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Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors
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Mathematical approaches from dynamical systems theory are used in a range of fields. This includes biology
where they are used to describe processes such as protein-protein interaction and gene regulatory networks.
As such networks increase in size and complexity, detailed dynamical models become cumbersome, making
them difficult to explore and decipher. This necessitates the application of simplifying and coarse graining
techniques to derive explanatory insight. Here we demonstrate that Zwanzig-Mori projection methods can be
used to arbitrarily reduce the dimensionality of dynamical networks while retaining their dynamical properties.
We show that a systematic expansion around the quasi-steady-state approximation allows an explicit solution for
memory functions without prior knowledge of the dynamics. The approach not only preserves the same steady
states but also replicates the transients of the original system. The method correctly predicts the dynamics of
multistable systems as well as networks producing sustained and damped oscillations. Applying the approach
to a gene regulatory network from the vertebrate neural tube, a well-characterized developmental transcriptional
network, identifies features of the regulatory network responsible for its characteristic transient behavior. Taken
together, our analysis shows that this method is broadly applicable to multistable dynamical systems and offers
a powerful and efficient approach for understanding their behavior.
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I. INTRODUCTION

In complex dynamical systems, comprising multiple in-
teracting components, it can be difficult to identify causal
mechanisms and to dissect the function of parts of a
system. Nonlinearities and feedback complicate intuitive un-
derstanding and these difficulties increase with the size and
complexity of a system. Examples include biological pro-
cesses such as protein-protein interaction and gene regulatory
networks [1,2]. Mathematical models of these systems al-
low exploratory analysis and can provide insight but become
less practical as system size grows. More importantly, the
complexity can obscure the explanation for unexpected or
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emergent behaviors that originate in the dynamics of a sys-
tem. For these reasons, a variety of approaches have been
developed to reduce the complexity of models while pre-
serving desired features of their behavior. An important class
of tools are dimensionality-reduction techniques that coarse
grain parts of a system [3–5].

The Zwanzig-Mori formalism provides an exact dimen-
sionality reduction of a dynamical system based on a
separation into an arbitrary subnetwork, the components of
which are tracked explicitly, and a bulk containing the com-
ponents that are replaced with memory functions [6–9]. These
functions describe how the current subnetwork state feeds
back, through the activity of molecular species in the bulk,
to affect the subnetwork at a later time. This approach, specif-
ically its nonlinear version, was originally developed for the
dynamics of physical systems [10] but later generalized by
Chorin et al. [11,12], with related uses also in optimal coarse
graining [13]. A limitation, however, is that the memory func-
tions are generally impossible to calculate in closed form
[11,12]. Although approximate expressions can be derived in
special cases [14–18], this restricts the applicability of the
formalism. An alternative is to map the nonlinear system to a
physical system consistent with the original; while this can be
effective it does not necessarily simplify the problem [19,20].
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Another option is to expand the dynamical equations around
a fixed point and derive memory functions from this approxi-
mation [21,22], but for multistable or oscillatory systems the
memory functions obtained in this way do not capture all the
qualitative behaviors.

To address this limitation, we develop a method, based on
the formalism of Ref. [11], that allows the calculation of mem-
ory functions for generic dynamical systems without prior
knowledge of the dynamics. We make one assumption: the
bulk must not generate fixed points beyond those of the sub-
network, more specifically it must have a unique steady state
for any subnetwork state, as assumed also in e.g. [18]. This is a
natural condition: the subnetwork must be able to produce all
fixed points itself, otherwise coarse graining cannot succeed.
As the starting point for the dimensionality reduced dynamics
we use the quasi-steady-state (QSS) approximation, where the
bulk is always in steady state with the current subnetwork state
as has been used in other contexts [23]. Memory functions are
then constructed to correct the projected subnetwork state, by
accounting for departures of the bulk from its steady state. Our
main technical result is an explicit solution for the functions
capturing these memory effects, derived in a systematic ex-
pansion around the QSS approximation. We demonstrate that
the approach accurately predicts the dynamics of systems that
produce multiple steady states and even sustained or damped
oscillations. We also illustrate its use by applying it to a gene
regulatory network from the embryonic vertebrate neural tube
[24]. This is a transcriptional network of four interacting tran-
scription factors with well described transient dynamics. We
show how the memory functions generated by this approach
provide insight into the features of the regulatory network that
produce this transient behavior. Taken together, the analysis
introduces a broadly applicable method for the investigation
and analysis of complex dynamical systems.

II. MATHEMATICAL DERIVATION

A. Initial definitions

Following Ref. [11], we start from a system with degrees
of freedom x evolving deterministically in time according to
some nonlinear functions R:

dx
dt

= R(x). (1)

We define the flow φ(x, t ) as the state the system reaches at
time t if it starts in some initial state x; this function thus
obeys φ(x, 0) = x and ∂

∂t φ(x, t ) = R(φ(x, t )). We want to
understand the dynamics of some chosen set of observables
that we denote by the vector A. Such observables are functions
of the state of the system, which we write as A(x). By analogy
with the definition of φ, the time-dependent observables are
then taken as

A(x, t ) = A(φ(x, t )), (2)

so A(x, t ) gives the value of the observables at time t if the
system was initially in state x. The resulting time evolution
of the observables can again be described by a differential

equation

∂

∂t
A = LA(x), L =

∑
i

Ri(x)
∂

∂xi
, (3)

with the Liouvillian L, a linear differential operator. The gen-
eral setup above requires us to track the full x dependence
of the chosen observables A(x, t ). To achieve a reduction in
dimensionality, Chorin [11] assumes that the value of x is
determined by A at least statistically, i.e., has some probability
distribution that (only) depends on the current A. Averages
(expectations) over this distribution are written as E [·|A], and
the average evolution of A is governed by v(A) = E [LA(·)|A].
Chorin [11,12] showed that the corrections to this in the actual
time evolution take the form of a memory term and a so-called
random force r, giving the general form for the time evolution
of A as

d

dt
A = v(A) +

∫ t

0
dt ′ M(A(t ′), t − t ′) + r. (4)

The memory function M(A(t ′), t − t ′) depends on time dif-
ference τ = t − t ′ and—nonlinearly—on the past observable
value A(t ′). Its evolution with τ is governed by the deviations
of the drift from v(A); this evolution reads for a general
observable g(x, τ ):

∂

∂τ
g(x, τ ) = Lg(x, τ ) − E [(Lg)(·, τ )|A(x)]. (5)

The memory function is obtained from the observable that
measures exactly such fluctuations in the drift of the observ-
ables A:

F(x) = (LA)(x) − E [LA(·)|A(x)]. (6)

We define an F(x, τ ) via Eq. (5) from the initial condition
F(x, 0) = F(x), and the memory function is then given ex-
plicitly as M(A, τ ) = E [LF(·, τ )|A]. The random force itself
is r(x, t ) = F(x, t ) and has a vanishing average at all times,
E [r(·, t )|A] = 0 [11]. In our context, this term represents ef-
fects that come from the bulk starting away from QSS. When
the bulk starts in QSS, which is what we assume in the follow-
ing, it vanishes and so can be discarded. While in Ref. [11]
steady-state dynamics are discussed, this is not required for
the above formalism to be applicable.

