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Abstract
Tubular and membranous shapes display a wide range of morphologies that are difficult to analyze within a common frame-
work. By generalizing the classical Helfrich energy of biomembranes, we model them as solutions to a curvature optimization
problem in which the principal curvatures may play asymmetric roles.We then give a novel phase-field formulation to approx-
imate this geometric problem, and study its Gamma-limsup convergence. This results in an efficient GPU algorithm that we
validate on well-known minimizers of the Willmore energy; the software for the implementation of our algorithm is freely
available online. Exploring the space of parameters reveals that this comprehensive framework leads to a wide continuum
of shape textures. This first step towards a unifying theory will have several implications, in biology for quantifying tubular
shapes or designing bio-mimetic scaffolds, but also in computer graphics, materials science, or architecture.

Keywords Tubular shapes · Curvature functionals · Phase-fields · Biomembranes · Gamma-limsup

1 Introduction

Tubular and membranous shape textures are widely present
in biology. They display a large variety of morphologies
in terms of geometry and topology, which are important
to analyze since they reflect the state of a biological sys-
tem. For instance, the bone marrow capillaries are highly
branching andmerging vessels [88,101], whose organization
is subject to drastic remodeling in acute myeloid leukaemia
[30,82]. In cells, the endoplasmic reticulum, where pro-
teins are synthesized, consists of an interconnected network
[96] that undergoes sheets-to-tubules topological transfor-
mations [87]. Furthermore, trabecular bone is a combination
of rods and platelets [76,93] that are optimally restructured
under mechanical stress [1,90,92] or pathological conditions
[40,81,103].

However, due to their disparity and complexity, tubular
and membranous structures are difficult to describe within
a unifying framework that captures both their rich morpho-
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logical diversity as well as their continuous variations. We
approach this question by building a generation model that
creates shape textures from noise, similarly to texture synthe-
sis in images [46,62,85]. We model tubules and membranes
as optimizers under constant volume of a curvature func-
tional

F(S ) =
∫
S

p(κ1, κ2) dA, (1)

where p is a second-degree polynomial of the principal cur-
vatures κ1 and κ2 of the surfaceS . As ourmain contribution,
we provide a novel phase-field formulation Fε to approxi-
mate the original geometric problem F, and show that the
Γ -limsup holds, a notion coming from the Γ -convergence
framework [3,12,24]. The optimization problem then trans-
lates into the mass-preserving H−1 gradient flow [22,35]

u̇ = Δ
∂Fε

∂u
(u). (2)

Combining the stochastic optimizer Adam [55,66] to the
automatic differentiation provided by PyTorch [83] results in
an efficient andflexibleGPU implementation,curvatubes.
It successfully leads to a wide continuum of shape textures
(see Fig. 1), which constitutes a first step towards a unifying
theory.
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Fig. 1 A continuum of shape textures generated by curvatubes,
after optimizing a curvature-based polynomial energy of the surface∫
S p(κ1, κ2) dA, with a volume constraint. The polynomial coeffi-
cients vary linearly in space, by interpolating four values that define

different shape textures, at the vertical median of the four squares. In
the formulas, κ1 and κ2 are the principal curvatures of the surface, while
H = κ1 + κ2 and K = κ1κ2 are the mean and the Gaussian curvatures.
More details are given at the end of Sect. 5.2

Related work. The variational formulation (1) generalizes
two classical functionals, the Willmore energy studied in
differential geometry [6,14,51,67,100,104,110], as well as
the Helfrich energy used to model biomembranes [17,18,25,
28,44,97]. In contrast to these models, the polynomial p is
here not required to be symmetric in the principal curvatures,
which allows the generation of tubules. Other generalizations
have been proposed in [43,106] and [19,26].

Curvature functionals are oftenused as imagepriormodels
in imaging, due to their ability to interpolate. Mumford [75]
considered Euler’s elastica functional as a prior curve model
in computer vision, and this was subsequently applied to
digital inpainting [10,68,99]. Similar ideas were then used
for 3D volume reconstruction from 2D slices [13,53,64]. Our
work is also related to Poisson reconstruction methods [48,
49] that implicitly reconstruct a surface from noisy oriented
points.

However, as in [27–29],we use the diffuse setting tomodel
shapes. By construction, our phase-field formulation Fε

extends the standard approximation of the Willmore energy
(see [14] and references therein) as well as the one proposed
by Bellettini & Mugnai in [8] for the Helfrich energy. In
terms of Γ -convergence, we also provide an extension of the
Γ -limsup result in [8], while keeping theΓ -liminf as an open
question (except in the cases previously covered) that we do
not aim to solve here.

Finally, our attempt in building a unifying framework is
connected to the Functionalized Cahn–Hilliard (FCH)model
proposed in [20,21,23,41,56,57]. The FCH energy describes
how amphiphilic molecules self-assemble into complex net-
work morphologies that feature spheres, tubules, sheets, and
mixtures of them. Loosely speaking, such shape textures

result from a compromise between minimizing a bending
energy while rewarding an increase in interfacial area. Yet,
we choose to treat the principal curvatures independently,
which is not the case in their model.
Outline. In Sect. 2, we introduce the Willmore and the
Helfrich energies, as well as their classical phase-field
approximations in light of the Γ -convergence framework. In
Sect. 3, we build the phase-field functional and justify its con-
struction with heuristic arguments and in terms of Γ -limsup.
Section 4 describes the computational framework and dis-
plays a large number of simulations. Finally, we discuss in
Sect. 5 the implications of a unifying theory on applied fields
and present future extensions to this work.

2 Background

We begin by introducing theWillmore and the Helfrich ener-
gies in more detail, then sketch the notion of Γ -convergence
before moving on with their classical phase-field approxima-
tions.

But first, let us describe curvatures in simple terms. Cur-
vature measures how much a line or a surface is locally
deviating from a straight line or a flat plane. For a line con-
tained in a plane, the curvature κ at a point is the inverse 1

r
of the radius of the osculating circle, i.e., the tangent cir-
cle that approaches the curves most tightly at this point.
Surfaces are characterized at each point by two principal
curvatures κ1 and κ2, that correspond to the maximal and
minimal curvatures of the lines resulting from the perpendic-
ular intersection of the surface with a plane. The maximally
and minimally curved lines are directed by two perpendicu-
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lar principal directions, tangent to the surface. For instance,
the principal curvatures are zero on a plane; on a sphere of
radius r , they are all equal to ( 1r ,

1
r ); on a cylinder of base

radius R, they are all equal to ( 1
R , 0).

2.1 TheWillmore, Helfrich, and Generalized
Curvature Functionals

In the 1970’s, Canham [18], and subsequently Helfrich [44],
proposed to model the surface of a biomembrane as a mini-
mizer of a curvature bending energy, or Helfrich energy

EH(S ) =
∫
S

(χb

2
(H − H0)

2 + χGK
)
dA. (3)

In this expression,S is a smooth compact orientable surface
inR3 whose principal curvatures are denoted κ1 and κ2, with
the convention κ1 ≥ κ2. The mean curvature1 H = κ1 + κ2
and the Gaussian curvature K = κ1κ2 are respectively the
sum and the product of the principal curvatures. The signs
of H , κ1, and κ2 depend on the orientation of S , while that
of K does not. Throughout this work, we use the convention
that H should be positive on convex objects like spheres. Let
us remark that there is a closed relationship between (κ1, κ2)

and (H , K ), provided by the bijectionφ(x, y) = (x+y, x y)
from {(x, y) ∈ R

2 | y ≤ x} onto {(x, y) ∈ R
2 | y ≤ 1

4 x
2},

⎧⎪⎨
⎪⎩
H = κ1 + κ2

K = κ1κ2

κ1 ≥ κ2

⇔
{

κ1 = (H + √
H2 − 4K )/2

κ2 = (H − √
H2 − 4K )/2

(4)

and that H2 − 4K = (κ1 − κ2)
2.

In (3), the coefficients χb > 0 and χG are the bending
and Gaussian rigidities. The parameter H0, or spontaneous
curvature, models the asymmetry of the two layers compos-
ing the bilipidic membrane [32,98]. The Willmore energy,
defined as

EW(S ) =
∫
S

H2 dA, (5)

is then a special case of the Helfrich energy, with χG = 0,
χb = 2, and H0 = 0.

In both of the classical functionals (3) and (5), the inte-
grand is a polynomial p(κ1, κ2) symmetric in the principal
curvatures, i.e., p(κ1, κ2) = p(κ2, κ1), since it can be refor-
mulated as a polynomial of their sum H and product K .
However, one may want to construct a general curvature

1 The other convention is to define H as the truemean of the curvatures,
but we choose to keep consistency with the main references cited here,
especially for the phase-field expressions presented later.

functional where p is a smooth function with no symme-
try constraint. A similar2 form is given in [43,106], for a
smooth function q(H , K ). A generalization to functions that
depend on the position and the normal to the surface can be
found in [19,26].

