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Abstract

A multicolor flow cytometry panel was designed and optimized to define the follow-

ing nine mouse T cell subsets: Treg (CD3+ CD4+ CD8� FoxP3+), CD4+ T naïve

(CD3+ CD4+ CD8�FoxP3� CD44int/low CD62L+), CD4+ T central memory (CD3+

CD4+ CD8� FoxP3� CD44high CD62L+), CD4+ T effector memory (CD3+ CD4+

CD8� FoxP3� CD44high CD62L�), CD4+ T EMRA (CD3+ CD4+ CD8� FoxP3�

CD44int/low CD62L�), CD8+ T naïve (CD3+ CD8+ CD4� CD44int/low CD62L+), CD8+

T central memory (CD3+ CD8+ CD4� CD44high CD62L+), CD8+ T effector memory

(CD3+ CD8+ CD4� CD44high CD62L�), and CD8+ T EMRA (CD3+ CD8+ CD4�

CD44int/low CD62L�). In each T cell subset, a dual staining for Ki-67 expression and

DNA content was employed to distinguish the following cell cycle phases: G0 (Ki67
�,

with 2n DNA), G1 (Ki67+, with 2n DNA), and S-G2/M (Ki67+, with 2n < DNA ≤ 4n).

This panel was established for the analysis of mouse (C57BL/6J) spleen.
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1 | BACKGROUND

The periodicity of cell proliferation is a fundamental aspect of biology

that, for example, discriminates neural stem cells from terminally dif-

ferentiated neurons. Likewise, it is a key feature of adaptive immunity

that depends upon clonal expansion of primed T and B cells with

appropriate antigen specificity, thereupon generating a vast progeny

of short-lived effector cells and a few long-lived memory cells. There

are two main subsets of T cells, CD4+ and CD8+ T cells, having a pre-

dominant helper and cytotoxic effector function, respectively. Mainte-

nance of memory CD4+ and CD8+ T cells over time is a dynamic

process, relying on a fine equilibrium among cell death, survival, and

low level of homeostatic proliferation [1, 2]. Under steady-state con-

ditions, most T cells in the spleen of untreated mice are quiescent

cells, although a tiny proportion divides, possibly reflecting immune

responses to unknown environmental antigens and/or cytokine-

driven homeostatic proliferation. Such cell cycling in the absence of

intentional immunization is more prominent among the so-called

memory-phenotype T cells, that share a set of membrane markers

with antigen-primed T cells [3]. Furthermore, some Treg cells

(a subset of CD4+ T cells with regulatory function defined by the

expression of the transcription factor FoxP3 [4]) have an activated/

proliferative phenotype, possibly reflecting continuous self-renewal in

adult mice [5].

In fact, memory-phenotype T cells comprise a heterogeneous

pool of cells of undefined antigen-specificity, that are considered to

include T cells primed by environmental antigens, as well as some

antigen-inexperienced T cells having self-ligand- and/or cytokine-

dependent development [6, 7]. In C57BL/6 mice memory-phenotype

T cells have a high expression of CD44, an adhesion molecule that

binds to hyaluronic acid, and can thus be distinguished from naïve-

phenotype T cells, that have an intermediate/low CD44 expression

[6]. Similarly, in humans naïve and memory-phenotype T cells can be

identified by high and low expression of CD45RA, respectively [8].

Proliferative potential is one of the features that, together with

lymph node (LN) homing capabilities, and effector function, differenti-

ates additional subsets among memory T cells. Thus, central memory

(CM) T cells have a LN homing receptor typically expressed by naïve T

cells, specifically CD62L, also named L-selectin, a glycan receptor [9],

whereas effector memory (EM) T cells lack it [10]. According to this

classification, originally proposed for human blood T cells using CCR7,

the chemokine receptor for CCL19/CCL21, as a marker [11], T CM

are LN-homing cells with high potential to expand after stimulation,

while T EM cells are tissue-homing cells able to display rapid effector

function [12, 13]. An additional subset, the T EMRA cells, comprises

effector memory T cells that re-acquire a naïve phenotype (CD45RA+

in humans, CD44int/low in mice). Based on this, the following four

naïve/memory T cell subsets can be identified among mouse CD4+

and CD8+ T cells: CD44int/low CD62L+ naïve, CD44high CD62L+ CM,

CD44high CD62L� EM, and CD44int/low CD62L� EMRA [10, 14].