B. Subnetwork dynamics

With the random force discarded as above, Eq. (4) is a
closed equation for the time evolution of the observables A
and so achieves the desired dimensionality reduction. How-
ever, the memory function cannot in general be calculated
in any closed form. We now show that this can be done
within a systematic approximation for subnetwork dynamics.
By this, we mean that we consider as the observables A = xs

a subset of x, e.g., the concentrations of molecular species in
a subnetwork of a large gene regulatory network. We denote
the degrees of freedom in the rest of the network, the bulk, by
xb and write out the components of the general time evolution
Eq. (1) as

dxs

dt
= Rs(xs, xb),

dxb

dt
= Rb(xs, xb). (7)
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The Liouvillian then splits accordingly into

L =
∑

s

Rs(xs, xb)
∂

∂xs
+

∑
b

Rb(xs, xb)
∂

∂xb
, (8)

with the sums running over subnetwork and bulk species,
respectively. Here and below, subscripts always indicate indi-
vidual species, while vectors with s and b superscripts collect
all subnetwork and bulk quantities, respectively. With Eq. (8),
the generic observable time evolution of Eq. (3) (∂/∂t )xs =
Lxs reduces to Eqs. (7) as it should. We now need to choose
how to define the expectation E [·|xs]. We do this so that,
without the memory kernel, the reduced Eq. (4) corresponds
to the simplification where the bulk dynamics equilibrates
rapidly to any prevailing subnetwork state xs, reaching a QSS
value xb∗ defined by dxb/dt = 0 or

Rb(xs, xb∗(xs)) = 0. (9)

As motivated in the Introduction, we will assume that this
condition determines a unique bulk QSS xb∗(xs) for any xs.
The expectation required to construct the reduced Eq. (4) is
taken accordingly as

E [g(·)|xs] = g(xs, xb∗(xs)), (10)

i.e., by taking xs as prescribed and inserting for xb

its QSS value. The average drift v(A) = E [LA(·)|A] =
E [Rs(xs, xb)|xs] now evaluates directly from Eq. (10) as

v(xs) = Rs(xs, xb∗(xs)). (11)

This is the QSS or fast bulk approximation to the subnetwork
dynamics. Our main interest in the following lies in under-
standing the memory effects that account for the fact that the
bulk is not in general fast, but evolves on a timescale com-
parable to that of the subnetwork. To determine the resulting
memory function, we start from the definition of F(x), which
from Eq. (6) has components

Fs(xs, xb) = Rs(xs, xb) − Rs(xs, xb∗(xs)). (12)

The main challenge is now to calculate the evolution of this
observable in time according to Eq. (5). This is not feasible
in general but we can develop a systematic approximation by
linearizing in deviations of the bulk degrees of freedom from
the QSS, which we write as

Fs(xs, xb, τ ) ≈
∑

b

(xb − x∗
b (xs)) fbs(xs, τ ). (13)

The problem then reduces to finding the evolution of fbs(xs, τ )
from the initial condition fbs(xs, 0) ≡ f 0

bs(x
s) obtained by lin-

earizing Eq. (12),

f 0
bs(x

s) = ∂Rs

∂xb
, (14)

where the derivatives here and below are evaluated at
(xs, xb∗(xs)) unless otherwise specified.

C. Memory evolution over time

To derive our memory function, we insert Eq. (13) into
Eq. (5). Consistently applying the linearization as detailed in

Appendix A yields the following equation for fbs:

∂

∂τ
fbs =

∑
b′

lbb′ fb′s +
∑

s′
Rs′

∂

∂xs′
fbs (15)

with

lbb′ = Jb′b +
∑
s′b′′

(J−1)b′b′′
∂Rb′′

∂xs′

∂Rs′

∂xb
, (16)

where the Jacobian matrix J is defined as

Jb′′b′ = ∂Rb′′

∂xb′
. (17)

The next step is to find a solution fbs(xs, τ ) for the partial
differential equation given in Eq. (15). This can be done
using the method of characteristics as the equation is linear
in fbs(xs, τ ) and only involves first derivatives, and gives the
closed form solution (see Appendix B)

fbs(xs, τ ) =
∑

b′
Ebb′ (τ ) f 0

b′s(φv (xs, τ )). (18)

Here the Ebb′ are elements of the time-ordered matrix expo-
nential E(τ ) = exp[

∫ τ

0 dτ ′ l (φv (xs, τ ′))] and the propagation
in time is performed with the flow φv for the QSS drift v(xs).

D. Memory function

We can now finally determine the memory function on
subnetwork species s, which from the general framework set
out above is

Ms(xs, τ ) = E [LFs(·, τ )|xs]. (19)

We insert the expansion Eq. (13) here and obtain after some
algebra (see Appendix A) our main result, a simple expression
for the memory function,

Ms(xs, τ ) =
∑

b′
cb′ (xs) fb′s(xs, τ ), (20)

where we have denoted

cb′ (xs) =
∑

s′

∑
b′′

(J−1)b′b′′
∂Rb′′

∂xs′
Rs′ . (21)

These functions can be thought of as prefactors to the memory
term. The general projected time evolution equation now takes
the form

d

dt
xs = vs(xs(t )) +

∫ t

0
dt ′ Ms(xs(t ′), t − t ′). (22)

The first term contains the QSS drift while the second one
represents the memory correction to this, which is expressed
in terms of the memory function Eq. (20). Our derivation
allows this memory to cover the behavior around multiple
fixed points of the system, due to its nonlinear dependence
on xs. The interpretation of our result Eq. (20) is that in a
small time interval dt ′, xb − x∗

b will change by c(xs(t ′)) dt ′.
This deviation from the QSS is propagated by the exponential
matrix and affects the drift Rs at time t as captured by f 0

bs
in Eq. (18). In Appendix H, we compare Eq. (20) with the
work of Ref. [18], which instead of the QSS assumption takes
xb = 0. This is unsuitable for the multistable systems we are
interested in but we show that the method can be adapted
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to project to bulk QSS values (Appendix I). This leads to
an expression similar to Eq. (20), but crucially without the
propagation in time from t ′ to t = t ′ + τ (Appendix I).

E. Self-consistent approximation

Our linearization approach Eq. (13) implies that the mem-
ory term captures dynamical effects that are of first order
in the deviations of the bulk network from its QSS. We
will now develop an approximate self-consistent way of in-
corporating higher order corrections, which turns out also
to simplify the numerical evaluation of the memory terms.
Consider the factor f 0

bs(φv (xs, τ )) that from Eqs. (18) and
(20) appears in the memory function Ms(xs, τ ). In the actual
memory integral this is evaluated for xs(t ′) and τ = t − t ′,
i.e., as f 0

bs(φv (xs(t ′), t − t ′)). As explained above, φv is the
flow generated only by the QSS drift, i.e., without memory
corrections. But the memory terms change the flow, so we
can make the approach self-consistent by substituting for φv

the actual time evolution with memory. This corresponds to
replacing

φv (xs(t ′), t − t ′) → xs(t ), (23)

as we are just propagating the subnetwork state from xs(t ′)
by a time difference t − t ′ to xs(t ). Making this replacement
also in the matrix exponential in Eq. (18) changes the memory
term Ms(t ) = ∫ t

0 dt ′ Ms(xs(t ′), t − t ′) into

M̃s(t ) =
∑

b′′

∫ t

0
dt ′ ∑

b′
cb′ (xs(t ′))

(
e
∫ t

t ′ dt ′′ l (xs (t ′′ )))
b′b′′

× f 0
b′′s(x

s(t )). (24)

The dependence on the subnetwork species s on which the
memory acts is contained only in the—now t ′ independent—
factor f 0

b′′,s(x
s(t )). As shown in Appendix C, the memory

integrals in the first line can then be calculated efficiently as
solutions to differential equations, one for each bulk species
b′′. Conceptually, however, the self-consistent memory term
is more complicated. In the original formulation Eq. (22), the
memory is a superposition of separate effects from all past
times t ′: the state xs(t ′) of the subnetwork affects the behavior
of the bulk and feeds back into the subnetwork at time t . In
Eq. (24), the way this feedback acts is additionally modulated
by the entire time evolution of the subnetwork between times
t ′ and t . In the applications considered below, both approaches
yield similar quantitative results, hence which one to choose
depends on the aim: for numerical calculations of memory
effects, the self-consistent version is more efficient, whereas
the memory functions themselves are easier to analyze in the
original version because they depend—in addition to time
difference, which always features—only on the subnetwork
state at one time t ′. Note that what we refer to as self-
consistency is distinct from an approach widely used in the
application of projection methods to physical systems (see,
e.g., Refs. [25,26]), where equations of motion for correlation
functions are considered and the relevant memory kernels are,
via appropriate approximations, related back self-consistently
to the correlation functions.

F. General memory properties

Both the ZMn and ZMs expressions for the memory term
that we have derived are, as we have emphasized, nonlinear
in xs and so not of the convolution form that would appear in
linear ZM projection methods. This simpler form is recovered,
however, in the dynamics near fixed points. To see this, we
note that at a global fixed point (xs∗, xb∗), where Rs = 0, the
last factor in the definition Eq. (21) of cb′ vanishes. As cb

is a factor in both of our memory expressions, both receive
zero contributions when xs(t ′) is at a fixed point. Assuming Rs

and Rb are sufficiently smooth, we can therefore linearize the
memory terms for dynamics near such a fixed point. In this
linearization, all other factors in the memory are evaluated
at the fixed point, and from this one deduces (see Appendix
G) that the linearized forms of the ZMn and ZMs memory
expressions are in fact identical. The memory terms then be-
come time convolutions of xs(t ′) − xs∗ with a memory kernel
that depends only on time; Appendix G provides a numerical
example. It follows from the general arguments in Appendix F
that these kernels describe exactly the dynamics of the full
linearized system, and so the equations with memory will
correctly predict, e.g., the relaxation behavior near a stable
fixed point.