We will restrict ourselves to p which are polynomials of
degree 2, as the framework is then rich enough to generate
complex shape textures. We are thus interested in the curva-
ture functional

F(S ) =
∫
S

(
a2,0 κ2

1 + a1,1 κ1κ2 + a0,2 κ2
2

+ a1,0 κ1 + a0,1 κ2 + a0,0
)
d A

=
∫
S

⎛
⎝ ∑

|α|≤2

aα(κ1, κ2)
α

⎞
⎠ dA,

(6)

where we use multi-index notation.

2.2 Phase-Fields and 0-Convergence

Numerically, critical points of the curvature energies (3), (5),
and (6) can be searched for by following a gradient flow.
Before implementing an algorithm, it is however preferable
to convert these sharp-interface functionals defined for 2D
surfaces, to diffuse approximations defined for scalar fields
in a 3D volume. This way, surfaces are implicitly represented
as level sets of the volumetric scalar field, which allows us to
address topological changes encountered in the flow seam-
lessly; whereas in explicit methods, surfaces are tracked as a
mesh that needs dynamic remeshing to avoid entanglement
through topological transitions [80]. The gain is considerable
in view of the high topological complexity of the targeted
shape textures.

This leads us to consider a phase-field energy approximat-
ing the original geometric problem, for instance as in [27–
29] for the modeling of biomembranes. Phase-fields have
been extensively used to model phase separation in binary
mixtures, beginning with the Cahn–Hilliard (or Ginzburg–
Landau) energy [16,34], that was subsequently reused in
several other contexts [54,72]. These functions typically take
values close to 1 and −1 inside and outside a region, with a
smooth transition between the two phases at the interface. A
parameter ε > 0 represents the thickness of phase transition
at the interface.

The quality of a diffuse approximationwith phase-fields is
typically studied in theΓ -convergence framework [3,12,24].

2 Yet, please note that p being smooth in (κ1, κ2) is not equivalent to
q being smooth in (H , K ), where q = p ◦ φ−1. It can be checked by
taking q(H , K ) = 2κ1 = H + √

H2 − 4K , which is not differentiable
at points where H2 = 4K , i.e., when κ1 = κ2. On a surface, this
happens at umbilical points, e.g., everywhere on spheres.
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Γ -convergence expresses the convergence of minimization
problems, so that, rather than solving a limit problem, we
solve a sequence of approaching problems (or the reverse).
The complete convergence consists in a Γ -limsup, which
relies on a constructive proof, and aΓ -liminf, generallymore
difficult to prove.

Definition 1 (Γ -convergence) Given X a metric space, let
F and Fε be functions from X to [−∞,+∞], where the Fε

are defined for ε > 0. We say that the sequence (Fε)ε>0

Γ -converges to F as ε → 0, and write

[
Γ (X) − lim

ε→0
Fε

]
= F,

if the following two bounds hold for any u ∈ X :
[Γ -liminf] For every sequence (uε) such that uε → u in X ,

lim inf
ε→0

Fε(uε) ≥ F(u).

[Γ -limsup] There exists a sequence (uε), called recovery
sequence, such that uε → u in X and

lim
ε→0

Fε(uε) = F(u).

Γ -convergence is especially interesting due to the following
fundamental result.

Theorem 1 Let X be a metric space, and let F = Γ (X) −
lim
ε→0

Fε . Suppose that the sequence Fε : X → [−∞,+∞]
is equi-coercive, i.e., for all t ∈ R there exists a compact set
Kt ⊂ X such that {Fε ≤ t} ⊂ Kt . Then F admits a minimum
and

min
X

F = lim
ε→0

inf
X

Fε .

Furthermore, if uε minimizes Fε over X, then every cluster
point of (uε) minimizes F over X.

This ensures not only the convergence of the minimal values,
but also of the minimizers themselves, up to a subsequence.

2.3 Phase-Field Approximations of the Area, the
Willmore, and the Helfrich Functionals

In this paragraph, we present three classical diffuse approxi-
mations that are important to our development. We fix some
mathematical notations beforehand.
Notations. Let Ω denote an open bounded connected set
in R

3 with piecewise smooth boundary. The usual Sobolev
spaces are denoted by

Wk,p(Ω) = {u ∈ L p(Ω) | Dαu ∈ L p(Ω),∀|α| ≤ k}

and are the sets of functions u in L p(Ω)whose mixed partial
derivatives Dαu exist in the weak sense and are in L p(Ω),
up to |α| ≤ k. A function u ∈ L1(Ω) is of bounded variation
if the following quantity, denoted by

∫
Ω

|Du|, is finite [4]:

sup

{∫
Ω

u(x)∇ · φ(x) dx | φ ∈ C1
c (Ω,R3), ‖φ‖L∞(Ω) ≤ 1

}
< ∞.

By BV (Ω, {−1, 1}), we refer to the set of L1 functions u :
Ω → {−1, 1} of bounded variation. For a set E ⊂ Ω , χE

designates the characteristic function of E .
Let e be a fixed unit-norm vector in R

3. We consider a
symmetric double-well function W (s) = 1

4 (1 − s2)2 that
vanishes at −1 and +1. Note that its derivative is W ′(s) =
s3 − s. Let σ = ∫ 1

−1

√
2W (s) ds = 4

3
√
2
denote a constant

that only depends on the double-well.
For a function u twice (weakly) differentiable, we define

the normal vector field

nu =
{ ∇u

|∇u| on the set {∇u �= 0}
e elsewhere,

that has unit norm, and is orthogonal to the level sets of u.
We introduce the matrix field

M ε
u = −ε Hess u + W ′(u)

ε
nu ⊗ nu, (7)

whose trace is equal to

TrM ε
u = −εΔu + W ′(u)

ε
.

The classical approximations.TheCahn–Hilliard phase-field
energy is known to approximate the area (or perimeter) func-
tional, which measures the total area of surfaces in the 3D
space. More precisely, let us introduce

Aε(u) =
⎧⎨
⎩

∫
Ω

(
ε

2
|∇u|2 + W (u)

ε

)
dx if u ∈ W 1,2(Ω)

+∞ otherwise in L1(Ω)

,

(8)

and the area functional

EA(u) =
{

1
2

∫
Ω

|Du| if u ∈ BV(Ω, {−1, 1})
+∞ otherwise in L1(Ω)

. (9)

Following a conjecture of De Giorgi, Modica and Mortola
[73] proved the Γ -convergence

[
Γ (L1(Ω)) − lim

ε→0
Aε

]
= σ EA. (10)
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This means that, if E ⊂ Ω is such that S = ∂E ∩ Ω

is smooth and of finite area, and setting u = 2χE − 1 ∈
BV (Ω, {−1, 1}), then the Γ -limsup provides a sequence of
functions (uε) ∈ W 1,2(Ω) such that uε → u in L1(Ω) and
Aε(uε) → σ area(S ), i.e., their diffuse areas converge to
the area ofS up to a factor σ .

Subsequently, several authors [7,9,74,78,91,105] studied
diffuse approximations of theWillmore energy (5). Bellettini
and Paolini [9] introduced the phase-field functionals

Wε(u) =

⎧⎪⎨
⎪⎩
1

ε

∫
Ω

(
εΔu − W ′(u)

ε

)2

dx if u ∈ W 2,2(Ω)

+∞ otherwise in L1(Ω)

(11)

Note that the trace term TrM ε
u = −εΔu + W ′(u)

ε
inside the

square is the L2 gradient of ε
2 |∇u|2 + W (u)

ε
which appears

in the Cahn-Hilliard phase-field energy (8), in the same way
as the mean curvature vector is the L2 gradient of the area
functional.

The Γ -limsup was showed in [9], using the same recov-
ery sequence as for the area functional. The Γ -liminf was
studied under several conditions in [7,74] and completed in
[91]. Together with the Γ -limsup, this resulted in the Γ -
convergence on smooth points of the form u = 2χE − 1
where E ⊂ Ω and ∂E ∩ Ω is C2:
[
Γ (L1(Ω)) − lim

ε→0
Wε

]
(2χE − 1) = σ EW(∂E ∩ Ω),

but with the additional assumption that the diffuse surface
areas Aε remain uniformly bounded.

Finally, Bellettini and Mugnai [8] extended the Willmore
phase-field functional to approximate the complete Helfrich
energy with

Hε(u)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

[χb

2ε

(
TrM ε

u − ε|∇u|H0
)2

+ χG

2ε

(
(TrM ε

u )2 − ‖M ε
u ‖2)] dx if u ∈ C2(Ω),

+∞ otherwise in L1(Ω).

(12)

Based on the previous results of Röger and Schätzle [91],
and under the assumptions H0 = 0 and −χb < χG < 0,
they showed that the Γ -convergence holds on smooth points
u = 2χE − 1 where E ⊂ Ω is open and ∂E ∩ Ω is C2:

[
Γ (L1(Ω)) − lim

ε→0+ Hε

]
(2χE − 1) = σ EH(∂E ∩ Ω),

(13)

again using an additional uniform bound on the diffuse areas
Aε .