While identification of memory T cells with high proliferative

potential can impact the success of adoptive transfers [15], accurate

measurement of in vivo proliferation is essential to track the dynamics

of T cell responses [16]. Proliferation of mouse T cells has been mea-

sured by a few cytofluorimetric methods, that can be divided into

“static”—that is, those which provide a snapshot of the cell cycle

phases at the time of analysis—and “dynamic,” that is, those which

give information on the proliferation that occurred over a few hours

or days prior to the analysis. The most widely used “static” method

relies on the Ki-67 marker, an intranuclear protein that supports chro-

mosome architecture organization, and nucleus and nucleolar assem-

bly after cell division [17, 18]. However, Ki-67 is expressed by cells in

any phase of cell cycle (i.e., in G1, S, G2, M), while it is only low or

absent in quiescent cells (i.e., in G0 state). The “dynamic” methods

include carboxyfluorescein succinimidyl ester (CFSE) and

Bromodeoxyuridine (BrdU) labelling, which identify proliferating cells

that have undergone cell division and S-phase, respectively [2]. We

chose to combine Ki-67 staining and DNA content analysis, thereby

to distinguish between cells in G1 and those in S-G2/M phases of cell

cycle, a discrimination that is relevant to the proliferative fate of the

cell. Indeed, cells in S are duplicating their DNA and are committed to

proceed into G2/M and divide. In contrast, cells that are in G1 might

proceed into S-G2/M, return to G0, or stay in G1 for a prolonged

period. Thus, Ki-67+ cells might not be actively proliferating if they

are in G1 phase or are returning to G0. For example, this might be the

case for antigen-specific T cell progeny at the end of clonal expan-

sion [19].

In this OMIP, we offer a staining panel for ex vivo cell cycle analy-

sis of CD4+ and CD8+ naïve/memory-phenotype T cell subsets, and

of Treg cells from mouse spleen, using Ki-67/DNA dual staining to

distinguish cells in G0, G1, and S-G2/M (Table 1; Figure 1). Panel opti-

mization and protocol details are reported in the online Supporting

Information. We used standard markers for T cell subset identifica-

tion. CD3 expression was used to identify T cells, and the mutually

exclusive expression of CD4 and CD8 to distinguish CD4+ and CD8+

T cells, respectively. Treg cells were identified among CD4+ T cells

based on their expression of the intranuclear protein FoxP3, and by

this marker distinguished from conventional CD4+ T cells, that is,

FoxP3� CD3+ CD4+ CD8� cells. CD4+ and CD8+ naïve/memory T

cell subsets were subsequently identified among conventional CD4+

and CD8+ T cells, respectively. The four classical naïve/memory sub-

sets were defined based on their CD62L and CD44 membrane pheno-

type (see above). For each T cell subset, cells in G0, G1, and S-G2/M

were discriminated based on Ki-67 and DNA staining (Table 2;

Figure 1).

