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ABSTRACT

The Drosophila blastoderm and the vertebrate neural tube are
archetypal examples of morphogen-patterned tissues that create
precise spatial patterns of different cell types. In both tissues, pattern
formation is dependent on molecular gradients that emanate from
opposite poles. Despite distinct evolutionary origins and differences
in time scales, cell biology and molecular players, both tissues exhibit
striking similarities in the regulatory systems that establish gene
expression patterns that foreshadow the arrangement of cell types.
First, signaling gradients establish initial conditions that polarize the
tissue, but there is no strict correspondence between specific
morphogen thresholds and boundary positions. Second, gradients
initiate transcriptional networks that integrate broadly distributed
activators and localized repressors to generate patterns of gene
expression. Third, the correct positioning of boundaries depends on
the temporal and spatial dynamics of the transcriptional networks.
These similarities reveal design principles that are likely to be broadly
applicable to morphogen-patterned tissues.

KEY WORDS: Bicoid, Drosophila blastoderm, Gene regulatory
network, Morphogen interpretation, Sonic hedgehog, Vertebrate
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Introduction

The importance of gradients in developing embryos and
regenerating tissue has long been recognized. From initial
proposals more than a century ago, detailed suggestions of the
function and nature of embryonic gradients began to take shape (for
a review see Rogers and Schier, 2011). These ideas became more
concrete in the 1950s and 1960s, with major theoretical
contributions from, among others, Alan Turing, Lewis Wolpert
and Francis Crick. Turing coined the term ‘morphogen’ to signify
biochemical substances that diffuse between cells and generate
specific responses at particular concentrations (Turing, 1952).
Wolpert introduced the conceptual framework of ‘positional
information” in which developmental pattern formation is
dependent on cells interpreting positional values that they have
acquired from external signals (Wolpert, 1969). Crick, noticing that
pattern specification generally took a few hours and that most
developing tissues appeared to be no larger than ~100 cell
diameters, argued, on theoretical grounds, that diffusion was
sufficient to establish molecular gradients in tissues (Crick, 1970).
Uniting these ideas led to the morphogen theory. This contends that
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tissue patterning is controlled by a concentration gradient of a
morphogen, and that cells acquire positional information by directly
measuring the concentration of morphogen to which they are
exposed. In this view, specific threshold concentrations establish
boundaries of target gene expression, which foreshadow boundaries
between cells of different fates.

Although they have evolved over the years to accommodate
changing facts and fashions, these ideas have had a profound
influence on generations of developmental biologists. The molecular
genetics revolution of the 1980s and 1990s led to the identification of
several molecules that behave as graded patterning signals (Driever
and Nisslein-Volhard, 1988a; Ferguson and Anderson, 1992; Green
and Smith, 1990; Katz et al., 1995; Riddle et al., 1993; Tickle et al.,
1985). Subsequent studies revealed that, in most cases, gradients of
these molecules are established by dispersion from localized sources
and are required for the expression of target genes that are expressed at
various distances from the source (reviewed by Rogers and Schier,
2011; Ibafes and Izpisua Belmonte, 2008; Jeong and McMahon,
2005; Kicheva et al., 2013; Lander, 2013; Lawrence and Struhl,
1996). Recent attention has focused on dissecting the cellular and
molecular mechanisms of gradient formation, and advances in
imaging and quantitation have contributed fresh insights
(Chamberlain et al., 2008; Gregor et al., 2007b; Grimm et al.,
2010; He et al., 2008; Kicheva et al., 2007; Little et al., 2011; Zhou
etal., 2012). At the same time, complementary studies have aimed to
understand how cells respond to graded signals to control differential
gene expression (Crauk and Dostatni, 2005; Gregor et al., 2007a;
Jiang and Levine, 1993; Robertson, 2014). Finally, a combination of
genetics, genomics, misexpression studies, network analysis and
mathematical modeling has led to new views of morphogen
interpretation (Davidson, 2010; Jaeger et al., 2008; Shilo et al., 2013).

Although gradient formation has been examined in diverse
developmental contexts, studies have focused on two examples in
particular: Bicoid (Bcd)-mediated patterning of the Drosophila
blastoderm and Sonic hedgehog (Shh)-mediated patterning of the
vertebrate neural tube (Boxes 1 and 2) (for reviews see Alaynick
et al., 2011; Dessaud et al., 2008; Jaeger, 2011; Jessell, 2000;
Nasiadka et al., 2002; Struhl, 1989). Here, we compare these
systems in the context of ideas about gene regulatory networks and
dynamical systems theory. This comparison reveals several shared
features and suggests that a set of common design principles
underpins the patterning of both tissues. These principles form a
basis for a revised theory of morphogen-mediated pattern formation.
We argue that this theory is likely to be relevant to many tissues and
discuss the rationale that might account for this strategy of tissue
patterning.

The Drosophila blastoderm and the vertebrate neural tube:
distinct but alike

The Drosophila blastoderm and the vertebrate neural tube have
distinct evolutionary origins that predate the emergence of the
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(Clyde et al., 2003; Jaeger et al., 2004a; Kraut and Levine, 1991).