Our aim is precisely to generalize the Helfrich phase-field
formula Hε further to approximate the curvature functional
(6), and provide a computational framework to simulate
shape textures. We are now ready to construct a new phase-
field functional, for which we will study the Γ -limsup
property.

3 Construction of the Phase-Field Functional

In this section, we generalize the Helfrich phase-field energy
Hε in (12) to approximate the functional F in (6), using the
notations introduced in Sect. 2.3. We justify the construction
with heuristic arguments, and show that the Γ -limsup is still
satisfied, although we do not attempt to show the Γ -liminf.

3.1 Diffuse Curvatures and Second Fundamental
Form

Let us notice that the diffuse expressionsWε andHε in (11)
and (12) both rely on the trace and the norm of the matrix
field M ε

u introduced in (7), which is related to the second
fundamental forms and the curvatures of the level sets of u
as follows. We define the diffuse second fundamental form
Bε

u as well as the diffuse mean and Gaussian curvaturesH
ε
u

and K ε
u using

Bε
u = M ε

u

ε|∇u| (14)

H ε
u = TrM ε

u

ε|∇u| (15)

K ε
u = 1

2ε2|∇u|2
[
(TrM ε

u )2 − ‖M ε
u ‖2

]
(16)

if ∇u �= 0, and zero otherwise. Informally, Bε
u ⊗ nu at the

point x ∈ Ω approximates the second fundamental form of
the level surface {u = u(x)} (well-defined if ∇u �= 0 on this
set). H ε

u nu approximates the mean curvature vector, with
the convention that it points inwards for convex sets, and
K ε

u approximates the Gaussian curvature.
Based on the relations (4) linking (κ1, κ2) to (H , K ), we

also introduce the diffuse principal curvatures

κε
1,u =

H ε
u +

√(
(H ε

u )2 − 4K ε
u

)+

2
(17)

κε
2,u =

H ε
u −

√(
(H ε

u )2 − 4K ε
u

)+

2
, (18)

where we use the positive part x+ = max(0, x).
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It can be shown, using the implicit formulas summarized
in [42], that the expressions from (14) to (18) coincide exactly
with the second fundamental form and the respective curva-
tures of the level sets of u, in the special case where the
function has a hyperbolic tangent profile

u = tanh

(
dist∂E√

2ε

)
, (19)

where E ⊂ Ω is an open setwith smooth boundary ∂E∩Ω ∈
C 2, and the signed distance from ∂E , denoted by dist∂E , is
by convention positive on E and negative onΩ\ Ē . In diffuse
approximations, the tanh profile is optimal3 and is generally
used to construct the Γ -limsup recovery sequence.

The presence of the positive part in (17) and (18) ensures
that the square root term is still defined when (H ε

u )2 −
4K ε

u < 0. This can happen, since for a general u, we have

(H ε
u )2 − 4K ε

u = 2‖M ε
u ‖2−(TrM ε

u )2

ε2|∇u|2 , and the numerator is

a2 + b2 + c2 − 2 (ab + bc + ac) which possibly has neg-
ative values, where a, b, c are the real eigenvalues of M ε

u .
However, if one of them is 0, the numerator is a squared dif-
ference and the positive part is not useful. This is the case in
particular for functions with tanh profile.

The expressions (17) and (18) can be reformulated with
M ε

u , by writing

κε
1,u =

TrM ε
u +

√(
2‖M ε

u ‖2 − (TrM ε
u )2

)+

2ε|∇u|

κε
2,u =

TrM ε
u −

√(
2‖M ε

u ‖2 − (TrM ε
u )2

)+

2ε|∇u| ,

if∇u �= 0, and zero otherwise.Note thatH ε
u can be retrieved

from their sum

κε
1,u + κε

2,u = H ε
u

contrarily toK ε
u since their product is

κε
1,uκ

ε
2,u = 1

4

[
(H ε

u )2 −
(
(H ε

u )2 − 4K ε
u

)+]
≤ K ε

u .

3.2 Expression of the Phase-Field Functional

Let a = (a2,0, a1,1, a0,2, a1,0, a0,1, a0,0) = (aα)|α|≤2 ∈
R
6 be a vector of real coefficients. The associated polyno-

mial function is denoted by p(x, y) = ∑
|α|≤2 aα(x, y)α ,

3 It is the unique minimizer of the 1D version of the Cahn–Hilliard
energy among increasing functions with limits ±1 at ±∞.

so that F(S ) = ∫
S p(κ1, κ2) dA. Consider the following

expression,

Eε(u) =
∫

Ω

p(κε
1,u, κ

ε
2,u) ε|∇u|2 dx .

The heuristic intuition behind is that, if u has a tanh profile
with transition parameter ε as in (19), we can apply the co-
area formula to obtain

∫ 1

−1

(∫
{u=t}

p(κε
1,u, κ

ε
2,u) ε|∇u| dH 2

)
dt

=
∫ 1

−1

√
2W (t) F({u = t}) dt,

where we use |∇u| = (1−u2)√
2ε

�= 0 and 1−t2√
2

= √
2W (t). This

amounts to integrating the curvature functional F over all the
level surfaces St = {u = t} of the phase-field u, appropri-
ately weighted so that the largest contributions are given by
level sets close to {u = 0}. As ε goes to zero, the level sets
{u = t} concentrate around ∂E .

Still under the ansatz of tanh profile, Eε can be developed
in terms of the matrix field M ε

u :

Ẽε(u) =
∫

Ω

[
a2,0 + a0,2 − a1,1

4ε

(
2‖M ε

u ‖2 − (TrM ε
u )2

)+

+ a2,0 + a0,2 + a1,1
4ε

(TrM ε
u )2

+ a2,0 − a0,2
2ε

TrM ε
u

√(
2‖M ε

u ‖2 − (TrM ε
u )2

)+

+ a1,0 + a0,1
2

|∇u|TrM ε
u

+ a1,0 − a0,1
2

|∇u|
√

(2‖M ε
u ‖2 − (TrM ε

u )2)+

+ a0,0 ε|∇u|2
]
dx .

For a general u ∈ W 2,2(Ω), the expressions of Eε(u) and
Ẽε(u) coincide if u is such that

L 3 ({|∇u| = 0} ∩ {M ε
u �= 0}) = 0,

which is satisfied for functions with tanh profile.

Finally, Ẽε(u) can be simplified further, by replacing the
positive part in the first term outside the square root directly
by 2‖M ε

u ‖2 − (TrM ε
u )2. As said earlier, this is true of the

special tanh case,where 2‖M ε
u ‖2−(TrM ε

u )2 ≥ 0 is (a−b)2,
where a, b and 0 are the eigenvalues of M ε

u . This leads to
the final form, defined for any u ∈ W 2,2(Ω),

Fε(u) =
∫

Ω

[
a2,0 + a0,2 − a1,1

2ε
‖M ε

u ‖2 + a1,1
2ε

(TrM ε
u )2
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+ a2,0 − a0,2
2ε

TrM ε
u

√
(2‖M ε

u ‖2 − (TrM ε
u )2)+

+ a1,0 + a0,1
2

|∇u|TrM ε
u

+ a1,0 − a0,1
2

|∇u|
√

(2‖M ε
u ‖2 − (TrM ε

u )2)+

+ a0,0 ε|∇u|2
]
dx . (20)

This phase-field functional is devised to be a diffuse approx-
imation of the sharp-interface functional F (6), up to the
multiplicative factor σ .
Comparison with the Willmore and the Helfrich diffuse
approximations. It can be checked that the proposed formu-
lationFε is indeed a generalization of the previous formulas
Wε andHε , by specifying the polynomial coefficients of the
Willmore energy,

p(κ1, κ2) = H2 with a = (1, 2, 1, 0, 0, 0),

and of the Helfrich energy,

p(κ1, κ2) = χb

2
(H − H0)

2 + χGK with

a =
(χb

2
, χb + χG,

χb

2
,−χbH0,−χbH0,

χb

2
H2
0

)
.

3.3 0-Limsup Property

As explained in Sect. 2.2, the approximation of the target
functional F by the sequence (Fε)ε>0 can be studied in the
Γ -convergence framework. Here, we assert that the phase-
field functional Fε satisfies the Γ -limsup property, thus
extending the result of [8].

Theorem 2 (Γ -limsup inequality) Let E ⊂ Ω be a
bounded open set, such that ∂E ∩ Ω is of class C 2. The
functionals Fε and F are defined as in (20) and (6). Then
there exists a sequence of functionals (uε)ε>0 ⊂ W 2,2(Ω)

such that

lim
ε→0+ uε = 2χE − 1 in L1(Ω), (21)

lim
ε→0+ ε|∇uε |2L 3| Ω = σ H 2| ∂E as Radon measures, (22)

lim
ε→0+ Fε(uε) = σ F(E) (23)

The proof is given in the Appendix. It consists in showing
that the recovery sequence constructed in [8] still satisfies
the theorem for our more general formulation Fε . The first
and third properties correspond to the existence of a recovery
sequence. The second property loosely means that the mea-
sure whose density is ε|∇uε |2 in the 3D volumetric space
concentrates into the measure induced by the area on the
2D surface. This intuition is in accordance with the way we
constructed Fε (see beginning of Sect. 3.2).