This OMIP can be exploited for in depth-analysis of T cell cycle in

conditions characterized by altered proportions, numbers and

TABLE 1 Summary table for the application of OMIP-079

Purpose Cell cycle analysis of CD4 and CD8 naïve/memory

T cell subsets, and of Treg cells

Species Mouse

Cell types Splenocytes

Cross-

references

No similar OMIPs
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F IGURE 1 Cell cycle analysis of mouse T cell subsets. Example of analysis of spleen cells from a 3-months old C57BL/6J mouse, using manual
gating strategy. (A) Refined gating of viable single cells from the spleen in five steps: (1) DNA singlets. Single cells having 2n ≤ DNA content ≤4n
were selected on the Hoechst-33342 area (A) versus (vs) Hoechst-33342 width (W) plot; (2) time exclusion. Stable acquisition over time (seconds)
was monitored on the time vs Hoechst-33342-A plot and any events collected in case of pressure fluctuations were excluded; (3) viable cells. Live
cells were selected using FSC-A vs eFluor 780 (eF780) viability dye; (4) FSC/SSC “relaxed” gate. A “relaxed” gate was used on the FSC-A vs
SSC-A plot, to include highly activated and cycling lymphocytes [19]; (5) refined singlets. A few remaining doublets composed by one cell sitting
on top of another (so called “shadow” doublets) were excluded as Ki-67int/� events having >2n DNA content [20]. This gating strategy was used
as a base for the subsequent gates. (B) CD3+ T cells were gated on CD3-A vs Ki-67-A plot, then CD4+ and CD8+ T cells on CD4-A vs CD8-A
plot. CD4+ Treg cells were distinguished based on their FoxP3 expression from conventional FoxP3� CD4+ T cells. Subsequently, the following
naïve/memory subsets of conventional CD4+ T cells were identified: CD44int/lowCD62L+ naïve, CD44highCD62L+ central memory (CM),
CD44highCD62L� effector memory (EM), and CD44int/lowCD62L� EMRA. Similarly, naïve/memory subsets were identified among CD8+ T cells.
(C) Cell cycle phases of Treg cells and of naïve/memory CD4+ and CD8+ T cell subsets were defined on Hoechst-33342-A vs Ki67-A plot as
follows: Cells in G0 were identified as DNA 2n/ Ki67� (bottom left quadrant); cells in G1 as DNA 2n/ Ki67+ (upper left quadrant); cells in S-G2/M
as DNA > 2n/ Ki67+ (top right quadrant) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Reagents used for
OMIP-079

Fluorochrome Specificity Clone Function

FITC CD3 145-2C11 Pan T cell marker

APC CD44 IM7 NaÏve/Memory subset identification

Alexa Fluor 700 Ki-67 SolA15 Quiescence/cell cycle

eFluor 780 Dead cells N/A Live/Dead cell discrimination

Hoechst 33342 DNA N/A DNA content/cell cycle

PE FoxP3 FJK-16s Treg identification

PE-CF594 CD4 RM4-5 Helper T cell identification

PE-Cy7 CD62L MEL-14 NaÏve/Memory subset identification

BV785 CD8 53-6.7 Cytotoxic T cell identification

Abbreviation: N/A, not applicable.
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proliferative state of spleen T cell subsets, for example in aged mice

having higher percentages of memory CD4+ and CD8+ T cells, with

or without oligoclonal expansion [21–23]; in lymphopenic mice having

compensatory T cell proliferation [24]; or in genetically modified mice

with abnormal Treg cells representation [25]. Furthermore, this panel

may be instrumental in identifying hitherto overlooked changes in

Treg and/or naïve/memory T cell subset cycling in a variety of settings

such as vaccination, infection, autoimmunity, and cancer.

2 | SIMILARITY TO PUBLISHED OMIPS

The new ground trodden by this OMIP is the examination of cell

cycle of naïve/memory CD4+ and CD8+ T cell subsets and of Treg

cells by Ki-67/DNA dual staining, with no similarities to other

OMIPs.

OMIP-031 and -032 examined naïve/memory T cells, with dif-

ferent purposes. OMIP-031 used a combination of CD44, CD62L,

CD27, CD45RA for T cell subset definition, plus a panel of activa-

tion and exhaustion markers, with the aim to analyze inhibitor

checkpoint expression. OMIP-032 was designed for assessing

innate and adaptive immune subsets from mouse organs, including

naïve/memory T cell subsets, that were identified based on CD44

and CD62L expression. OMIP-032 did not include any analysis of

proliferation or cell cycle.
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