G. Memory decomposition

In spite of their nonlinearity, it turns out to be possible
to decompose our memory expressions into specific channels
to analyze the contribution of interactions within a network.
Building on the approach of Ref. [27], we take advantage of
the two partial derivative expressions in Eqs. (14) and (21)
to decompose the memory exactly into combinations of in-
coming and outgoing channels (Appendix D). The analogous
construction for the self-consistent approximation is set out in
Appendix E.

III. APPLICATIONS

To test the effectiveness of the method, we examine sys-
tems that contain multiple steady states, oscillatory behaviors,
and complex transient dynamics. These are relevant in a wide
range of physical and biological contexts.

A. Multistability

We first examine a series of multistable systems defined by
mutually repressive Hill functions:

d

dt
x j = a

1 + ∑
i �= j xn

i

− x j . (25)

The above equation constitutes an “or” logic because of the
sum of the terms in the denominator, where even if only one
repressor has a high concentration, the production rate will
become very low. Such interactions lead to multistability in a
wide variety of developmental systems [28].

We test the method on the simplest case with two nodes
{x1, x2}, which leads to a system that cannot produce os-
cillations [29]. We place x2 in the bulk and calculate the
memory function for the single remaining subnetwork species
x1 [Fig. 1(a)]. This depends on the past concentration x1(t ′)
and the time difference τ = t − t ′ [Fig. 1(b)]. We observe that
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FIG. 1. (a) Network illustrating a bistable switch defined using
cross-repressive Hill functions Eq. (25) with a = 4, n = 2 [steady
states are (x1, x2) = (6, 0.028) and (0.028, 6) with an unstable fixed
point at (1.46,1.46)]. For this and all other network illustrations,
blunt arrows indicate repression; purple shading identifies the species
placed in the bulk. (b) Memory function for the bistable switch
shown as a function of (past) concentration x1 of species 1 (x axis)
and time difference τ (y axis). Memory function values range from
negative to positive as indicated by the scale bar on the right and
are capped by blue and orange outside the scale bar range. (c) Time
course of the system demonstrates the capacity of both the nonlinear
(ZMn, cyan) and self-consistent (ZMs, red) projections to capture
the timescale and shape of transients of the full model (solid line) in
reaching a stable fixed point. The QSS approximation (dashed line)
significantly underestimates the length of the transient, showing that
the ZM projections successfully correct for x2 not being at QSS.

the memory becomes zero at each fixed point as expected
from the discussion in Sec. II F above and from Ref. [27],
where the memory was obtained as an expansion (to quadratic
order) in deviations of xs from a fixed point. To leading order,
the memory grows linearly with this deviation, and in line
with this we see it changing sign at every fixed point. The
sign of the memory in all cases is opposite to that of the
drift, so the memory delays the relaxation time to the cor-
responding steady state. This makes intuitive sense as in the
original system, the bulk species’ state reacts relatively slowly
to subnetwork changes, rather than infinitely fast as the QSS
approximation assumes.

To test the accuracy of our method in capturing the tran-
sient temporal dynamics, we set the initial condition of x1

to be close to the unstable fixed point of the QSS dynamics;
here we are furthest from the stable fixed points and so can
test the limits of the method. For the evaluation, we used as
a baseline the full dynamics of the original system, setting
x2 at time zero to its QSS value with respect to the value of
x1. We compare this to the subnetwork dynamics predicted
by the simple QSS dynamics, and by our approach, which
includes memory corrections. For this example, we evaluate
both the nonlinear memory description Eq. (22), ZMn, and the
self-consistent memory Eq. (24), denoted ZMs below. We find
that both replicate the behavior of the original system well,
independently of whether the initial condition eventually leads
to the low- or high-x1 fixed point. The QSS approximation,
on the other hand, reaches the steady state unrealistically
fast [Fig. 1(c)]. Given that the ZMs method is substantially
easier to implement for time course prediction (Appendix C),
we concentrate on this approach below. Further justification

FIG. 2. (a) Network illustrating the cross-repressive tetrastable
system Eq. (25); purple shading indicates the species placed in the
bulk. Parameters are a = 4, n = 2. (b) Phase portrait indicating the
basins of attraction of the four stable fixed points (black circles) and
the unstable fixed points (white circles). The separatrices bound-
ing each basin are shown for the full dynamics (solid lines), QSS
approximation (dotted lines), and the subnetwork equations with
memory (ZMs, red circles); stream plots are shown for the QSS
approximation. The QSS approach shows a clear difference to the
original system, while the boundaries set by ZMs and the full system
are almost indistinguishable.

for this comes from the fact that the self-consistent memory
description is exact when Rs and Rb depend at most linearly
on the bulk species, as we show in Appendix F. This exactness
is not a trivial consequence of the fact that our approach is a
linearization in xb − xb∗, as it would otherwise hold also in the
ZMn version. Biochemical systems with linear xb dependen-
cies usually involve mass-action reactions and can produce
bistable systems or oscillations [30,31], which we can then
reproduce exactly with the ZMs projection (see Appendix F).
A well-known example from physics is the Caldeira-Leggett
model of a heat bath. This has a bulk composed of harmonic
oscillators [32], and the resulting memory term was obtained
exactly by Zwanzig [10,33]. Since in that system the bulk de-
grees of freedom appear linearly, our approach reproduces this
solution but is more general in that it does not, for example,
rely on the dynamics to be derived from a Hamiltonian.

We next tested the approach on a tetrastable system defined
in the same way as Eq. (25) with variables {x1, x2, x3}. We
consider the subnetwork containing x1 and x2, which will
allow us to investigate the effect of the memory effects on
the shapes of the basins of attraction of the different (stable)
fixed points [Fig. 2(a)]. For the parameter values we use, there
are four such fixed points for the full network: three where
only one species has high concentration and the other two
low, and one where all concentrations are equal [Fig. 2(b)].
The boundaries of the basins of attraction can be read as the
points where, depending on its initial condition, the system
chooses a different basin of attraction. In a biological setting,
these choices could represent cell fate decisions, where a cell
decides to adopt a specific specialized function and become a
particular cell type (for a review, see Ref. [34]). We find that
the QSS system fails to replicate the decision process of the
original system, whereas the ZMs accurately identifies both
the eventual steady state [Fig. 2(b)] and the timing to get to
this state (data not shown).
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FIG. 3. (a) Network illustrating the repressilator system Eq. (26);
purple shading indicates the species placed in the bulk. (b) Bifurca-
tion diagram of the repressilator for system parameters a and n. The
lines represent supercritical Hopf bifurcations. The QSS system can
only produce damped oscillations, so has no bifurcation at all. The
ZMs system (red line) shows a good qualitative match to the shape
and position of the bifurcation of the full system (solid black line).

B. Oscillations

We further explore the ability of the subnetwork equations
with memory to reproduce oscillations arising from a unidi-
rectional repressive network. We use the repressilator system
[35], which robustly generates oscillations due to delays aris-
ing from an odd number of nodes [29,36]. It has concentration
variables {x1, x2, x3} and repressive interactions as shown in
Fig. 3(a) and represented mathematically by

d

dt
x j = a

1 + xn
j−1

− x j, (26)

where x0 ≡ x3. We first compare the bifurcation diagram that
results from varying both system parameters a and n, in order
to see whether the subnetwork equations with memory can
replicate the 2D Hopf bifurcation of the original system, from
damped to sustained oscillations [Fig. 3(b)].

In contrast to the QSS approximation, we find that the
projection technique correctly replicates the existence of
sustained oscillations and predicts a qualitatively correct bi-
furcation diagram. The period and amplitude of sustained
oscilations in the relevant parameter regime is less well repli-
cated (not shown). For damped oscillations, the subnetwork
equations with memory work accurately in predicting the full
temporal dynamics [Fig. 4(a)]. By contrast, the QSS approx-
imation displays almost no oscillatory behavior and none of
a sustained nature, highlighting the importance of memory
effects for oscillatory transients.