Box 1. Anterior-posterior (AP) patterning of the Drosophila blastoderm

AP patterning of the early Drosophila embryo involves maternal gradients of two homeodomain proteins: Bicoid (Bcd) and Caudal (Cad). Bed protein is
translated from a source of MRNA at the anterior pole and diffuses posteriorly through the syncytial blastoderm, forming a long-range AP gradient, with
highest levels at the anterior end (Driever and Nusslein-Volhard, 1988a; Little et al., 2011). Complementing the Bcd gradient is an anti-parallel gradient of
Cad, which is shaped by Bcd-mediated translational repression (Chan and Struhl, 1997; Niessing et al., 2002). These gradients are initially formed near the
cortex of the oocyte, while nuclei divide rapidly in the central region. After ten nuclear division cycles, nuclei migrate to the periphery and import different

Bcd activates target genes that create boundaries at defined positions along the AP axis, dividing the body plan into regions that will become cephalic (C),
thoracic (T1-T3) and abdominal (A1-A8) segments. Bcd target genes include sloppy-paired 1 (slp1), giant (gt) and hunchback (hb), which are activated in
overlapping domains in anterior regions. sip7, gt and hb encode repressors, which prevent expression of run, Kr and kni, respectively. Mutual repression
between these pairs of repressors refines their patterns, creating sharp gene expression boundaries that foreshadow the organization of the body plan

Sip1

bilateria. The signals that act as positional cues in the two tissues
are unrelated, the transcription factors (TFs) involved are not
orthologous, and the time scales of pattern formation are
dissimilar. Establishing the Bed gradient and the emergence of
the gap gene pattern happens within the first ~2 h of Drosophila
development (Driever and Niisslein-Volhard, 1988a; Fowlkes
et al., 2008; Surkova et al., 2008). Indeed, gap gene expression is
first detected at nuclear cycle 10 and pattern is generally
considered fully manifest during nuclear cycle 14, a period of
~60 min after these genes are initially expressed. In the neural
tube, by contrast, the period of patterning varies between species
but takes many hours. For example, in chick and mouse embryos
the establishment and elaboration of pattern occur over a period of
more than 18 h (Dessaud et al., 2007; Jeong and McMahon,
2005). This difference in timing might be directly related to
the substantial differences in the cell biology of the two tissues.
The Drosophila blastoderm is a syncytium with nuclei residing
in a shared cytoplasm undergoing synchronized divisions.
The absence of cytoplasmic divisions in the blastoderm allows
the relatively unfettered movement of TFs between neighboring
nuclei, especially during mitosis when the nuclear membranes
have broken down. By contrast, the neural tube is a
pseudostratified epithelial sheet composed of multiple individual
cells proliferating asynchronously. Long-range signaling within
the neural tube relies on secreted proteins, which are received by
transmembrane receptors and transduced by intracellular signaling
pathways.

Despite these differences, there are obvious parallels between the
patterning mechanisms in the two tissues. Both are quasi one-
dimensional systems with anti-parallel gradients of signaling cues

emanating from the two poles of the patterning axis. These cues
establish discrete domains expressing sets of TFs that divide the
tissues into molecularly distinct blocks of cells arrayed along the
patterning axis. In both cases, the combination of TFs expressed in
each cell provides the molecular correlate of'its position and controls
its subsequent development (Boxes 1 and 2). Thus, the problem of
pattern formation becomes a question of understanding how the
distinct domains of TF expression are generated in an organized and
reproducible manner.

Comparing the underlying mechanisms operating in the two
tissues supports the idea that there are fundamental similarities in
their strategies of pattern formation. Here, we propose an overall
design logic to morphogen patterning mechanisms comprising three
principles that are shared between the Drosophila embryo and
vertebrate neural tube patterning systems (Fig. 1). First, we propose
that morphogen gradients establish the initial conditions for pattern
formation (Fig. 1A). The spatial and temporal input from the
gradients determines the state of a transcriptional network by
regulating the expression of activating and repressing TFs. Second,
target genes are controlled by composite and modular regulatory
elements containing binding sites for multiple distinct TFs
(Fig. 1B). These elements integrate the transcription inputs to
create precise patterns of gene expression. Finally, the dynamics of
the transcriptional network transforms the graded input into a
precise pattern of gene expression (Fig. 1C), directly linking spatial
and temporal mechanisms of pattern formation. Given the separate
origins and the molecular and cellular differences between the two
systems, these similarities are likely to point towards essential
properties of cellular patterning in many — perhaps all — complex
tissues.
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Box 2. Dorsal-ventral (DV) patterning of the vertebrate neural tube
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Cell fate specification in the vertebrate neural tube follows a template similar to that in the Drosophila blastoderm. Discrete domains of progenitors (p0-p3,
pMN, pd1-pd6) are arrayed along the DV axis (Alaynick et al., 2011; Dessaud et al., 2008; Jessell, 2000). Progenitor domain identity is based on the
combinatorial expression of a set of TFs and this combinatorial code is necessary and sufficient to specify the neuronal subtypes (V0-V3, MN, dI1-dI6) that
each domain generates. The pattern of gene expression is established in a progressive manner in response to opposing gradients of secreted factors: Shh
emanating from the ventral pole (NC, notochord); Wnt and BMP signaling dorsally.