However, whether or not the Γ -liminf holds still remains
an open question, except in the special cases of the Will-
more and the Helfrich energies with additional assumptions,
as seen in Sect. 2.3. Yet, we believe that, even if the Γ -
convergence could fail in general, this does not constitute a
serious impediment to our phase-field expression being still
of interest for generating shape textures.

4 Simulations

In this section, we demonstrate that the phase-fieldmodelFε

constructed in the previous section can generate a large range
of shape textures (up to a slight regularization; see Sect. 2
of the Online Supplement). We describe curvatubes in
Algorithm 1, and then show the results of four numerical
experiments. The first one validates the approach by find-
ing well-known Willmore minimizers. We then display a
gallery of 10 shape textures. The effect of smoothly varying
the generation parameters is shown in the third experiment,
with a bilinear interpolation between 4 shape textures, layers,
spheres, tubes, and sponges. Finally, 1000 shape textures are
generated with random parameters and visualized in an atlas
with UMAP. The numerical codes are fully available at

https://github.com/annasongmaths/curvatubes.
More details on the computation of the phase-field energy

can be found in Sect. 2 of the Online Supplement.

4.1 Curvatubes

Shape textures are generated by minimizing the phase-field
energy Fε (20) under a constraint of constant volume, with
periodic boundary conditions. More exactly, given a random
initialization of the phase-field u, we find a point of conver-
gence with low energy of the so-called H−1 flow4

u̇ = Δ
∂Fε

∂u
(u).

The H−1 flow is mass-preserving, i.e., keeps constant the
mass of u, denoted by ū := 1

Ω

∫
Ω
u dx . The preservation of

mass approximately encodes a constraint of constant volume
on the region enclosed by the surface {u = 0}, if the phase-
field u � ±1 is nearly constant inside and outside.

The H−1 flow can actually be expressed as a standard L2

flow, by relying on the change of variable

u = ∇ · A + m0, (24)

4 This is a gradient flow with respect to the H−1(Ω) metric, where
H−1(Ω) is the dual of the space H1

0 (Ω), the closure of the set C∞
c (Ω)

of smooth compactly-supported functions in W 1,2(Ω) [22,35].
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where A : Ω → R
3 is a periodic vector field, and m0 ∈ R is

the desired value of the average ū. We then define an energy
with respect to A,

Gε(A) = Fε(∇ · A + m0).

It can be checked that

∂Gε

∂A
(A) = −∇ ∂Fε

∂u
(u),

in such a way that a L2 flow on A becomes a H−1 flow on u:

Ȧ = −∂Gε

∂A
(A) ⇒ u̇ = Δ

∂Fε

∂u
(u)

(provided that the derivatives in time and space of A com-
mute). Therefore, the H−1 flow on u starting at u0 =
∇ · A0 + m0 can be solved as a usual L2 flow on A.

To generate shape textures, the variable A is initialized
as a random white noise vector field A0 and we reach a
point of convergence of the L2 flow Ȧ = − ∂Gε

∂A with Adam
[55,66], a gradient-based stochastic optimization algorithm.
The change of variable (24) allows us to benefit from the
computation of the L2 gradient ∂Gε

∂A by the automatic differ-
entiation engine provided by PyTorch [83], combined with
the efficiency of Adam.

The generation model is summarized in Algorithm 1. It
takes as inputs the initialization A0, the coefficients a and
the mass m0. After convergence, the output shape texture is
defined as the level surface {u = 0} of the final phase-field
u = ∇ · A + m0. We color it in beige, and show the level
set {u = 0.05} in dark red to enhance the visualization. An
example of flow is given in Fig. 2, with the corresponding
loss curves in Fig. 3.
Implementation details. The domain Ω is assimilated to a
grid of size 100 × 100 × 100 pixels with a fixed sampling
step Δx = 0.01. We take ε = 0.02, unless specified other-
wise. The phase-field u and the vector field A are encoded as
matrices whose coefficients specify the sampled values.

The discrete energies Fε (resp. Gε) are symbolically
defined by a succession of elementary operations on u (resp.
A), before being differentiated automatically by PyTorch. In
particular, the integral is encoded as a finite sum, while the
differential operations∇u, Hess u, and∇·A, are computed as
classical finite differences that take into account the period-
icity of the problem. To prevent the formation of artifacts, we
apply aGaussian blur kwith a small deviation (typicallyσk =
2 pixels) to the phase-field u, before computing the finite dif-
ferences. Thenormof the gradient |∇u| ismodifiedby a small
offset ξ = 10−6, as in

√|∇u|2 + ξ2 or 1/
√|∇u|2 + ξ2, to

prevent non-differentiability at zero and division by zero. The
positive part function x+ appearing in Fε is approximated

by a smooth function x+ � ξ log(1+ ex/ξ ). In Sect. 2 of the
Online Supplement, we prove the convergence of the numer-
ical approximations of the energies and their L2 gradients by
their discrete counterparts (computed with finite differences
and automatic differentiation) as the resolution of the grid
tends to infinity.

Algorithm 1 Curvatubes: generate shape textures of optimal cur-
vature energyFε , using a mass-preserving H−1 flow on the phase-field
u and periodic boundary conditions

1: procedure Curvatubes(A0; a,m0)
Initialization: random vector field A0
Generation params: coeffs a =
(a2,0, a1,1, a0,2, a1,0, a0,1, a0,0),
mass m0 ∈ (−1, 1)
Energy: phase-field energy Fε (see (20)) to approximate∫
S (

∑
|α|≤2 aα(κ1, κ2)

α) dA
Other parameters: phase transition parameter ε > 0, internal
parameters for Adam (learning rate, betas, weight decay), number
of iterations T , Gaussian kernel k of size σk
Outputs: phase-field u and surface S = {u = 0}

2: A ← A0 � initialization of the vector field
3: for t = 1, ..., T do
4: u ← ∇ · A + m0 � H−1 flow change of variable (24)
5: u ← k ∗ u � small blur to avoid artifacts
6: Set Gε(A) := Fε(u)

7: Compute ∂Gε

∂A (A) � PyTorch autograd
8: Update moments of the gradients � Adam
9: Update A with one step of the flow Ȧ = − ∂Gε

∂A (A) � Adam

10: S ← {u = 0} � output shape

With Adam, the step size and direction at each point are
computed in an adaptive way, by taking into account the
past history of the gradients to estimate their first and second
moments. In the simulations presented thereafter, Adam was
run with a learning rate lr = 0.001, betas = (0.9, 0.999),
and no weight decay. We stopped the algorithm typically
after 8000 iterations, as the convergence was estimated to
be reached, which induced up to 150 seconds of compu-
tation time per shape with a simulation domain of size
100 × 100 × 100 pixels.
Generation parameters, shape textures, curvature diagrams.
The generation of shape textures relies on the principle that
a generation parameter vector (a,m0) should consistently
correspond to a single shape texture, across different white
noise initializations of A0. We “measure” the texture of a
shape defined by a surfaceS through its curvature diagram,
which represents the distribution of the curvatures (κ1, κ2)

onS (see bottom row of Fig. 2 for instance).More precisely,
we are interested in the law of the random variable (κ1, κ2)

defined by

P [(κ1, κ2) ∈ B] = 1

Area(S )

∫
S

χ(κ1,κ2)∈B dH 2

= Area({x ∈ S | (κ1, κ2)(x) ∈ B})
Area(S )

,

for a Borel setB of R2.
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Fig. 2 Evolution of the zero level set of u during the H−1 flow, pictured
at iterations 10, 300, 1000, 4000, 8000, with the generation parameters
a = (1, 2.4, 9, 30, 170,−195) and m0 = −0.66. Top row: the shape

textures. Bottom row: their corresponding curvature diagrams. In the
early iterations, the zero level set is not smoothly defined and only few
values of u are above zero, but their average remains m0

The curvature diagram is an indicator of the local behav-
ior of the surface. For a perfect sphere of radius R, it should
be a unit Dirac mass δ( 1

R , 1
R ) sitting on the {y = x, x > 0}

half-diagonal, since κ1 = κ2 = 1
R everywhere on a sphere.

Likewise, a cylinder of base radius r should have its diagram
reduced to δ( 1r ,0) on the horizontal half-line {y = 0, x > 0};
a plane would be represented as δ(0,0); finally, a Dirac mass
such as δ(1,−1) should correspond to a sponge-like shape.
Note that, per definition of the curvatures κ1 ≥ κ2, the dis-
tribution is contained in the lower mid-plane {y ≤ x}.