To understand in more detail how memory generates oscil-
lations, we analyze the corresponding memory functions. We
first plot the memory amplitude, i.e., the value M(xs, 0) for
memory from the immediate past (t ′ = t) across the config-
uration space of our subnetwork [Fig. 4(b)] and observe two
distinct regions with positive and negative memory amplitude,
separated by a line where this amplitude vanishes (black).
Plotting the time course from Fig. 4(a) in the same representa-
tion, we observe that it crosses the black line many times. The
corresponding changes in the sign of the memory amplitude
are what drives the oscillations seen in Fig. 4(a).

FIG. 4. (a) Damped oscillations generated by the repressilator
[35] can be accurately reproduced by the projection approach (red
line) while the QSS (dotted line) fails to replicate both the timing and
the amplitude of the oscillations of the full system (solid black line).
(b) Color map of memory amplitude (memory at τ = 0) as a function
of (x1, x2). The memory amplitude changes from negative (blue) to
positive (orange) across the thick black line. Red curve: Parametric
plot of the ZMs time course from the left; the memory repeatedly
changes from negative to positive to drive the correct oscillations.

IV. NEURAL TUBE NETWORK (TRANSIENTS AND
MULTISTABILITY)

Finally, we apply the projection approach to a biologi-
cally relevant system with several bifurcations and nontrivial
dynamical properties, specifically the neural tube gene regula-
tion network described in Ref. [24]. The network is sketched
in Fig. 5(a) and its specific form and parametrization is given
in Appendix J. In each cell of the neural tube, the network
responds to the concentration of an extracellular signaling
molecule, Shh. This molecule forms a gradient in the devel-
oping vertebrate neural tube which is interpreted by cells in
the tissue through the actions of a Gene Regulatory Network
(GRN) (for a recent review, see Ref. [37]). As a result of the
concentration changing systematically along the neural tube,

FIG. 5. (a) Neural tube network [24] defined by cross-repressive
interactions between four transcription factors and activation by
Sonic Hedgehog signaling (Shh), dependent on neural tube position;
purple shading indicates choice of bulk. (b) Fate decision diagram
for a neural tube position with three attractors (at position p = 0.65);
solid lines indicate boundaries of basins of attraction that biologically
separate different fate choices. Possible steady states are p3 (high
Nkx2.2, right), pMN (high Olig2, top), and p2 (low Nkx2.2 and
Olig2, and high Irx3 and Pax6, bottom left). Dashed lines indicate
basin boundaries for the QSS approximation and red dots the basin
boundaries for the ZMs projection; a stream plot is shown for the
QSS system. The ZMs system very accurately reproduces the bound-
aries of the full system.

043069-6



TRACTABLE NONLINEAR MEMORY FUNCTIONS AS A … PHYSICAL REVIEW RESEARCH 2, 043069 (2020)

FIG. 6. Time courses of concentrations of Nkx2.2 (a) and Olig2
(b) in p3 domain (p = 0.1). A transient expression of Olig2 leading
to a delay in Nkx2.2 expression is observed in vivo. The full system
(solid line) and ZMs projections [with Nkx2.2 and Olig2 chosen as
subnetwork, see Fig. 5(a), red and blue] qualitatively reproduce this
behavior. In contrast, the QSS approximation (dashed line) is unable
to capture the long Olig2 transient. ZMs∗ represents the removal
of all memory functions except those specified in Fig. 7(a), which
suffice to capture the observed transient.

we are in fact dealing here with a family of networks that
vary with neural tube position, parametrized below in terms
of p running from 0 to 1 (where p also represents the Shh
input). The network contains four molecular species (called
transcription factors in the gene regulation context), two of
which generate a bistable switch by mutual cross-repression
as in our first example above. Similarly to how we proceeded
in Ref. [27], we therefore place these two molecular species
(Nkx2.2 and Olig2) in the subnetwork, with the bulk provided
by the two other species (Irx3 and Pax6).

We test the method at the position along the neural tube
where the model has the most complexity, a region of trista-
bility (p = 0.65), and compare with the original system and
the QSS approximation [Fig. 5(b)]. We find that as for the
tetrastable example above (Fig. 2), the projection accurately
replicates the choice of steady state, in contrast to the QSS
method [Fig. 5(b)]. With the memory included, three basins
of attraction are predicted, of which one—labeled pMN—
separates the other two (p2 and p3) so no direct transitions
from p2 to p3 can occur. The QSS approximation is not just
quantitatively inaccurate but loses this biologically important
qualitative feature, predicting instead that the p2 and p3 basins
border each other. At other neural tube positions, we also
consistently find a good match between the original system
and the ZMs projection approach (not shown).

We next analyze the temporal evolution of the systems
at various neural tube positions, using the experimentally
determined initial condition for Nkx2.2 and Olig2 (vanish-
ing concentration); we again compare the ZMs description
with the original system and the QSS reduction. The ZMs
predictions show a good fit with the original system at all
positions (Fig. 6 displays results for a position with a strongly
nonmonotonic transient, p = 0.1), demonstrating that the
memory functions are capable of accurately capturing not just
final cell fate decisions but also the timing of such decisions.
This temporal aspect is important for correct patterning in the
neural tube as explored in Ref. [38].

A. Decomposing nonlinear memory functions

To understand how memory functions affect the pattern-
ing dynamics, we set out to understand their structure. We

FIG. 7. Diagrams indicating the channels that have the largest
memory contributions to the observed dynamics at three distinct
neural tube positions. Black dots indicate the species receiving the
memory contribution; the other end of each line is the species “send-
ing” the memory. Contributions change according to the final steady
state: p3 (a), pMN (b) and p2 (c).

perform our self-consistent memory decomposition approach
(Appendix E) and analyze the results to identify the mem-
ory channels with the most impact on the time courses
based on their contribution along the trajectory (Appendix
E). Performing this analysis for the different steady states,
which along the neural tube form the so-called progenitor
domains predicts the most important regulatory interactions
contributing to the memory effect at each neural tube position
(Fig. 7). This indicates marked differences in the most signif-
icant memory channels at different neural tube positions (see
Appendix E).

To test the validity of our results we remove all chan-
nels identified as unimportant, setting them to QSS, thereby
keeping only the channels shown in Fig. 7(a). Simulating the
dynamics with only these memory functions results in dynam-
ics that match closely those of the full simulation (Fig. 6),
confirming the prediction that these channels dominate the
memory effects.

We next investigated the experimentally validated transient
in gene expression in the p3 domain (monostable with high
Nkx2.2 in the steady state, p = 0.1, Fig. 6). Nkx2.2 induction
is delayed in neural progenitor cells compared to Olig2 [39]
and our analysis of the memory function provides insight into
how this is achieved. The active memory channels ensure that
Nkx2.2 is kept close to zero while Olig2 rises (Fig. 6). The
dominant memory channels shown in Fig. 7(a) indicate that a
different bulk species captures the history of each subnetwork
species: Pax6 transmits the memory of Nkx2.2 and Irx3 the
one of Olig2. The effect of these these bulk species is thus
to delay Nkx2.2 expression based on the past expression of
Nkx2.2 and Olig2.

Finally, we examined whether the effect of the two memory
functions (one for Olig2 and one for Nkx2.2) that reflect the
influence of the bulk is to increase the robustness of the system
to initial conditions. For the system with memory, the delay
in Nkx2.2 expression is present for multiple initial conditions,
with trajectories crossing in a way that would be impossible to
reproduce with a memoryless system (Fig. 8). From Fig. 7(a),
the memory has two dominant channels reacting to changes
in Nkx2.2 and Olig2, respectively. This ensures that if even
one of the subnetwork species levels drifts away from zero,
the memory pushes the path back into the “correct” direc-
tion. In the case of the memoryless system, the already short
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FIG. 8. Trajectories from multiple initial conditions starting near
zero for Olig2 and Nkx2.2 in the p3 region (p = 0.1). The compar-
ison emphasises the robustness provided by the memory functions
[ZMs, (b)] in comparison to a memoryless system [QSS, (a)]. All
trajectories reach the same attractor with high Nkx2.2 and low Olig2.
The ZMs system behaves almost identically to the full system, with
transient increases in Olig2 and large delays in reaching the steady
state from a variety of initial conditions. Color indicates time taken
to reach final steady state, quantified as Nkx2.2 deviating less than
1% from its asymptotic concentration. Insets have same axes as main
plots and show time to final steady state from a given initial position.

transient observed in Fig. 6 disappears completely as soon as
the initial conditions are no longer zero for Nkx2.2 [Fig. 8(a)].
In general, a transient is difficult to achieve in a 2D memo-
ryless system where a very specific function would have to
repress Nkx2.2 at both low and medium-high levels of Olig2.
We find that the memory generated by the combination of
Pax6 and Irx3 provides robustness to changes in the initial
condition as the memory leads to low levels of Nkx2.2 during
the initial phases of the transient [Fig. 8(b)].

