128, 135, 136). Modulating chemokine and
cytokine responses via monoclonal antibodies is an attractive
avenue for treating CNS infections. However, these biologics do
not cross the BBB and have not shown conclusive results in
clinical trials for sepsis and CM (19).

Understanding the dual role that microglia, astrocytes, and
secreted immune mediators play during development and the
CNS immune response may additionally aid in identifying
novel or repurposed drugs to attenuate neurological sequelae.
The window of opportunity may also be greatest in children,
as they carry the greatest risk of CNS infection and the
greatest need to maintain capacity for proper neurodevelopment.
Most importantly, any proposed adjunctive therapeutic should
aim to have good BBB penetration, and efforts to overcome
this bottleneck via novel drug delivery technologies are
ongoing (137).

CONCLUSION

The developing brain of a child is particularly vulnerable to CNS
infections because the cells, molecules and signaling pathways
that govern the host response to infection also coordinate
key aspects of neurodevelopment. This is evident by the
fact that survivors of CNS infections, regardless of etiology,
often develop not only neurological disorders but long-term
neurological sequelae. Thus, it is imperative to further our
understanding of the neuro-immune axis during development
to design more effective host-directed adjunctive therapeutics
that not only attenuate neuroinflammation but also restore key
neurodevelopmental processes.
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