To obtain a curvature diagram, we first extract the 2D
mesh of the surfaceS = {u = 0} from the 3D volume u, by
using the marching cubes algorithm [63]. Then, the diffuse
curvatures (κε

1,u, κ
ε
2,u) (see (17) and (18)) are interpolated at

the barycenter of each cell of the mesh. Their values are of
importance proportional to the area of the cell, resulting in a
weighted point cloud

∑
cells c

Area [c] δ(κε
1,u ,κ

ε
2,u) [c] (25)

which we plot in the curvature diagram. Note that the diffuse
curvatures coincide with the curvatures of the levels sets for
functions with tanh profile (19), but are only approximations
in the general case. Hence, the curvature diagrams shown
throughout this article are only approximations of the exact
curvature diagrams, most precise for those u having nearly a
tanh profile.5

In our simulations, the shapes are rarely perfectly spher-
ical, cylindrical, or flat, so that the distribution is dispersed
rather than concentrated into a single Dirac mass. To ease the

5 The deviation of the phase-fields u from the tanh profile is measured
by the normalized discrepancy, see (27) in Experiment 4.

Fig. 3 Corresponding loss curves (see Fig. 2). From left to right: the
loss Fε(u), the maximal value of | ∂Gε

∂A | and the average 1
|Ω|

∫
Ω

| ∂Gε

∂A |,
as u evolves along the iterations

visualization of the curvature diagrams, the identity diagonal
{y = x} is enhanced as a red line and the values truncated
between −100 and 100.

We compare curvature diagrams with each other using the
Wasserstein (or Earth Mover’s) distance. We approximate
this quantity with the regularized Sinkhorn algorithm of the
geomlossmodule [38], with the parameters p = 2, blur =
1 and reach = 20. As detailed in [37], these correspond
to the resolution of an unbalanced transport problem [102]
using a ground cost function of C(x, y) = 1

2‖x − y‖2, with
a transport plan that is blurred at resolution of 1 and with a
maximum transport distance of the order of 20.

Figure 2 shows that the curvature diagrams of the evolv-
ing level surface also converge towards a final diagram. In
Fig. 4, we check that for a single generation parameter value
(a,m0), 5 different initializations still give similar curvature
diagrams. We found that the mean pairwise Wasserstein dis-
tance between different curvature diagrams was around 1.32
for these 5 shapes, i.e. only 10.7% of the mean pairwise
distance 12.35 measured between the curvature diagrams of
1000 random shapes (see Experiment 4). Due to the high
dimensionality of the space of curvature diagrams endowed
with the Wasserstein metric, this ratio actually indicates a
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Fig. 4 Same generation parameters, different initializations. Using the
same generation parameters a = (1,−0.35, 1.02,−40, 100, 1600) and
m0 = −0.69, we start from five random initializations for A0. Top row:
the shape textures.Bottom row: their corresponding curvature diagrams.
The five shapes are visually similar at a mesoscopic scale, but dissimilar

at the macroscopic scale. The diagrams and their pairwise Wasserstein
distances show that the curvature statistics are not changing much when
feeding the same generation parameters to the algorithm. Texture in
shapes hence seems to be well captured by curvature diagrams, and to
be consistent with the generation parameters at a mesoscopic scale

good clustering of these 5 shapes. Indeed, as dimension
increases, points easily become sparser: the distance to the
farthest neighbor becomes comparable to that to the near-
est one due to the “curse of dimensionality” [2,11]. After
embedding the combined dataset of 1000 + 5 shapes in 2D
withUMAP, similarly to Experiment 4, the 5 shapes aremore
obviously clustered in low dimension (Online Supplement,
Figure 1), since the new pairwise Euclidean distance within
them was only 0.115, i.e. only 2.67% compared to 4.3 for
the other 1000 shapes.

Therefore, curvature diagrams and generation parameters
seem to capture well the notion of shape texture.

4.2 Experiment 1: Validation with theWillmore Flow
and KnownMinimizers of Genus 0, 1, and 2

The algorithmic framework, which combines automatic
differentiation and control of gradient flows by external opti-
mizers, is validated in the fundamental special case of the
L2 Willmore flow. This flow is computed using Algorithm 2,
with the parameters a = (1, 2, 1, 0, 0, 0), and with replicate
boundary conditions (which corresponds to the assumption
that the gradient ∇u is orthogonal to the domain bound-
ary, i.e., ∇u · n∂Ω = 0). Let us recall from Sect. 2.3 that
the Willmore phase-field energy writes Fε = 1

ε

∫
Ω

(εΔu −
W ′(u)

ε
)2dx and approximates σ

∫
S H2 dA. We numerically

check that the simulated Willmore flow converges towards
known global minimizers of fixed genus 0, 1, and 2, by ini-
tializing the flow near them. Here, the gradient descent is
controlled by the L-BFGS optimizer, as it was empirically

found to converge faster than Adam6. L-BFGS approximates
theBFGSalgorithm, a quasi-Newtonmethod that combines a
line search to an estimation of the Hessian of the loss [39,52].

Algorithm 2 L2 flow: follow the gradient flow of the phase-field
energy Fε until convergence, with given initialization and replicate
boundary conditions

1: procedure L2 flow(u0; a)
Initialization: a phase-field u0
Generation params: coeffs a = (a2,0, a1,1, a0,2, a1,0, a0,1, a0,0)
Energy: phase-field energy Fε (see (20)) to approximate∫
S (

∑
|α|≤2 aα(κ1, κ2)

α) dA
Other parameters: phase transition parameter ε > 0, internal
parameters for L-BFGS (learning rate, history size, line search
function, maximal number of iterations in a line search), number of
iterations T , Gaussian kernel k of size σk
Outputs: phase-field u and surface S = {u = 0}

2: u ← u0 � initialization of the phase-field
3: for t = 1, ..., T do
4: u ← k ∗ u � small blur to avoid artifacts
5: Compute ∂F ε

∂u (u) � PyTorch autograd

6: Update u with one step of u̇ = − ∂F ε

∂u (u) � L-BFGS

7: S ← {u = 0} � output shape

The Willmore minimizers of genus 0 are spheres of any
radius [110], which achieve the minimal value7

∫
S

H2 dA =
∫
S

(κ1 + κ2)
2 dA = 4 × 4π.

6 This faster convergence holds for the Willmore flow, but during the
H−1 flow of more general energies, L-BFGS easily gets stuck at a point
without any further progress (see Online Supplement, Figure 2).
7 We have to multiply the conventional values by 4, as H is defined as
the (real) mean of the curvatures κ1+κ2

2 in other works.
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Fig. 5 Willmore minimizer of genus 0. The flow is stationary on the
sphere. The diffuse Willmore energy and the diffuse area are close to
their mathematical values

For surfaces of genus 1, [67] proved that the minimal value
4 × 2π2 is achieved by the Clifford torus (up to conformal
transformations), defined by a special ratio 1√

2
between the

radius of the generating circle and the distance to the axis
of revolution. However, the proof for genus ≥ 2 has still not
been completed, although several conjectures have been pro-
posed. It has been shown that the minimumWillmore energy
among all (orientable closed) surfaces of genus g is less than
4 × 8π , and converges to this value as the genus g → ∞
[61]. The Lawson surfaces have also been conjectured to be
the minimizers for a given genus (up to conformal transfor-
mations) [45,60].

We compare the final value Fε

σ
to theminimal valuesmen-

tioned above, where σ = 4
3
√
2
is the constant introduced in

Sect. 2.We correctly find that the flow is stationary on spheres
(see Fig. 5). The energy Fε

σ
deviates from 4× 4π with only

0.3% of relative error. We also check that the value of the
Cahn-Hilliard energy

∫
Ω

(ε
2 |∇u|2 + W (u)

ε
) dA, divided by

σ , is close to the area of the sphere, with 0.5% of relative
error. When departing from a holed cube, the flow converges
to a Clifford torus with a characterizing ratio close to 1√

2

up to a relative error of 3%. We also find Fε

σ
� 4 × 2π2

up to a relative error of 0.4%. Finally, starting from two
holed cubes glued together, the flow converges to a sur-

Fig. 6 Willmoreflow towardsminimizer of genus 1.Theflowconverges
to aClifford torus. The ratio of the torus and the diffuseWillmore energy
are close to their mathematical values

Fig. 7 Willmoreflow towardsminimizer of genus2.Theflowconverges
to a Lawson-like surface, as expected from conjectures

face resembling a Lawson surface of genus 2, with minimal
value Fε

4σ � 22.30, which has a relative difference of 1.8%
compared to the value found in [45]. In Figs. 5, 6, and 7,
the parameters are ε = 0.04, a = (1, 2, 1, 0, 0, 0) and
σk = 1 pixel. The grid size is 200 × 200 × 200 in the
first two simulations and 200 × 300 × 400 in the third
one. L-BFGS was run with a learning rate lr = 1, a his-
tory size hs = 10, and maximum 20 iterations in a line
search.

4.3 Experiment 2: A Gallery of Ten Shape Textures

In Figs. 11 and 12, we show ten shape textures generated
with Algorithm 1, and visualize the surfaces together with
their curvature diagrams. The coefficients a and the mass
m0 = 1

|Ω|
∫
Ω
u used for the simulations are specified in the

tables. The mass is also expressed in percentage of volume
enclosed by the surface compared to the total volume of the
domain, approximated by m0+1

2 since u � ±1.