Shh binds to the transmembrane receptor Ptch, and this relieves repression on a second transmembrane protein, Smo. Smo activation initiates
intracellular signal transduction, culminating in the regulation of Gli family TFs (Briscoe and Thérond, 2013), which are bifunctional transcriptional repressors
and activators. In the absence of signal, Gli proteins are either completely degraded or processed to form transcriptional repressors (GliR), whereas Shh
signaling inhibits GIliR formation and instead activating forms of Gli proteins (GliA) are generated.

In response to the dynamic gradient of Gli activity produced by Shh signaling, the expression of ventral TFs (e.g. Nkx6.1, Olig2, Nkx2.2) are activated, and
dorsally expressed TFs (e.g. Pax3, Pax7, Pax6, Msx1, Irx3) are repressed. Binding sites for Gli proteins are associated with genes expressed in the ventral
half of the neural tube (Oosterveen et al., 2012; Peterson et al., 2012; Vokes et al., 2007). Many Shh/Gli-regulated genes encode TFs that act as Groucho/
TLE-dependent repressors (Muhr et al., 2001). Analogous to the gap proteins, pairs of TFs expressed in adjacent domains cross-repress each other’s

expression (Briscoe et al., 2000; Vallstedt et al., 2001).

Morphogen gradients provide asymmetry but not precise
positional information
Genetic and molecular studies indicate that Bcd and Shh act as long-
range morphogens within their tissues. In both systems, the absence
of the morphogen prevents the formation of some cell types and
results in dramatic shifts and expansions of the remaining cell
identities into regions normally occupied by the cell types that fail to
form. For example, in embryos from mothers lacking Bed, head and
thoracic segments are completely missing and there is a duplication
of posterior structures at the anterior end of the embryo (Frohnhéfer
et al., 1986). Similarly, in mutant mouse embryos lacking Shh
signaling, the cell types found in the dorsal neural tube replace those
normally occupying the ventral neural tube (Chiang et al., 1996;
Litingtung and Chiang, 2000; Wijgerde et al., 2002). Thus, at the
functional level, both Bed and Shh are involved in two types of
activities: the repression of cell fates normally produced at the
opposite pole, and the instructive activation of genes required for
forming structures where there are high levels of the morphogen.
Several lines of evidence suggest that both Bed and Shh can
function in a concentration-dependent fashion. In the Drosophila
blastoderm, increasing bcd gene copy number shifts the posterior
boundaries of Bcd-dependent target genes toward the posterior of
the embryo (Driever and Niisslein-Volhard, 1988b; Struhl et al.,
1989). Conversely, changing the number or affinity of Bed binding
sites alters the anterior-posterior (AP) range of bcd reporter
transgenes: increased binding results in posterior expansion and
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vice versa (Driever et al., 1989; Simpson-Brose et al., 1994; Struhl
et al., 1989). For the neural tube, ex vivo experiments using
recombinant Shh protein indicate that two- to threefold changes in
Shh concentration produce switches in neural progenitor identity
(Ericson et al., 1997b; Marti et al., 1995; Roelink et al., 1995).
Hence, there is a correlation between ligand concentration and
differential gene expression. Comparable changes in neural
progenitor identity can also be elicited by modulating the activity
level of intracellular Gli — the transcriptional effector of Shh
signaling (Stamataki et al., 2005). Together, these data appear to
support the conventional view of a morphogen in which boundaries
of gene expression correspond to specific thresholds of morphogen
activity, implying that the concentration of a patterning signal is a
direct measure of positional information.

However, findings from both the blastoderm and neural tube
challenge the strict relationship between signal concentration and
positional identity. In embryos in which the Bcd gradient has been
flattened by genetic manipulation, several target genes continue to
form well-defined boundaries that are shifted in position but
nonetheless correctly ordered along the patterning axis (Fig. 2A,B)
(Chen et al., 2012; Lohr et al., 2009; Ochoa-Espinosa et al., 2009).
Moreover, in these embryos the boundaries of target genes are
associated with lower concentrations of Bed than in wild-type
embryos, suggesting that Bed is in excess at every position within
the wild-type gradient (Ochoa-Espinosa et al., 2009). Finally,
during the process of pattern formation, the position of gap gene
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Fig. 1. Design principles of patterning in the Drosophila blastoderm and
vertebrate neural tube. (A) Signaling gradients polarize tissues by initiating
and orienting gene expression patterns. A morphogen (M, left), Bcd in the case
of the blastoderm (center) and Shh for the neural tube (right), forms a gradient.
This asymmetry initiates the division of the tissue into domains of gene
expression (colored blocks) arrayed along the patterning axis (anterior-
posterior in the blastoderm and ventral-dorsal in the neural tube). (B) Patterns
of target gene expression are controlled by modular regulatory elements
containing binding sites for multiple distinct TFs. These elements integrate
transcription inputs from morphogen effectors, uniformly expressed factors,
and the transcriptional repressors that comprise the morphogen-regulated
transcriptional network. (C) The dynamics of the transcriptional network
transform broadly distributed activation and localized repression mechanisms
into precisely positioned boundaries of gene expression. This directly links
spatial and temporal mechanisms of pattern formation.