V. DISCUSSION

We have developed a version of the Zwanzig-Mori for-
malism, building on the work of Chorin et al. [11], to obtain
closed-form memory functions that can be used to reduce the
dimensionality of a dynamical system far from equilibrium.
Our method applies to general first-order nonlinear differen-
tial equations of arbitrary dimensionality. Systems with higher
order time derivatives can in principle also be treated by intro-
ducing auxiliary variables for the lower order time derivatives
in the conventional way, though we have not explored exam-
ples of this type. The method is constrained only in that the
bulk must have a unique steady state given the subnetwork
state, which we refer to as QSS (quasi-steady state). This
restriction can be viewed as analogous to the assumption in
the standard Zwanzig-Mori projection that, due to detailed
balance, the bulk always reaches a Gibbs distribution for a
given subnetwork state.

Similar to the method of averaging and other dimension-
ality reduction approaches [5,17,40], our method contains a
timescale separation assumption as its baseline, where the
bulk is assumed to reach its QSS arbitrarily quickly, but in
contrast it then systematically finds the memory terms that
correct for this assumption.

In our examples, the bulk parts of the network were usually
chosen as small because, given the nonlinear cross-repressive
nature of the biological interactions that we study, multiple

bulk steady states might otherwise result. However, there is
no general restriction that the bulk has to be small per se or
smaller than the subnetwork, as long as the assumption of a
unique bulk steady state is met. For example, in the neural
tube network, one could choose a single subnetwork species
(Nkx2.2) and three bulk species.

We have demonstrated the accuracy of the approach in
capturing emergent dynamics such as nontrivial transients and
sustained or damped oscillations. By construction, the method
can capture multistability and we have shown its accuracy
in predicting the basins of attraction that, in a biological
context, delineate cell fate decisions. We subsequently ap-
plied the method to a biologically relevant system, the neural
tube patterning network [24]. The reduced model captures
the nontrivial dynamics of the original system through its
nonmonotonic transients. In addition, it provides an under-
standing of the cause of such transients in gene expression
and suggests that memory effects, stored in independent bulk
nodes, provide robustness to initial conditions.

As more information is acquired about complex systems,
methods like ours that coarse grain the elements of a sys-
tem but conserve the dynamics will be crucial to provide an
understanding of such systems. We have demonstrated the
generality of this method and its flexibility and applicability
to dynamical systems. In the biological context, the approach
holds promise, e.g., for more complex networks that incorpo-
rate signaling and gene regulation dynamics, where it could
be applied to distinguish the impact of these two effects onto
the macroscopic behavior in, e.g., tissue patterning.

In the present paper, we have not explored the role of the
random force, which captures effects of the bulk initially be-
ing away from QSS. However, our method gives a closed-form
approximation for this term in the projected equations, which
is simply the function Fs given by Eqs. (13) and (18). This
should make it straightforward to explore random force effects
in the future, e.g., to assess the importance of changes in bulk
initial conditions in the spirit of our previous work [27].

A further interesting avenue of research would be the de-
velopment of methods to capture the dynamics of systems
even when parts of the network are unknown [19,20]. This
approach could then be coupled with identifying the contribu-
tion of specific memory channels to the observed dynamics.
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APPENDIX A: EXPANSION AROUND QSS

In this Appendix, we detail how we derive the
memory evolution over time. We make use of our
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expansion Eq. (13) to find for the first term on the right hand side (RHS) of Eq. (5),

LFs =
∑

b

Rb(xs, xb) fbs(xs, τ ) +
∑

s′
Rs′ (xs, xb)

∑
b

(xb − x∗
b )

∂

∂xs′
fbs(xs, τ ) −

∑
s′

Rs′ (xs, xb)
∑

b

∂x∗
b

∂xs′
fbs(xs, τ ) (A1)

where the two last terms arise by differentiating the product (xb − x∗
b ) fbs(xs, τ ) w.r.t. xs′ and we have not written the xs

dependence of xb∗ for brevity. The second term on the RHS of Eq. (5) is the expectation of this, obtained by replacing xb

by xb∗,

E [LFs|xs] =
∑

b

Rb(xs, xb∗) fbs(xs, τ ) −
∑

s′
Rs′ (xs, xb∗)

∑
b

∂x∗
b

∂xs′
fbs(xs, τ ). (A2)

Putting the two together gives for the time evolution Eq. (5) of Fs:
∂Fs

∂τ
=

∑
b

[Rb(xs, xb) − Rb(xs, xb∗)] fbs(xs, τ ) +
∑

s′
Rs′ (xs, xb)

∑
b

(xb − x∗
b )

∂

∂xs′
fbs(xs, τ )

−
∑
s′b

[Rs′ (xs, xb) − Rs′ (xs, xb∗)]
∂x∗

b

∂xs′
fbs(xs, τ ). (A3)

For consistency with Eq. (13), we now linearize the square
brackets again in xb − xb∗. In the second term, we similarly
replace Rs′ (xs, xb) by Rs′ (xs, xb∗) as the remaining factor in
this term is already linear. Comparing then with the time
derivative of the original linearized formula Eq. (13) gives,
after appropriate relabelling of indices, the equation for the
evolution of fbs in time Eq. (15).

From the above expansion, one sees that the matrix lbb′ in
Eq. (15) takes the form

lbb′ = ∂Rb′

∂xb
−

∑
s′

∂Rs′

∂xb

∂x∗
b′

∂xs′
. (A4)

The form Eq. (16) in the main text is obtained by using the
identity

∂x∗
b′

∂xs′
= −

∑
b′′

(J−1)b′b′′
∂Rb′′

∂xs′
. (A5)

The latter can be obtained by differentiating Eq. (9) with
respect to xs.

To obtain the actual memory function from Eq. (19) is
now straightforward as we have already worked out the re-
quired expectation in Eq. (A2). The first term on the r.h.s. of
Eq. (A2), which we had previously kept to make the ensu-
ing linearization easier to see, actually vanishes because of
Eq. (9), yielding

Ms(xs, τ ) = −
∑
s′b′

Rs′
∂x∗

b′

∂xs′
fb′s(xs, τ ). (A6)

Using again the identity Eq. (A5), we obtain our main result
Eq. (20).

APPENDIX B: SOLUTION FOR F

In this Appendix, we find the solution fbs(xs, τ ) to the
differential Eq. (15). We start by restating the latter as

∂

∂τ
fbs −

∑
s′

vs′ (xs)
∂

∂xs′
fbs =

∑
b′

lbb′ (xs) fb′s, (B1)

where we have used that the factor Rs′ in Eq. (15) is just the
effective drift vs′ defined in Eq. (11). As the equation is linear
in fbs, its derivatives it can be solved using the method of char-
acteristics (see, e.g., Ref. [41]). Calling the curve parameter
for a characteristic u, the characteristic equations can be read
off from Eq. (B1) as

dτ

du
= 1, (B2)

dxs

du
= − vs(xs), (B3)

dfbs

du
=

∑
b′

lbb′ (xs) fb′s. (B4)

Setting an arbitrary integration constant to zero, the first of
these gives τ = u. To solve Eq. (B3), we call φv the flow
generated by v(xs), which is defined as the solution of the
differential equations

∂

∂τ
φv (xs, τ ) = v(φv (xs, τ )), φv (xs, 0) = xs. (B5)

The solution of Eq. (B3) is then

xs(u) = φv

(
xs

0,−u
)
, (B6)

where xs
0 is the value at the beginning of the characteristic

curve (u = 0); the minus sign in the second argument of φv

reflects the backward in time propagation in Eq. (B3). We note
for later that, as a consequence of Eq. (B6), the solution values
at u1 and u2 are related by

xs(u2) = φv (xs(u1),−u2 + u1). (B7)

Finally, the solution of Eq. (B4) is

fbs(u) =
∑

b′

(
e
∫ u

0 du′ l (xs (u′ )))
bb′ f 0

b′s
(
xs

0

)
, (B8)

using the initial condition Eq. (14) at τ = u = 0. From
Eq. (B4), we see that the matrix exponential appearing here
must be time ordered, with earlier “times” u′ appearing to the
right of later ones.