In practice, we find that the non-reduced polynomial
expression

h2(H − H0)
2 + k1K + α(κ1 − κ0

1 )2 + β(κ2 − κ0
2 )2 (26)

induces a choice of parametersb = (h2, H0, k1, α, κ0
1 , β, κ0

2 )

that are more interpretable than the coefficients a in the
reduced form

∑
|α|≤2 aα(κ1, κ2)

α . Using this formulation
(26), it is easier to find reasonable values forwhich the energy
leads to various tubular textures, without resulting in badly-
converged phase-fields (we have no theoretical justification
to this yet, but this should be explored as a future work).
Those phase-fields are often over-diffuse, have a high nor-
malized discrepancy (defined in (27)), and do not present
clear transitions between the phases ±1. They may have no
zero level set, may oscillate in space, which gives rise to
pieces of surface concentrically enclosed in each other, or
their zero level setsmay be broken into irregular fragments of
variable size (see Online Supplement, Figure 5). The shapes
were hence generated either by choosing b manually, or by
selecting a among random values from Experiment 4 that
resulted in interesting shapes.

We found that curvatubes is able to generate very dif-
ferent shape textures (see Figs. 11 and 12, in which they
are indexed by letters). Some shapes, such as (d), (e), (g),
and (h) are smooth and spatially homogeneous in terms
of visual aspect. Other shapes, such as (b), (c), (f), and
especially (i), seem to possess a multi-scale texture or “meta-
texture” that makes them appear as spatially heterogeneous
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and anisotropic. The surface can be piecewise-smooth only,
as in (c). Tubules are not necessarily smoothly turning cylin-
ders, but can have some tortuosity as in (j). Finally, note that
(h) combines flat regions and tubules, in a similar way to
trabecular bone.

4.4 Experiment 3: Bilinear Interpolation Between
Four Shape Textures

In Fig. 8, we illustrate how continuously varying the gener-
ation parameters (a,m0) impacts on the morphologies, by
interpolating the parameters of four shape textures: layers,
spheres, tubes, and sponges. The respective values can be
found in Table 1. All simulations are run by starting from the
same initialization A0.

We can see that the morphology is smoothly changing
throughout the figure: for instance, the transition between
spheres and tubes is characterized by tubes terminated on
one side by end-caps, while layers increase in proportion
compared to tubules when approaching the top left corner.
The curvature diagrams are displayed in Fig. 9, and they
are quite continuously evolving as we change the generation
parameters. The four diagrams at the corners reflect well the
typical curvature distribution of layers, spheres, tubes, and
sponges, as expected (see Sect. 4.1).

4.5 Experiment 4: Generation of 1000 Shapes
Viewed in UMAP

Our final experiment is designed to explore the space of pos-
sible shape textures with curvatubes and visualize them
in a 2D atlas (see Fig. 10). The generation parameters were
chosen randomly. We fixed a2,0 = 1, and arbitrarily chose
the other coefficients according to a uniform law in the fol-
lowing intervals: a1,1 ∈ (−4, 4), a0,2 ∈ (1/15, 15), b1,0 ∈
(−200, 200), b0,1 ∈ (−200, 200), c ∈ (−3000, 3000), and
the mass m0 ∈ (−0.75,−0.15) which represented from
12.5% to 42.5% of relative volume occupied by the phase
{u � 1}. The initialization A0 was refreshed for each simu-
lation.

By doing this, the algorithm was pushed to its limits, as
some values of coefficients chosen in this random way led
to an ill-posed geometric minimization problem. Yet, even
in these cases, the algorithm did not diverge to NaN values,
but the function u simply did not converge to a phase-field
with two distinct phases, or had no zero level set, or the zero
level set was not smooth and was fragmented into pieces. To
reject such situations, we gauged the viability of the param-

eters by computing the discrepancy
∫
Ω

∣∣∣ ε
2 |∇u|2 − W (u)

ε

∣∣∣ dx
of the phase-field, normalized by the diffuse area, i.e., the
Cahn-Hilliard energy. We call this quantity the normalized Ta
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Fig. 8 Bilinear interpolation between layers, spheres, tubes, and
sponges. Using the same initialization A0 and interpolating between
four reference generation parameters gives rise to a continuum of shape
textures

Fig. 9 Corresponding curvature diagrams (see Fig. 8). The bilinear
interpolation of generation parameters is also reflected into the curva-
ture diagrams as a continuous evolution. Please note that the curvature
distributions of the four reference shapes concentrate around (0, 0) for
layers, the identity half-line {y = x, x > 0} for spheres, the horizontal
half-axis {y = 0, x > 0} for tubes, and a half-line {y = −a x, x > 0}
with a > 0 for sponges. As explained in Sect. 4.1, this is expected from
curvature diagrams

discrepancy:

ND =

∫
Ω

∣∣∣∣ε2 |∇u|2 − W (u)

ε

∣∣∣∣ dx
∫

Ω

(
ε

2
|∇u|2 + W (u)

ε

)
dx

∈ [0, 1]. (27)

The discrepancy measures how much u deviates from a
phase-field with tanh profile as in (19), and is an indicator of
good behavior in numerical experiments. In particular, it van-
ishes for functions with tanh profile. After normalization by
the diffuse area, the normalized discrepancy varies between
0 and 1, with 0 indicating a good quality in the numerical
approximations. In Online Supplement, Figures 4 and 5, we
compare the profiles of phase-fields u with low or high nor-
malized discrepancies to an ideal tanh profile (19).

Shapes were deemed viable if the normalized discrep-
ancy was under the threshold 0.75 and if max(u) > 0.1
and min(u) < −0.1 to ensure that the zero level set was
defined. We chose a lenient threshold 0.75 in order to still
include some interesting shape textures in this study, even if
they departed from a tanh profile (see Online Supplement,
Figure 5).

If the random value assigned to (a,m0) produced a
non-viable shape, a new value was drawn uniformly until
obtaining a viable shape. We thus generated 1000 shapes
meeting the criteria mentioned above. Following this pro-
cedure, 1792 random simulations were carried out in total,
comprising 1000 viable ones and 792 non-viable ones (44%
of the total). In Figures 6, 7, and 8 of the Online Supplement,
we show some preliminary results on the way high normal-
ized discrepancies seem to be correlated with certain regions
of parameters.

We computed the pairwise Wasserstein distance between
their curvature diagrams, as described in the last paragraph of
Sect. 4.1. To reduce the computation time, in each compari-
sonwe restricted the point cloud (25) to 10000 cells randomly
taken from the whole mesh. The distance matrix was then
given as input to UMAP [70], a manifold learning technique
for dimension reduction, with the option metric = ‘precom-
puted’. The 1000 shapes were embedded in a 2D atlas by
considering local neighborhoods of n = 25 points, a min-
imal distance md = 0.05 between embedded points and a
spread sp = 1. For reproducibility, the random seed was
set to RS = 1. To enhance the visualization, the embed-
ded points were labeled with Hdbscan [69], with a minimum
cluster size mcs = 10 and a minimum number of samples
ms = 10. They were colored according to their cluster num-
ber, and as black dots if Hdbscan classified them as noise.
We picked some shapes from the point cloud and displayed
their thumbnails, with their location specified by an arrow.
Please note that the thumbnails do not exhaustively cover
all the types of morphologies, but may give an idea of their
disparity.

The atlas in Fig. 10 shows that the shape textures are
roughly distributed into three main families, spheres (top,
left), layers (top), and tubules (central part) that occupy the
largest region. In two marginal regions, we also identified
outliers, such as highly packed tubules (bottom, right), and
fragmented shapes (bottom, left). This suggest that the selec-
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Fig. 10 Atlas of 1000 shapes visualized in UMAP. The generation
parameterswere chosen randomly andwe applied some criteria to select
mainly viable shapes. Three major families can be identified: spheres,
layers, and tubules which constitute the principal type of shape textures.
Let us highlight the large intra-variation in the family of tubules, that

features not only smooth sponges and long tubes, but also irregular and
anisotropic tubules with a multi-scale texture. This is a remarkable fea-
ture of the generation model, since all pixels of the simulation domain
share identical properties with respect to the minimization problem

tion criteria mentioned above were not selective enough for
discarding badly-converged shapes (i.e. over-diffused phase-
fields), which is expected given the lenient threshold 0.75.
Themarginal regions concentrate most of the outliers, but we
also noticed a few of them spread inside the main regions.
These shapes are characterized by high normalized discrep-
ancies and irregular aspects (see Online Supplement, Figures
3 and 5).

The transition between morphological subtypes is quite
smooth when moving continuously in the atlas; however, we
did not examine in which way the generation parameters
relate to the spatial embedding yet. The family of tubules has
a large intra-variation, and features not only smooth sponges
or long tubes, but also irregular, tortuous and anisotropic
tubules that have a multi-scale texture, as mentioned in
Experiments 2. This is a remarkable behavior of the gen-

eration model, since in regard of the minimization problem,
all points have the same homogeneous properties in space.