expression boundaries changes relative to Bed levels, directly
demonstrating the lack of a simple relationship between morphogen
concentration and threshold responses (Jaeger et al., 2004b).
Absolute levels of morphogen also do not appear to dictate gene
expression in the neural tube. Measurements of Gli activity in vivo
reveal temporal changes in the levels of signaling at individual
expression boundaries (Fig. 2C) (Balaskas et al., 2012; Junker et al.,
2014). The identities of neural progenitor domains are established
sequentially, with identities corresponding to higher morphogen
concentrations requiring longer periods of signaling (Dessaud et al.,
2007, 2010; Jeong and McMahon, 2005). As a consequence, ventral
progenitors exposed to high concentrations of Shh transiently adopt
a gene expression profile associated with fates induced by lower
concentrations. The result is that gene expression boundaries are
associated with different levels of signaling over time (Balaskas
etal., 2012; Junker et al., 2014). This suggests a dynamic system in
which the duration, as well as the level of morphogen signaling, is
critical for neural progenitor patterning. Moreover, disruptions of

patterning and loss of ventral cell types observed in Sh# mutant
embryos can be recovered, to a significant extent, in double-mutant
embryos lacking Shh and Gli3, the Gli family member that
functions predominantly as a transcriptional repressor (Litingtung
and Chiang, 2000; Persson et al., 2002). Thus, similar to Bed,
absolute levels of Shh/Gli activity do not appear to be sufficient to
determine gene expression patterns.

Nevertheless, the Bed and Shh gradients are essential for pattern
formation (Briscoe et al., 2001; Driever et al., 1990; Frohnhofer
etal., 1986; Staller et al., 2015a; Wijgerde et al., 2002). Reconciling
these apparently contradictory conclusions leads to the view that
gradients provide an initial polarization that biases positional
identity, but absolute levels of signal do not directly imprint a spatial
metric to the developing cells. In this view, gradients of quite
different amplitudes could still function in target gene patterning.
There is some experimental precedent for this idea. For example, the
survival of embryos laid by bcd heterozygotes, which contain only
half the maximal amount of Bcd present in wild-type embryos,
suggests that the critical thresholds within the gradient (if any) are
confined to the lower half of the concentration range. In addition,
genetic and transgenic techniques have been used to generate
embryos with Bed gradients that differ by up to fivefold in their
maximal concentrations (Fig. 2B) (Driever and Niisslein-Volhard,
1988a; Liu et al., 2013; Struhl et al., 1989), and all these embryos
survive to fertile adulthood in laboratory conditions.

The ability to genetically change the amplitude of the Bed
gradient led to critical tests of the hypothesis that target gene
boundaries are positioned by threshold-dependent mechanisms. If
boundaries are positioned by specific thresholds, it should be
possible to predict how far each boundary shifts when the Bced
profile is changed. Previous studies showed that the boundary shifts
in such experiments are less dramatic than predicted by the simple
morphogen model (Gao and Finkelstein, 1998; Gao et al., 1996;
Houchmandzadeh et al., 2002). More recent quantitative analysis
showed that boundary positioning is a time-dependent process (Liu
etal., 2013). When target genes are first expressed, boundaries shift
to positions very close to those predicted by the morphogen model.
However, within minutes, these initial shifts are reduced in degree,
back toward their positions in wild-type embryos, which is
consistent with the previous studies. These results suggest the
existence of mechanisms that buffer fluctuations in gradient
amplitude and shape (see below).

Morphogens function with transcriptional networks to refine
gene expression boundaries
If specific morphogen concentration thresholds are not crucial for
patterning, what explains the patterns of gene expression? Insight has
come from bioinformatic and genomic analyses of cis-regulatory
elements (CREs) associated with differentially expressed genes.
DNA binding and chromatin immunoprecipitation assays provide
evidence that Bed and Gli proteins directly activate the expression of
many target genes expressed in regions that coincide with the spatial
extent of the morphogen gradient. For example, Bed binding sites are
observed in regulatory elements of more than 50 different target
genes, most of which are expressed in anterior and central regions of
the embryo (Chen et al., 2012; Ochoa-Espinosa et al., 2005; Segal
etal., 2008). Similarly, genes induced in the ventral half of the neural
tube are associated with Gli binding sites (Oosterveen et al., 2012,
2013; Peterson et al., 2012; Vokes et al., 2007).

One mechanism, initially proposed to explain morphogen
activity (Driever et al., 1989), is that target gene boundary
position is determined in a straightforward manner by the binding
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Fig. 2. Target gene expression boundaries do not correlate with simple concentration thresholds. (A) Boundaries of the Bcd target genes otd and hb are
set at specific positions in wild-type (wt; 2x Bed) embryos. Neither gene is expressed in embryos laid by bed mutant (bed ™) females. When the Bed gradient is
flattened by genetic manipulation, the expression of ofd and hb is restored but otd expression shows a sharp boundary that shifts posteriorly when bed copy
number is increased from two to six. By contrast, hb is expressed throughout the embryo in response to the flattened Bcd gradient. In embryos with flattened
gradients, both otd and hb can be activated by lower concentrations of Bcd than those associated with their boundary positions in wild-type embryos. (B)
Drosophila embryos with altered Bcd dosage (x-axis) show shifts in target gene boundary positions (y-axis), but these (red line) are smaller than predicted by a
linear relationship between Bcd dose and boundary position (dashed line). (C) In the neural tube, progenitor identities (upper images) are established
sequentially, with identities corresponding to higher morphogen concentrations appearing after longer periods of signaling. As a consequence, ventral
progenitors exposed to high concentrations of Shh transiently adopt a gene expression profile associated with fates induced by lower concentrations.
Measurements of Gli activity (bottom images, purple gradient) indicate that the amplitude and range of the gradient change over time. The level of Gli activity
initially increases before decreasing, creating an adapting response. Correlating Gli activity levels with individual expression boundaries indicates that a boundary
of gene expression is associated with different levels of Gli activity at different developmental times.