It now remains to express fbs(u) in terms of xs(u) and
τ (u) = u. We fix a û = τ̂ and call x̂s = xs(û). Using Eq. (B7)
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with u2 = u′ and u1 = u then shows that the xs-solution
Eq. (B6) can be expressed in terms of x̂s as

xs(u′) = φv (x̂s, τ̂ − u′) (B9)

and, in particular, xs
0 = φv (x̂s, τ̂ ), so

fbs(x̂s, τ̂ ) =
∑

b′

(
e
∫ τ̂

0 du′ l (φv (x̂s,τ̂−u′ )))
bb′ f 0

b′s(φv (x̂s, τ̂ )). (B10)

Changing the integration variable to τ ′ = τ̂ − u′ and dropping
the hats then gives the solution Eq. (18) announced in the main
text. Note that as τ ′ = τ̂ − u′, the time ordering of the matrix
exponential,

E(τ ) = exp

(∫ τ

0
dτ ′ l (φv (xs, τ ′))

)
, (B11)

is such that the earlier τ ′ are now on the left. The appropriate
time-ordered matrix exponential is defined formally via its
Taylor series,

E(τ ) = 1 +
∞∑

n=1

∫ n∏
i=1

dτi l (φv (xs, τ1)) × · · · × l (φv (xs, τn)),

(B12)
with 1 the identity matrix and the integration in the other terms
running over the range 0 < τ1 < . . . < τn < τ .

APPENDIX C: MAPPING OF SELF-CONSISTENT
MEMORY TO DIFFERENTIAL EQUATIONS

We show in this Appendix how to map the subnetwork
equations with self-consistent memory,

∂

∂t
xs = vs(xs(t )) + M̃s(t ), (C1)

to a set of differential equations. The self-consistent memory
term M̃s(t ) is given by Eq. (24),

M̃s(t ) =
∑

b′′

∫ t

0
dt ′∑

b′
cb′ (xs(t ′))

(
e
∫ t

t ′ dt ′′l (xs (t ′′ )))
b′b′′ f 0

b′′s(x
s(t )),

(C2)

so can be written as

M̃s(t ) =
∑

b

mb(t ) f 0
bs(x

s(t )), (C3)

with

mb(t ) =
∫ t

0
dt ′ ∑

b′
cb′ (xs(t ′))

(
e
∫ t

t ′ dt ′′l (xs (t ′′ )))
b′b. (C4)

It is then straightforward to check that

d

dt
mb(t ) = cb(xs(t )) +

∑
b′

mb′ (t )lb′b(xs(t )), (C5)

where the second term arises from the t dependence of the
matrix exponential. The mb(t ) can therefore be obtained nu-
merically by integrating the differential Eq. (C5) together with
the subnetwork equations with (self-consistent) memory:

d

dt
xs(t ) = vs(xs(t )) +

∑
b′

mb′ (t ) f 0
sb′ (xs(t )). (C6)

The appropriate initial conditions for the auxiliary variables
follow from Eq. (C4) as mb(0) = 0.

APPENDIX D: CHANNEL DECOMPOSITION

We begin by writing the expression for the memory func-
tion explicitly, combining Eqs. (14), (18), (20), and (21):

Ms(xs, τ ) =
∑
b′s′b′′

(J−1)b′b′′
∂Rb′′

∂xs′
Rs′ fb′s(xs, τ ), (D1)

=
∑
b′s′b′′

(J−1)b′b′′
∂Rb′′

∂xs′
Rs′

∑
c

Eb′c(τ ) f 0
cs(φv (xs, τ )), (D2)

=
∑
b′s′b′′

(J−1)b′b′′
∂Rb′′

∂xs′
Rs′

∑
c

Eb′c(τ )
∂Rs

∂xc
(φv (xs, τ )), (D3)

where the first three factors are evaluated at xs. We now swap index labels and group the sums into a more intuitive form:

Ms(xs, τ ) =
∑

s′

∑
bb′

(∑
b′′

(J−1)b′′b′ (xs)
∂Rb′

∂xs′
(xs)Rs′ (xs)Eb′′b(τ )

∂Rs

∂xb
(φv (xs, τ ))

)
. (D4)

As discussed in the main text, the expression up to before
the exponential represents a change in the deviation of the
bulk species concentration xb′′ from its QSS values over some
small time interval, in response to changes in the subnetwork
concentrations xs′ [see also Eq. (I4) below]. In the factor
∂Rb′/∂xs′ , only those bulk species b′ contribute whose time
evolution depends explicitly on the subnetwork species s′
driving the bulk time evolution via Rs′ . The b′ can then be
interpreted as outgoing channels for the signal from s′. After
propagation in the bulk network, the signal returns via another
bulk species. Here only bulk species b contribute that appear

explicitly in the time evolution of subnetwork species s as
indicated by the factors ∂Rs/∂xb. The b can therefore be
interpreted as incoming channels. Overall, we have memory
effects from s′ onto s, via an outgoing channel (s′ to b′) and
an incoming channel (b to s). Consistent with this interpre-
tation, the outgoing channel “susceptibilities” ∂Rb′/∂xs′ are
evaluated for the past, i.e., sending, state xs ≡ xs(t ′) of the
subnetwork. The incoming channel susceptibilities ∂Rs/∂xb,
on the other hand, are evaluated at the current time t as shown
by the propagation via φv across the time difference τ =
t − t ′. Within the self-consistent approximation Eq. (C5), this
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propagation corresponds directly to evaluation at the current
state xs(t ).

APPENDIX E: SELF-CONSISTENT CHANNEL
DECOMPOSITION

The channel decomposition of Sec. D can also be applied
to the self-consistent memory approximation, as we now out-
line. Writing out the self-consistent memory term Eq. (C2)
explicitly and reordering and relabelling terms as in Eq. (D4)
gives

M̃s(t ) =
∫ t

0
dt ′ ∑

s′

∑
bb′

∑
b′′

∂Rs

∂xb
(xs(t ))

(
e
∫ t

t ′ dt ′′l (xs (t ′′ )))
b′′b

× (J−1)b′′b′ (xs(t ′))
∂Rb′

∂xs′
(xs(t ′))Rs′ (xs(t ′))

=
∑

s′

∑
bb′

∂Rs

∂xb
(xs(t ))msbb′s′ (t ), (E1)

where

msbb′s′ (t ) =
∫ t

0
dt ′ ∑

b′′
(J−1)b′′b′ (xs(t ′))

∂Rb′

∂xs′
(xs(t ′))Rs′ (xs(t ′))

× (
e
∫ t

t ′ dt ′′l (xs (t ′′ )))
b′′b. (E2)

From this last representation, it follows that the msbb′s′ (t ) van-
ish at t = 0 and obey the differential equations:

d

dt
msbb′s′ (t ) = (J−1)bb′ (xs(t ))

∂Rb′

∂xs′
(xs(t ))Rs′ (xs(t ))

+
∑

b′′
msb′′b′s′ (t )lb′′b(xs(t )). (E3)

The channel-decomposed memory can therefore also be cal-
culated from differential equations (see Appendix G). Of
course, one only needs to find the msbb′s′ for combinations (sb)
and (b′s′), where the corresponding channel susceptibilities
are nonzero.

APPENDIX F: EXACTNESS OF MEMORY

We show that the self-consistent memory mb(t ) is exact
when both Rs and Rb contain at most linear terms in xb. In
such a case, the full system can be written as

Rs = vs +
∑

b′
x̃b′ f 0

b′s, Rb =
∑

b′
Jbb′ x̃b′ , (F1)

where x̃b = xb − x∗
b (xs) and the QSS value xb∗(xs) is an ar-

bitrary function of xs. We now want to show that the x̃b

correspond exactly to the mb from the self-consistent ZMs
method. To do this, we work out their evolution in time:

d

dt
x̃b = Rb −

∑
s′

Rs′
∂x∗

b

∂xs′

=
∑

b′
Jbb′ x̃b′+

∑
s′

(
vs′ +

∑
b′

x̃b′ f 0
b′s′

) ∑
b′′

(J−1)bb′′
∂Rb′′

∂xs′
.

(F2)

FIG. 9. Oscillating Brusselator system as described in Ref. [31];
we retain the concentration of the first species x1 in the subnetwork
and place the second species in the bulk. Parameters for the sustained
oscillatory regime in this example are A = 1 and B = 3 in the no-
tation of Ref. [31]. The trajectory of the self-consistent projection
(red dots) captures that of the original system (solid line) exactly
as expected from the general proof in Appendix F, while the QSS
approximation (dotted line) fails qualitatively.