5 Discussion

In this final section, we discuss the strengths and limitations
of the algorithm, propose a few extensions, and present the
important implications of a unifying framework on applied
contexts.

5.1 Strengths and Limitations

As seen in the simulations of Sect. 4, curvatubes leads
to a wide range of membranous and tubular shapes, some
of which have a multi-scale texture. The generation param-
eters and the curvature diagrams capture well the notion of
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shape texture. The algorithm is GPU-accelerated and takes
advantage of automatic differentiation combined to exter-
nal algorithms (Adam, L-BFGS) to descend gradient flows.
Contrarily to refined numerical schemes, its aim is not to
precisely solve the evolution equation, but rather to converge
fast to a local minimizer with small energy. The mathemat-
ical computation of the gradient is not required either. The
coefficients can be chosen in a flexible way, without letting
the algorithm diverge numerically, even in mathematically
ill-posed cases. The simulation results are reproducible, and
seem to behave in accordance with the polynomial of curva-
tures in the energy especially under the form (26); although
much work is still needed to understand mathematically how
different polynomial energies are linked to different shape
textures, and what are the values of coefficients that cor-
respond to well-posed geometric problems. We leave these
difficult questions as future work.

Let us caution the reader that here, the model does not
generate tree-like structures, for which junctions are hier-
archically organized into parent and children nodes, and
cycles are excluded. Thus, it cannot be applied to the res-
piratory system, and can only model vessels that branch and
cycle a lot such as capillaries. This is because the model
is devised primarily for reproducing shape texture, but not
shape structure. Someextensions of the framework to include
structured constraints are proposed in the next subsection.
The notion of shape texture is inspired from visual texture in
images, characterized by spatially repeated elements whose
conformation, such as size, color, orientation, are subject
to randomness [46,62,85]. Texture is hence a statistically
defined property, while structure may be understood as an
orthogonal component.

Furthermore, in contrast to the Helfrich biomembrane
model and the FCH model of [41], which truly model some
physico-chemical energy derived from microscopic interac-
tions, we do not assume any such physical ground to the
general curvature functional F and the corresponding phase-
field functional Fε that we propose. This framework is
simply intended to provide a descriptive tool to analyze tubu-
lar textures, and may be used to quantify biological shapes
in terms of geometry, even without any knowledge of the
underlying microscopic interactions.

5.2 Extensions

We can include a constraint on the orientation of the nor-
mal vector nS to the surface S , by encouraging nS to be
orthogonal to the direction associated to a vector θ of unit
norm, as in

F̃(S ) =
∫
S

p(κ1, κ2) dA + μ

∫
S

(θ · nS )2 dA.

Fig. 13 Including orientation in the loss aligns tubes and layers. The
tubes were generated with a = (1, 2, 6,−40,−40, 400), which cor-
responds to F = (H − 20)2 + 5κ2

2 , m0 = −0.6, and μ = 0 or
1000 for the first and second shapes. The layers were generated using
a = (1, 1, 1, 0, 0, 0), which corresponds to F = (H2 + κ2

1 + κ2
2 )/2,

m0 = −0.4, and μ = 0 or 800 for the third and fourth shapes. When
μ �= 0, the direction of θ is indicated by the arrow. The curvature
diagrams show that after alignment, the curvatures are more densely
clustered around the dirac masses associated to perfectly cylindrical or
perfectly flat shapes, namely, δ(20,0) for tubes and δ(0,0) for layers

This can be approximated by the phase-field energy

F̃ε = Fε + μ

∫
Ω

(θ · nu)2 ε|∇u|2 dx

= Fε + εμ

∫
Ω

(θ · ∇u)2 dx,

whereFε is our phase-field energy constructed in Sect. 3.2.
The effect on tubes is to align their median axis along θ ,
while inciting flat layers to be parallel to θ , as in Fig. 13.

Another way to give some structure to the shape is to use
space-dependent generation parameters (a(x),m(x)), i.e.,
make them spatialized instead of constant, as in Fig. 1. In
the current version of the algorithm, since u is periodic, the
coefficients a(x) but also the mass m are required to be peri-
odic. The change of variable of Sect. 4.1 becomes

u(x) = ∇ · A(x) + m(x).

In Fig. 1, we took four reference generation parameters p1,
p2, p3, and p4 (see Table 2), and linearly interpolated them
along the horizontal axis, by taking into account the peri-
odicity. We also repeated the first and last values (following
the order p1, p1, p2, p3, p4, p4), and cropped the shape by
dropping the first and last cubes. The spatialized parameters
hence coincide with p1, p2, p3, p4 at the vertical midplanes
of the four cubes delimited by the dashed lines.

Many other extensions to this framework are also possible
and could be explored in the future. For instance, it is com-
patible with inclusion or exclusion constraints, by forcing u
to take positive or negative values in some spatial regions, so
that the shape contains or excludes them. Another possibility
is to extend the framework to phase-fields with three phases
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Table 2 Generation parameters used in the spatialized interpolation of Fig. 1, associated with the central regions of the four cubes delimited by
dashed lines (from left to right)

a b p in energy F m0

(2, 2, 2, 0, 0, 0) (1, 0, 0, 1, 0, 1, 0) H2 + κ2
1 + κ2

2 −0.4 (30%)

(1, 2, 6,−40,−40, 400) (1, 20, 0, 0, 0, 5, 0) (H − 20)2 + 5κ2
2 −0.6 (20%)

(2, 2, 2,−75,−75, 937.5) (1, 25, 0, 1, 12.5, 1, 12.5) (H − 25)2 + (κ1 − 12.5)2 + (κ2 − 12.5)2 −0.7 (15%)

(2, 2, 11,−180,−90, 4050) (1, 45, 0, 1, 45, 10, 0) (H − 45)2 + (κ1 − 45)2 + 10κ2
2 −0.7 (15%)

The vector b parameterizes the polyomial expression (26)

ormore, to generate shapes intertwined in each other, without
intersecting, while minimizing different curvature energies.

5.3 Importance of a Unifying Theory, and Future
Applications

Finally, we have identified several implications that a gener-
ation model unifying tubular and membranous shapes could
have in other contexts.

– Design bio-inspired shape textures and porous mate-
rials: the generation model could help in the design of
bio-fabricated vascular networks for tissue regeneration
[94]; the design of scaffolds for bone tissue engineer-
ing [36] and cellular solids in architecture [77], both
inspired by the structure of bone trabeculae; or the design
of porous materials [59,111].

– Model morphological states and trajectories: if gen-
eration parameters can be inferred from morphological
states, a morphological transformation can be modeled
as a trajectory in the lower-dimensional space of param-
eters, and then analyzed as a longitudinal trajectory [31].
In particular, the biological transformationsmentioned in
the Introduction would be modeled in a continuous way.

– Provide regularization prior for tubular segmenta-
tion: the generation model could be included as a
regularizing loss in variational segmentation methods of
vascular structures [33,71,107], to select certain tubular
morphologies against others. It could also be com-
bined with 3D reconstruction from 2D slices methods
[13,53,64].

– Build a synthetic database of textures: the generation
algorithm could provide, at a low cost, a complete panel
of synthetic textures on which to test and train vascular
shape analysismethods [50,84,89], including topological
analysis methods [15,47,79], segmentation algorithms,
microvascular blood flow simulations [5,86], but also
simulations in porous materials [65,95,109]. It could also
provide a database to research in shape and texture per-
ception [108]; the way we perceive shapes is intimately
linked to the way we want to quantify them.

We of course did not cover all these applications here, but
intend to focus on two of the points aforementioned as future
work.

The first one is to model morphological states or trajec-
tories of biological tissues as static values or trajectories
of generation parameters (a(t),m(t)), which supposes that
parameters can be inferred from shapes. This can be done
naively, by visual inspection and trial-and-error; or, by first
producing an atlas of reference shapes densely sampling a
region with the desired morphologies, similarly to Experi-
ment 4. Using the curvature diagram of the query shape u0,
the shapes closest to it in terms of the Wasserstein distance
are found. We can then initialize (a,m0) at these values, and
minimize the loss

Fε[u0; a,m0]

with respect to the parameters (a,m0) instead of the phase-
field u0, by using nearly the same algorithmic framework as
Algorithm 1.

The second related application is to include the curvature
energy as a regularizing loss in order to segment vascu-
lar structures. The energy would then select certain tubular
morphologies over others. This could be used for instance
to reconstruct 3D tubular structures captured in several 2D
images at different depths of a biological sample (as done
in optical sectioning), provided that there are not filaments
too thin compared to the diffusion width ε. The method is
most effective if there is some knowledge of the shape tex-
tures that need to be segmented, so that the parameters can be
appropriately tuned by inference, as previously explained.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10851-021-01049-
9.
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Appendix: Proof of the 0-Limsup

The proof of Theorem2 consists in showing that the sequence
constructed in [8,9] satisfies the theorem for our extended
formulation Fε .