sensitivity of CREs for the morphogen effector (Fig. 3A) (Driever activated counterparts but act as transcriptional repressors (see
et al., 1989; Struhl et al., 1989). In this ‘binding affinity” model, Box 2). Nevertheless, these data argue against the idea that a
CREs that contain binding sites with low affinity for the simple hierarchy of differential binding sensitivity determines
morphogen effector would be bound (and active) only in target gene expression boundaries.

regions containing high morphogen levels, whereas CREs with In addition to binding morphogen effectors, the CREs controlling
high-affinity binding sites would also be bound in regions spatial and temporal patterning bind multiple TFs (Fig. 3C). Some
containing lower levels of morphogen. However, the analysis of of these are ubiquitously expressed transcriptional activators that
CREs associated with sets of Bed and Shh target genes does not  play important roles in activating gene expression. For example, in
support this. For example, the boundary positions of a set of Bcd  the blastoderm the uniformly expressed TF Zelda (Z1d; Vielfaltig —
target genes do not correlate with the affinity or number of Bcd  FlyBase) is necessary for correct gap gene pattern (Liang et al.,
binding sites in their associated CREs (Fig. 3B) (Ochoa-Espinosa  2008; Xu et al., 2014). ZId binds to the regulatory elements of many
et al., 2005). Similarly, Shh target genes in the neural tube lack the  of the gap genes, and altering these interactions affects the binding
expected correlation between the affinity of Gli binding sites and of Bed to DNA and Bced-dependent expression patterns. The
the range of gene induction (Oosterveen et al., 2012; Peterson  differential binding of Zld to a subset of target genes provides a
et al., 2012). Indeed, the only noticeable trend in these datasets mechanism by which the sensitivity of target genes to a morphogen
was that more ventrally restricted genes appear to contain high- effector can be modified independently of the effector itself
affinity binding sites. This is opposite to the predictions of the (Kanodia et al.,, 2012). In the neural tube, SoxB1 family TFs
binding affinity model. It should be noted, however, that this (Sox1-3), which are expressed in all neural progenitors, appear to
model is founded on the assumption that the morphogen effector play a Zld-like role in modulating Shh signaling (Bergsland et al.,
is latent in the absence of signal and converted to a transactivator  2011; Oosterveen et al., 2012; Peterson et al., 2012). Binding sites
by the morphogen. In the case of Shh signaling, Gli family for SoxB1 proteins have been identified and functionally implicated
members bind to the same regulatory elements as their Shh- in regulatory elements associated with neural progenitor TFs. Thus,
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the number, affinity or arrangement of SoxB1 binding sites within a
given element could influence its response to Shh-Gli input.

Also found in target gene CREs are binding sites for TFs that are
under the transcriptional control of Bed and Gli activity (Fig. 3C).
We will refer to these TFs as pattern-determining TFs (pd-TFs).
A combination of developmental genetics and quantitative
approaches indicates that pd-TFs form transcriptional networks
that play central roles in morphogen interpretation. The pd-TFs
function predominantly as transcriptional repressors and, in both the
Drosophila embryo and the vertebrate neural tube, pairs of pd-TFs
expressed in neighboring domains cross-repress each other (see
Boxes 1 and 2 for details) (Briscoe et al., 2000; Clyde et al., 2003;
Ericson et al., 1997b; Kraut and Levine, 1991; Vallstedt et al.,
2001). This cross-regulation creates bistable switches that stabilize
and sharpen gene expression domains, culminating in all-or-nothing
gene expression boundaries between cells containing different
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repressors. The cross-repressive interactions also contribute to the
positioning of gene expression boundaries along the patterning axis.
Mutations in one or more pd-TF(s) cause predictable shifts in the
pattern of expression of the remaining pd-TFs without affecting the
morphogen gradients themselves (Fig. 3D). This further dissociates
positional identity from the absolute level of morphogen signal. For
example, the gap gene hunchback (hb) is expressed in the anterior
half of the fly embryo and is responsible for restricting the
abdominal gap gene knirps (kni) to posterior regions (Clyde et al.,
2003; Pankratz et al., 1992; Yu and Small, 2008). In mutants lacking
hb, the kni expression domain expands anteriorly into regions
normally occupied by i#b. Two other mutually repressive pairs, Gt
and Kruppel (Kr), and Slpl and Run, also form bistable switches
that create additional boundaries in more anterior regions (Box 1)
(Andrioli et al., 2004; Wu et al., 1998). In the neural tube, the TF
Nkx2.2 is expressed in a domain that ventrally abuts progenitors