By using that for an xb-linear system as assumed here, one has
f 0
bs = ∂Rs/∂xb, the above can be rewritten as

d

dt
x̃b =

∑
b′′

(J−1)bb′′
∂Rb′′

∂xs′
vs′

+
∑

b′
x̃b′

(
Jbb′ +

∑
s′b′′

(J−1)bb′′
∂Rb′′

∂xs′

∂Rs′

∂xb′

)
. (F3)

Using then the definitions Eqs. (16) and (21), we obtain an
expression equivalent to Eq. (C5),

d

dt
x̃b = cb +

∑
b′

x̃b′ lb′b, (F4)

thus showing that x̃b = mb when we start from the same initial
condition x̃b = 0, i.e., the bulk at QSS.

We test the above exactness statement on two different
examples that have a linear dependence on a particular
species but nonlinear dependencies on other species: a
minimal bistable system as described in Ref. [30], and the
Brusselator, which is capable of achieving limit cycles [31].
As expected from the above derivation, the self-consistent
memory captures the behavior of both systems exactly (Figs. 9
and 10). As further shown in Fig 10, the original nonlinear
projection method ZMn is also accurate at capturing the
dynamics though not necessarily exact. The corresponding
memory function is shown in Fig.11. (We note that the
memory functions of the Brusselator grow exponentially in
a way that forces memory terms to cancel out to zero at the
fixed point; this leads to numerical challenges that we do not
pursue here.)

APPENDIX G: LINEAR DYNAMICS

We discuss briefly the case of fully linear dynamics, where
the dependence of Rs and Rb on all variables xs and xb (not
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FIG. 10. Minimal bistable system with linear dependence on the second species as described in Ref. [30]; we choose x1 for the subnetwork
and place the second species in the bulk. Parameters for the bistable regime in this example are k1 = 10, k2 = 1, k3 = 2, and k4 = 1 [30]. The
trajectory of the self-consistent ZMs projection again captures that of the original system (solid line) exactly (see Appendix F and Fig. 9) so
is not plotted. G-QSS represents the Gouasmi et al. approach adapted to QSS projection (Appendix I). (a) x1(0) = 1.4. At initial conditions
near the fixed point, both the ZMn method (cyan dots) and G-QSS (orange line) behave similarly and accurately capture the full dynamics.
(b) x1(0) = 11.9. Further away from the final stable fixed point, the G-QSS predictions become increasingly inaccurate while the ZMn method
continues to provide a good approximation.

just xb as in Appendix F) is only via constant and linear terms.
Such a description can always be obtained by expanding lin-
early around a fixed point of the dynamics [21,27]. One then
sees from Eqs. (16) and (14) that lbb′ and f 0

bs are both constant,
i.e., independent of xs. Accordingly [compare Eqs. (18), (20),
and (24)]. the memory functions of the ZMn and ZMs pro-
jections also become identical, and the corresponding channel
decompositions are also the same.

To illustrate the linearized dynamics approach, we perform
a channel decomposition of the amplitude (value at τ = 0) of
the linearized memory in the neural tube system as we did
in Ref. [27], but now for the method derived in this study
(Fig. 12). We find similar profiles to those found in Ref. [27].
The results highlight the relative weakness of the memory
from Olig2 into Nkx2.2 via Pax6, supporting the conclusions
of Ref. [27]. In addition, channel decomposition for the ZM

trajectory shown in Fig. 6 provided memory terms affecting
Nkx2.2 and Olig2 (Fig. 13). The method derived in this study
is, however, significantly more powerful as it does not rely
on an expansion near a steady state and gives access to the
full memory and its channel decomposition as described in
Appendixes D and E.

APPENDIX H: COMPARISON WITH ALTERNATIVE
MEMORY FUNCTION APPROXIMATION

Gouasmi et al. [18] propose an approximation for the
memory function for the case where the projection Eq. (10)
is defined not by setting the bulk coordinates to their xs-
dependent QSS values, but simply to zero:

E [g(·)|xs] = g(xs, 0). (H1)

FIG. 11. Memory functions for the system detailed in Ref. [30] with the parameters chosen for Fig. 10. (a) Using the ZMn. (b) Using the
method from Gouasmi et al. as extended to QSS projection in Appendix I. The x axis shows the concentration of the subnetwork species x1

while the y axis indicates time difference τ . By construction, the two memory function approximations predict the same value (scale bar to
the right) at τ = 0, as they only differ in how they propagate the memory over time. At τ > 0, the memory functions are relatively similar
for x1 ∈ [0, 6] but become progressively different as x1 grows beyond this range; for x1 � 10, the G-QSS method predicts a negative memory
function for all τ that leads to its poor performance as observed in Fig. 10.
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FIG. 12. Amplitudes (value at time difference τ = 0) of nonlinear memory functions linearized around fixed points, for comparison with
the approach of Ref. [27], where memory functions expanded around fixed points were calculated directly. (a) Amplitude of memory of Nkx2.2
to itself along the neural tube. There are multiple lines as the analysis was performed at all possible stable steady states. The vertical axis is
logarithmic to make the range of amplitudes easier to appreciate. Colors identify the memory amplitude contribution from the two possible
bulk channels, via Irx3 and Pax6, respectively. Thick lines indicate physiological states, while thin lines indicate states that are not usually
observed in vivo. (b) Amplitude of memory of Nkx2.2 to levels of Olig2, shown along the neural tube. The memory via Pax6 is for the most
part below the memory via Irx3, in each pair of corresponding curves. (c), (d) Amplitudes of memory of Olig2 to past Nkx2.2 (c) and to itself
(d). No channel decomposition is performed as Olig2 receives memory only via the Irx3 channel.

The function Fs(xs, xb, τ ) still evolves according to Eq. (5),
which written out now reads

∂

∂τ
Fs = LFs(xs, xb, τ ) − E [LFs(·, τ )|xs], (H2)

=
∑

s′
Rs′ (xs, xb)

∂Fs

∂xs′
+

∑
b

Rb(xs, xb)
∂Fs

∂xb
,

−
∑

s′
Rs′ (xs, 0)

∂Fs

∂xs′
(xs, 0, τ )

−
∑

b

Rb(xs, 0)
∂Fs

∂xb
(xs, 0, τ ), (H3)

where the very last factor is the xb derivative of F evaluated at
xb = 0. The approximation of Ref. [18] amounts to ignoring
the fact that the derivatives of Fs are evaluated at a different
point in the last two lines, which gives

∂

∂τ
Fs =

∑
s′

[Rs′ (xs, xb) − Rs′ (xs, 0)]
∂Fs

∂xs

+
∑

b

[Rb(xs, xb) − Rb(xs, 0)]
∂Fs

∂xb
. (H4)

This has the form of a Liouville equation as noticed in
Ref. [18] and so its solution can be written as

Fs(xs, xb, τ ) = Fs(ψ
s(xs, xb, τ ),ψb(xs, xb, τ )), (H5)

where the components of the vector functions ψs and ψb

evolve with τ according to

∂

∂τ
ψs = Rs(ψ

s,ψb) − Rs(ψ
s, 0), (H6)

∂

∂τ
ψb = Rb(ψs,ψb) − Rb(ψs, 0), (H7)

from the initial conditions

ψb(xs, xb, 0) = xb, ψs(xs, xb, 0) = xs. (H8)

The function Fs at τ = 0, which as before we write without a
time argument, is given by the analog of Eq. (12):

Fs(xs, xb) = Rs(xs, xb) − Rs(xs, 0). (H9)

The corresponding memory as defined in Eq. (19) is

MG
s (xs, τ ) =

∑
s′

Rs′
∂

∂xs′
Fs(ψ

s,ψb) +
∑

b

Rb
∂

∂xb
Fs(ψ

s,ψb),

(H10)

FIG. 13. Channel decomposition of the memory terms for the ZMs trajectory shown in Fig. 6. (a) and (b) show memory terms affecting
Nkx2.2 and Olig2, respectively. Each color represents a memory channel as indicated. The memory originates from a particular subnetwork
species “sending” memory through a specific bulk species; the effect then propagates within the bulk and returns via a specific bulk species
(see legend). The two most salient memory functions are Nkx2.2 to Pax6 and then returning through Pax6 into Nkx2.2 (thick yellow line),
and Olig2 to Irx3 and then returning through Pax6 into Nkx2.2 (thick blue line). (b) shows a large memory contribution acting on Olig2 via
the channel through Irx3 (yellow line). However, in this case, the drift for Olig2 (c) is so large that the relative effect of this memory channel
remains nonetheless small.
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where all Rs′ , Rb and the derivatives are evaluated at (xs, 0).
Gouasmi et al. propose to find these derivatives numerically,
but in fact a closed form expression can be obtained as fol-
lows. Applying the chain rule gives