Let us first recall their construction (up to a factor
√
2). By

assumption, the surfaceS = ∂E ∩Ω isC2. Let d : Ω → R

be the signed distance function to S , with the convention
that d is positive inside E and negative on Ω \ Ē . Let γε be
defined on R by

γε(s) =

⎧⎪⎪⎨
⎪⎪⎩

tanh( s√
2ε

) if s ∈ [0, bε)

pε(s) if s ∈ [bε, cε)

+1 if s ∈ [cε,+∞)

−γε(−s) if s < 0

, (28)

where bε = √
2ε| log ε| and cε = √

2(ε + ε3 + ε| log ε|),
aε = 1

(1+ε2)3
, and pε(s) = 1− aε(s − cε)

2 is a parabolic arc

connecting the graphs of tanh( s√
2ε

) and the constant +1 on

the interval (bε, cε). The coefficients aε and cε ensure that
γε ∈ H2(R). Now, we set

uε = γε ◦ d ∈ W 2,2(Ω).

We split Ω into three regions, Ω
(1)
ε = {0 < |d| < bε},

Ω
(2)
ε = {bε < |d| < cε} and Ω

(3)
ε = {cε < |d|}

(on which uε = ±1). On Ω
(1)
ε and Ω

(2)
ε , ∇uε �= 0 and

M ε
uε

= ε|uε |Bε
uε
, whereas on Ω

(3)
ε , ∇uε = 0 andM ε

uε
= 0.

Note that the region Ω
(1)
ε ∪ Ω

(2)
ε = {d ≤ cε} decreases

and concentrates around the surface S as ε → 0, while the
complementary region Ω

(3)
ε grows. Also, on Ω

(2)
ε , |∇uε | is

bounded by p′
ε(bε) = 2

√
2ε

(1+ε2)2
.

As S is compact and C2, there exists a tubular neigh-
borhood Tub(S , d0) = {d ≤ d0} of S on which d is

C 2 [58], and for any point z in Tub(S , d0) the distance
d(z) is realized by a unique point πS (z) which satisfies
z = πS (z) + d(z)N (πS (z)). On the tubular neighborhood,
the signed distance satisfies the eikonal equation |∇d| = 1,
implying that Hess d ∇d = 0. The symmetric matrix
−Hess d (x)8 has two eigenvalues λ1(x) ≥ λ2(x) corre-
sponding to the principal directions of the associated level
set, and a third eigenvalue 0 in the direction±∇d. The eigen-
values λ1 and λ2 are continuous on Tub(S , d0).

To show (21), as |uε − (2χE − 1)| ≤ 1,

∫
Ω

|uε − (2χE − 1)| dx =
∫

{|d|<cε}
|uε − (2χE − 1)| dx

≤ L 3({|d| < cε}) → 0

so lim
ε→0+ uε = 2χE −1 in L1(Ω) and it remains to prove (22)

and (23).
Let φ ∈ C0

c (Ω) be a continuous function with compact
support. We need to show that

∫
Ω

ε|∇uε |2 φ dx converges
to σ

∫
S φ dH 2 as ε is sent to zero. First, we work only on

Ω
(1)
ε , as

∫
Ω

ε|∇uε |2 φ dx =
∫

Ω
(1)
ε

ε|∇uε |2 φ dx

+
∫

Ω
(2)
ε

ε|∇uε |2 φ dx

and the second integral tends to zero since the integrand is
bounded and L 3(Ω

(2)
ε ) → 0. By the co-area formula,

∫
Ω

(1)
ε

ε|∇uε |2 φ dx

=
∫ uε (bε )

−1

(∫
{uε=t}

ε|∇uε | φ dH 2
)

dt

=
∫ uε (bε )

−1

√
2W (t)

(∫
{uε=t}

φ dH 2
)

dt,

where we use |∇uε | = (1−u2ε )√
2ε

=
√
2W (t)
ε

onΩ
(1)
ε . Therefore,

∣∣∣∣
∫

Ω
(1)
ε

ε|∇uε |2 φ dx − σ

∫
S

φ dH 2
∣∣∣∣ (29)

≤
∫ uε (bε )

−1

√
2W (t)

∣∣∣∣
∫

{d=γ −1
ε (t)}

φ dH 2

−
∫

{d=0}
φ dH 2

∣∣∣∣ dt (30)

8 The minus sign correspond to the convention that if ∂E is a sphere,
the eigenvalues should be positive.
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+
∫
S

φ dH 2
∫ 1

uε (bε )

√
2W (t) dt, (31)

where γ −1
ε : (−1, 1) → (−cε, cε) denotes the inverse of the

restriction of γε to (−cε, cε). Using uε(bε) = 1−ε2

1+ε2
→ 1, the

last term goes to zero.
The convergence to zero of the bound is proved if for any

δ > 0, we can find ε0 small enough such that ∀ε < ε0,
∀s ∈ (−cε, cε),

∣∣∣∣
∫

{d=s}
φ dH 2 −

∫
S

φ dH 2
∣∣∣∣ ≤ δ. (32)

This is true because, if p ∈ S , there is aC1-diffeomorphism
ψ mapping U × (−d0, d0) onto Tub(V , d0), where U ⊂ R

2

is open and V ⊂ S is an open neighborhood of p. For
s ∈ (−d0, d0), by the change of variables formula,

∫
{d=s}∩Tub(V ,d0)

φ dH 2

=
∫
U

φ(ψ(x, y, s))
√

| det(JacTψ Jacψ)|(x, y, s) dxdy

where Jac(ψ) = (
∂ψ
∂x ,

∂ψ
∂ y ) ∈ R

3×2, and this integral con-

verges to
∫
V φ dH 2 when s → 0. By compactness, we

can consider a finite number of such neighborhoods V and
conclude that the limit (22) holds.

Now, we prove the convergence of the energies. It can be
shown that on Ω

(1)
ε , we have

Bε
uε

= − Hess d

‖Bε
uε

‖2 = λ21 + λ22

TrBε
uε

= −Δd = λ1 + λ2

and on Ω
(2)
ε

Bε
uε

= − Hess d + fε nd ⊗ nd

‖Bε
uε

‖2 = λ21 + λ22 + f 2ε

TrBε
uε

= −Δd + fε = λ1 + λ2 + fε

where we define the auxiliary function

fε = 1

p′
ε(d)

(
p′′
ε (d) − W ′(pε(d))

ε2

)
.

such that fε |∇uε | ≤ 2
(1+ε2)3

+ 4
1+ε2

remains bounded on

Ω
(2)
ε .

It is sufficient to show that the limit holds independently
for each term of F . We prove it for the term κ2

1 associated to

a = (1, 0, 0, 0, 0, 0). The phase-field functional writes

Fε = 1

2ε

∫
Ω

(
‖M ε

uε
‖2

+TrM ε
uε

√
(2‖M ε

u ‖2 − (TrM ε
u )2)+

)
dx .

Using the relationships between M ε
u , B

ε
uε

and Hess d, on

Ω
(1)
ε we have 2‖M ε

u ‖2 − (TrM ε
u )2 = (λ1 − λ2)

2 ≥ 0 and

‖M ε
uε

‖2 + TrM ε
uε

√
(2‖M ε

u ‖2 − (TrM ε
u )2)+

= 2ε2|∇uε |2λ21,

while on Ω
(2)
ε , we have ξ := 2‖M ε

u ‖2 − (TrM ε
u )2 = λ21 +

λ22 + f 2ε − 2λ1λ2 − 2λ1 fε − 2λ2 fε . As ξ+ ≤ |ξ | ≤ 3(λ21 +
λ22 + f 2ε ) ≤ 3(|λ1| + |λ2| + | fε |)2, we get the bound

|TrM ε
uε

√
(2‖M ε

u ‖2 − (TrM ε
u )2)+|

≤ √
3(|λ1| + |λ2| + | fε |)2.

Fε can thus be decomposed into Fε = Iε + Jε , where

Iε =
∫

Ω
(1)
ε ∪Ω

(2)
ε

ε|∇uε |2λ21(x) dx, and

|Jε | ≤
∫

Ω
(2)
ε

ε|∇uε |2

×
(
λ22 + f 2ε + √

3(|λ1| + |λ2| + | fε |)2
)
dx .

On Ω
(2)
ε , the functions |∇uε |, fε |∇uε |, |λ1| and |λ2| are all

bounded. Therefore, as L 3(Ω
(2)
ε ) → 0, we get Jε → 0.

Finally, since |∇uε | = 0 on Ω
(3)
ε ,

Iε =
∫

Ω

ε|∇uε |2λ̃12 dx,

where λ̃1 ∈ C 0
c (Ω) continuously extends λ1 beyond

Tub(S , d0). Due to the convergence of Radon measures
(22), this integral converges towards

lim
ε→0

Iε = σ

∫
S

κ2
1 dH 2.

We can similarly prove the convergence for the other mono-
mials, and therefore conclude that Theorem 2 holds.
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