Fig. 3. The cis-regulatory mechanisms
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(B) There is a lack of correlation between boundary
positions (x-axis) of a set of Bcd target genes (blue
points) and the affinity of Bed binding sites (y-axis) in
the CREs associated with the target genes. (C) The
CREs of target genes within the patterning network
combine three classes of transcriptional inputs. The
morphogen effectors (M, purple) act broadly to
regulate many target genes along their patterning
axis. Input from uniformly expressed factors

(U, yellow) change the sensitivity of individual target
genes to morphogen input. Repressive input from pd-
TFs (TF, and TF,) regulated by the network inhibit
the positive activity of the morphogen and uniform
factors. The integration of these inputs produces the
regulatory logic of the transcriptional network.

(D) Patterning by combinatorial binding in the
blastoderm. The expression patterns of two
activators (Bcd and ZId) and two repressors (Slp1
and Run) are shown (left). Hypothetical CREs are
also shown (center) with their predicted expression
patterns (right). The top construct contains only
activation inputs and is expressed throughout the
anterior embryo. The addition of repressor sites
restricts activation to specific regions and positions
the boundaries of gene expression. (E) Nkx6.1 is
expressed in the ventral third of the neural tube. An
Nkx6.1 CRE recapitulates this expression and
contains a combination of binding sites for Gli, Sox2
and the pd-TFs Dbx and Msx. In the ventral neural
tube, the absence of repressor forms of Gli and the
lack of Dbx and Msx expression allows Sox2 proteins

Boundary position

Inactive to activate the CRE. Dorsal to this, the presence of Gli
repressors and Dbx or Msx blocks the activity of the

Inactive CRE. GIliA and GIiR, activator and repressor forms
of Gli.

Active
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expressing Pax6; in embryos lacking Pax6, Nkx2.2 expression
expands dorsally and, consequently, the neuronal subtypes
produced from these progenitors also increase (Ericson et al.,
1997a). The pd-TFs Olig2 and Irx3, as well as Nkx6.1 and Dbx2,
also form bistable switches that demarcate additional boundaries in
the ventral neural tube (Box 2) (Novitch et al., 2001; Sander et al.,
2000; Vallstedt et al., 2001). Taken together therefore, these
findings suggest that the transcriptional repressors downstream of
the morphogen create a transcriptional network that ensures cells
select a single discrete identity and position the boundaries between
distinct regions along the patterning axis.

Together, the analyses of CREs suggest a strategy for reading a
morphogen gradient that involves the combined activity of three
classes of transcriptional inputs (Chen et al., 2012; Oosterveen et al.,
2012; Xu et al., 2014). First, the morphogen effectors act broadly to
regulate many target genes along their patterning axes. Second,
input from uniformly expressed factors changes the sensitivity of
individual target genes to morphogen input. Finally, inputs from
cross-repressing pd-TFs, which are themselves differentially
regulated by the network, generate switches in gene expression
that create discrete boundaries and determine the positions of these
expression boundaries (Fig. 3D). For example, regulatory sequences
associated with the Bed target gene orthodentical (otd; ocelliless —
FlyBase) contain clusters of binding sites for Bed, Z1d and for Hb,
which functions as an activating co-factor with Bed through a
feedforward loop (Gao and Finkelstein, 1998; Ochoa-Espinosa
et al., 2005; Simpson-Brose et al., 1994; Xu et al., 2014). Binding
sites for all three proteins may contribute to activation of otd
expression. The ord regulatory sequences also contain binding sites
for the repressor Run and the maternally expressed repressor
Capicua, which are crucial for restricting Otd expression to
presumptive head regions of the embryo (Chen et al., 2012; Lohr
et al., 2009). Similarly, in the neural tube, detailed analysis of a
regulatory element associated with Nkx6.1 identified a combination
of binding sites for SoxB, Gli and homeodomain TFs (Fig. 3E)
(Oosterveen et al., 2012). Each of these appears to contribute to the
regulation of Nkx6.1, with different homeodomain proteins
repressing Nkx6.1 in different territories along the patterning axis
of the neural tube. Thus, the pattern of gene expression is not
governed solely by the concentration of morphogen effector, but
instead is controlled by a combination of morphogen effector levels,
uniformly expressed factors and the TFs regulated by the
morphogen. It is the combination of inputs, and not the absolute
level of morphogen effector, that provides the correlate of positional
information in the tissue.

Target gene CREs integrate multiple transcriptional inputs
Although detailed molecular mechanisms of how individual CREs
control transcription remain to be fully delineated, the analysis of
several CREs associated with blastoderm expressed genes has
provided some clues. Activation seems to be combinatorial,
involving more than one activator protein, in all cases examined
so far. This might be the result of protein-protein interactions: for
example, the uniformly expressed factor ZId promotes the binding
of Bced, suggesting a cooperative mechanism (Xu et al., 2014).
Alternatively, or in addition, Zld and Bcd may function
independently, in an additive fashion. SoxB TFs also seem to
function in a similar manner with Gli proteins to contribute to neural
gene regulation (Bergsland et al., 2011; Oosterveen et al., 2012,
2013; Peterson et al., 2012).