MG
s (xs, τ ) =

∑
s′s′′

Rs′
∂Fs

∂ψs′′

∂ψs′′

∂xs′
+

∑
s′b

Rs′
∂Fs

∂ψb

∂ψb

∂xs′

+
∑
s′b

Rb
∂Fs

∂ψs′

∂ψs′

∂xb
+

∑
bb′

Rb
∂Fs

∂ψb′

∂ψb′

∂xb
. (H11)

Now note that in the final evaluation we always use xb = 0,
which from the differential Eqs. (H6) and (H7) implies ψs =
xs, ψb = 0 for all τ . Hence, in particular ψb is independent
of xs and so ∂ψb/∂xs′ = 0. We also have Fs(xs, 0) = 0 from
Eq. (H9), which implies ∂Fs/∂ψs′ = 0. Only the last term
from Eq. (H11) thus survives,

MG(xs, τ ) =
∑
bb′

Rb
∂Fs

∂ψb′

∂ψb′

∂xb
, (H12)

and it remains to find ∂ψb′/∂xb. By differentiating Eq. (H7)
for ∂ψb′/∂τ w.r.t. xb, one finds

∂

∂τ

∂ψb′

∂xb
= ∂Rb′

∂ψb′′

∂ψb′′

∂xb
. (H13)

On the r.h.s., a similar term from the variation of ψs vanishes
because it would be proportional to

∂Rb′

∂ψs
(ψs,ψb) − ∂Rb′

∂ψs
(ψs, 0). (H14)

This difference is zero in the final evaluation at xb = 0
(which implies ψb = 0). For the same reason, the derivatives
∂Rb′/∂ψb′′ = ∂Rb′/∂xb′′ are evaluated at (xs, 0) and constant
in time τ . Collecting these derivatives into a matrix k with
elements kb′b′′ and using that ∂ψ ′

b/∂xb = δbb′ (= 1 for b = b′
and = 0 otherwise) at τ = 0 gives then as the explicit solution
of Eq. (H13),

∂ψb′

∂xb
= (ekτ )b′b, (H15)

and inserting into Eq. (H12) yields

MG(xs, τ ) =
∑
bb′

∂Rs

∂xb′
(ekτ )b′bRb, (H16)

where we have used that ∂Fs/∂ψb′ = ∂Fs/∂xb′ = ∂Rs/∂xb′ ;
this derivative and the factor Rb are evaluated at (xs, 0)
in the approximation from Ref. [18] for the memory
function.

We do not show here how the above memory approxima-
tion performs in our test systems because the nature of the
approach can lead to fixed points disappearing after projection
or new fixed points appearing. We observed both of these
effects in numerical evaluations for the bistable switch from
Ref. [30].

APPENDIX I: EXTENDING GOUASMI ET AL.
APPROXIMATION WITH QSS PROJECTION

The Gouasmi et al. approximation [18] for the memory
function rests on projecting to xb = 0, but this is not generally

an appropriate baseline for our case as it would correspond to
setting all bulk concentrations to zero. However, we can adapt
the approximation to the spirit of our work by changing coor-
dinate system so that zero bulk coordinates correspond to the
projection we consider throughout the paper, i.e., to QSS bulk
concentrations. Explicitly, this variable transformation reads

x̃s = xs, x̃b = xb − x∗
b (xs) (I1)

because x̃b = 0 is then equivalent to xb = x∗
b (xs). The time

evolution of the new variables follows as

d

dt
x̃s = R̃s(x̃s, x̃b) = Rs(x̃s, xb∗ + x̃b), (I2)

d

dt
x̃b = R̃b(x̃s, x̃b), (I3)

= Rb(x̃s, xb∗ + x̃b) +
∑

s

[∑
b′

(J−1)bb′
∂Rb′

∂xs

]

× Rs(x̃s, xb∗ + x̃b), (I4)

where the factors enclosed in square brackets are the explicit
expression for −∂x∗

b/∂xs and have to be evaluated at xb∗.
The Gouasmi memory function approximation, adapted for

our QSS projection, is now given by Eq. (H16) applied to
the new variables x̃s, x̃b and corresponding drift functions R̃s,
R̃b. The last factor is R̃b(x̃s, 0), which can be read off from
Eq. (I4). The first term in Eq. (I4) vanishes as Rb = 0 at
QSS, while the remainder is seen to be precisely cb(xs) from
Eq. (21). The matrix k in the new variables has elements

kb′b = ∂R̃b′

∂ x̃b
= ∂Rb′

∂xb
+

∑
s

[∑
b′

(J−1)bb′
∂Rb′

∂xs

]
∂Rs

∂xb
= lbb′ .

(I5)

Note that the terms in square brackets are already just de-
pendent on xs, so do not contribute to the derivative. The
remaining factor in the memory function is, again in the new
variables,

∂R̃s

∂ x̃b′
= ∂Rs

∂xb′
, (I6)

so, overall,

M̃G
s (xs, τ ) =

∑
bb′

∂Rs

∂xb′
(el (xs )τ )bb′cb(xs) =

∑
b′

cb′ (xs) f̃b′s(xs, τ )

(I7)
with

f̃b′s(xs, τ ) = (
el (xs )τ )

b′b f 0
bs(x

s), (I8)

where we have used the definition of f 0
bs from Eq. (14).

Comparing now Eqs. (18) and (I8) shows that the memory
approximation Eq. (I7), though derived here from rather dif-
ferent arguments, is quite similar to our expression Eq. (20):
The only difference is that the propagation from xs to
φv (xs, τ ) is absent in f̃b′s, which is the analog of our fbs.
We show that without the φv propagation, the method can
still perform accurately in some situations but breaks down
in other settings (Fig. 10).
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APPENDIX J: NEURAL TUBE MODEL

We detail the model taken from Ref. [24] used to model ventral neural tube patterning. The equations are as follows:

d

dt
xP = αPwP,p

wP,p + (1 + kPOxO)2(1 + kPNxN)2
− βPxP, (J1)

d

dt
xO = αOwO,p(1 + kO,inxin )

wO,p(1 + kO,inxin ) + (1 + kOIxI )2(1 + kONxN)2
− βOxO, (J2)

d

dt
xN = αNwN,p(1 + kN,inxin )

wN,p(1 + kN,inxin ) + (1 + kNPxP)2(1 + kNOxO)2(1 + kNIxI )2
− βNxN, (J3)

d

dt
xI = αIwI,p

wI,p + (1 + kIOxO)2(1 + kINxN)2
− βIxI. (J4)

The parameters and their meaning in a biological sense are detailed as follows:

Name Meaning Value

αP Pax6 production rate 2
αO Olig2 production rate 2
αN Nkx2.2 production rate 2
αI Irx3 production rate 2
βP Pax6 degradation rate 2
βO Olig2 degradation rate 2
βN Nkx2.2 degradation rate 2
βI Irx3 degradation rate 2
kPO Olig2 binding to Pax6 DNA 1.9
kPN Nkx2.2 binding to Pax6 DNA 26.7
kON Nkx2.2 binding to Olig2 DNA 60.6
kOI Irx3 binding to Olig2 DNA 28.4
kNP Pax6 binding to Nkx2.2 DNA 4.8
kNO Olig2 binding to Nkx2.2 DNA 27.1
kNI Irx3 binding to Nkx2.2 DNA 47.1
kIO Olig2 binding to Irx3 DNA 58.8
kIN Nkx2.2 binding to Irx3 DNA 76.2
wP,p Polymerase binding to Pax6 DNA 3.84
wO,p Polymerase binding to Olig2 DNA 2.01263
wN,p Polymerase binding to Nkx2.2 DNA 0.572324
wI,p Polymerase binding to Irx3 DNA 18.72
kO,in Gli (Shh signal) binding to Olig2 DNA 180
kN,in Gli (Shh signal) binding to Nkx2.2 DNA 373

The signal input concentration xin is the gradient e−p/0.15, which depends on the dorsal-ventral neural tube position p ranging
from 0 to 1 as in Ref. [24].
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