In general, transcriptional activators appear to function over
significant distances, with CREs often sited many kilobases from
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the transcription start site of the genes they regulate (Davidson,
2010; Kvon et al., 2014). By contrast, repressors appear to act
locally, at the regulatory element to which they bind, to suppress the
activators bound to the same CRE (Gray et al., 1994; Small et al.,
1993). In some cases, the binding sites for activators and repressors
either overlap or are closely linked, and hence competition for
binding is an important mechanism (Small et al., 1992).
Alternatively, repressors can work over short distances within a
regulatory element to inhibit activators bound within ~200 bp (Gray
and Levine, 1996). Thus, the binding of a repressor to a regulatory
element could suppress positive transcriptional activity either by
displacing activators or quenching the activity of the bound
activators.

The available data suggest that the CREs associated with target
genes integrate multiple inputs to ‘compute’ how each associated
target gene is regulated (Fig. 3C-E) (Segal et al., 2008; Wilczynski
et al., 2012). A consequence of this mechanism is that none of the
individual TFs functions as a master regulator, which is consistent
with the lack of a strict correlation between the binding affinity of
morphogen effectors and the response of individual genes. For each
CRE, it is the combination of positive and negative inputs that
determines how the associated gene responds. Thus, CREs link the
combinatorial regulatory logic of the network with its molecular
implementation in the genome. This suggests a flexible but robust
means to establish and evolve patterns of gene expression. For
example, moving repressor binding sites various distances from
activator sites might allow alterations in the strength of repression to
fine-tune position boundaries while still generating the bistability
necessary for boundary formation (Gray et al., 1994; Hewitt et al.,
1999).

In both the Drosophila blastoderm and the vertebrate neural tube,
multiple regulatory elements are associated with many of the
patterning genes. For example, the Bcd target gene A4b contains two
distinct CREs, harboring clusters of Bced sites. These direct very
similar patterns of expression in the anterior half of the embryo
(Perry et al., 2011). This supports the idea of ‘shadow enhancers’, in
which the principal CRE (or the first identified regulatory element)
is ‘shadowed’ by additional CREs with similar activity (Barolo,
2012; Hong et al., 2008a; Perry et al., 2010). An analogous
phenomenon also appears to operate in the neural tube. Analyses of
chromatin binding identified two or more discrete regions co-bound
by Glil/Sox2, coinciding with blocks of sequence conservation,
around many of the genes encoding pd-TFs activated by Shh
signaling in the ventral neural tube (Oosterveen et al., 2012, 2013;
Peterson et al., 2012). Functional assays confirmed the neural-
specific CRE activity for many of these regions. In the majority of
cases, different CREs from the same gene had similar, albeit not
identical, patterns of activity (Perry et al., 2011). The similarity in
activity despite differences in the composition of the elements
indicates that there are multiple ways in which the same pattern of
gene expression can be produced.

Several possibilities have been put forward to explain why genes
contain multiple CREs with apparently similar activities (Barolo,
2012; Hong et al., 2008a; Perry et al., 2010). One possibility is that
different CREs have distinct functions in the interpretation of the
graded input. Although the collective analyses of regulatory
elements has failed to find a clear correlation between the binding
strength for the morphogen effector and the pattern of activity of the
element (Ochoa-Espinosa et al., 2005), it is possible that a
correlation does exist for a subset of elements. The activity of
these CREs would then be directly instructed by the morphogen
gradient. These could play directorial roles by establishing
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appropriate patterns of key pd-TFs in the network that then drive
pattern formation. In this view, all other CREs in the system would
require morphogen input for activation, but this would be
permissive, and the input from already patterned repressors would
make the contributions to target gene boundary positioning.
Nevertheless the coordinated shifts in gene expression that result
from the deletion of individual repressors in the transcriptional
network suggest that the network dominates the graded input and is
the main driver of pattern formation.

Apparently redundant regulatory elements could also contribute
to the robustness of pattern formation (Perry et al., 2010).
Advances in imaging techniques and the increasing resolution of
data generated by these approaches are beginning to reveal that
transcription is a noisy, bursty process (Darzacq et al., 2007,
Elowitz et al., 2002; Garcia et al., 2013). Thus, it is likely to be
difficult to control a single element in a precise way. Combining
multiple independent CREs might average fluctuations in gene
expression that result from regulation by a single enhancer and
increase the frequency of expressing nuclei (Perry et al., 2012).
This could increase the robustness and reliability of pattern
formation in the face of environmental stresses, such as the
varying temperatures that developing embryos are exposed to in

Fig. 4. The dynamics of the transcriptional network generate pattern.
(A) A mathematical model of the gap gene network recapitulates the temporal-
spatial pattern along the AP axis of the blastoderm. Cross-regulatory
interactions between gap gene pairs establish the initial patterns of pd-TF
expression in middle regions of the embryo (65% to 29% embryo length) (time
1). Asymmetries in the strength of cross-repression between gap genes means
that posterior gap genes dominate over their more anterior partners. As
development proceeds (time 2), this leads to the gradual sharpening and an
anterior shift of the entire gap gene expression pattern. (B) A transcriptional
circuit comprising four pd-TFs (Nkx2.2, Olig2, Irx3 and Pax6) linked by a series
of cross-repressions determines the response of these genes to Shh-Gli
signaling and positions the two progenitor domain boundaries that they define.
A mathematical model of the circuit recapitulates the pattern and temporal
sequence of gene expression observed in neural progenitors: Olig2 expression
is induced in ventral neural progenitors before Nkx2.2; Nkx2.2 induction
represses Olig2, resulting in an overall dorsal shift in pattern in vivo. A phase
portrait based on the mathematical model illustrates the connections between
the levels or durations of signal. Compared with Olig2, the induction of Nkx2.2
requires higher levels and longer durations of Shh-Gli activity. The dynamics of
Shh signaling at three different positions in the neural tube are indicated with
dotted purple lines. The portrait also illustrates that transient high levels of
signaling at early times (purple dashed line) are not sufficient to switch from
Olig2 to Nkx2.2, provided that this level of signaling is not sustained. (C) The
transcriptional circuit produces hysteresis. Nkx2.2 induction by Shh-Gli
signaling requires the repression of Pax6 and Olig2; this necessitates high
levels of Gli activity (bottom green line). Once induced, Nkx2.2 inhibits Pax6
and Olig2 expression, thereby allowing Nkx2.2 expression to be sustained at
lower levels of Shh-Gli signaling (top green line). This might explain how gene
expression is maintained as Shh-Gli activity decreases below inducing levels.

the wild. Alternatively, or in addition, the multiple CREs could
function to fine-tune the spatial or temporal pattern of gene
expression (Perry et al., 2011; Staller et al., 2015b). It is also
possible that multiple CREs combine to produce additive or
synergistic interactions to ensure rapid changes in gene induction
or boost expression levels. Finally, the presence of multiple semi-
redundant elements might offer evolvability by weakening the
selective constraints on individual elements and allowing some
evolutionary drift (Hong et al., 2008a). Nevertheless, the idea that
multiple CREs increase robustness and evolvability must take
account of the apparently distinct mechanisms of the long-range
function of activators and the local action of repressor TFs. In this
case, the absence of repressor binding to one CRE would result in
inappropriate gene expression even if the other CREs associated
with the gene remained inhibited.

Integrating graded positional information with patterning
networks: insights from mathematical modeling

The experimental approaches outlined above have identified many
of the molecular components of the patterning network and
provided insight into the regulatory architecture that connects
them, but they do not offer a detailed explanation for how the spatial
pattern forms in each of the tissues. Mathematical models based on
the experimental data, which describe the dynamics of the
transcriptional networks, shed light on this issue.

A dynamical model of the gap gene network, based on
quantitative data from embryos, was sufficient to simulate the
establishment of AP pattern and revealed that cross-regulatory
interactions between gap gene pairs are responsible for the observed
Bced-independent shifts in the expression of these genes (Fig. 4A)
(Jaeger et al., 2004b; Manu et al., 2009a,b). Key to this behavior is
that the strength of cross-repression between gap genes is
asymmetric, with posterior gap genes dominating over their more
anterior partners. This leads to a cascade of asymmetric feedback
that sharpens and shifts the entire gap gene expression pattern
anteriorly as development proceeds.
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A similar dynamical mechanism appears to operate in the neural
tube network (Fig. 4B). A transcriptional circuit comprising four
Shh-regulated pd-TFs (Nkx2.2, Olig2, Irx3 and Pax6) linked by a
series of cross-repressions has been explored in detail (Balaskas
etal., 2012; Cohen et al., 2014; Panovska-Griffiths et al., 2013). The
strengths of cross-repressive interactions between the pd-TFs appear
to determine the response of these genes to Shh-Gli signaling and,
consequently, the positioning of the two progenitor domain
boundaries that they define. The model accurately predicts the
temporal sequence of gene expression observed in neural
progenitors. For instance, both in vivo and ex vivo, primary neural
cells exposed to a fixed concentration of recombinant Shh induce
Olig2 expression in ventral neural progenitors before inducing
Nkx2.2 (Dessaud et al., 2007; Jeong and McMahon, 2005).
Subsequently, Olig2 is repressed as Nkx2.2 is induced, resulting
in an overall dorsal shift in pattern in vivo. This behavior is
recapitulated in mathematical models. Surprisingly, the models
predict that the transcription network can generate the differential
temporal and spatial behavior of Nkx2.2 and Olig2 even if both
genes receive identical inputs from the morphogen. This leads to the
conclusion that the differential responses of the patterning genes to
different levels and periods of morphogen signaling are a
consequence of the regulatory logic of the transcriptional
network. Thus, the dynamics of the transcriptional network are
responsible for both spatial and temporal patterns of gene
expression.

The same models also help to explain other experimentally
observed behavior. As mentioned above, gene expression shifts
caused by altering Bced levels are less severe than predicted. A
detailed mathematical simulation of the gap gene system indicated
that the regulatory interactions between gap genes mean that the
gene expression profile adopted by each nucleus is stable against
perturbations within certain ranges (Manu et al., 2009a,b). This
suggests that cross-regulation between gap genes provides some
error correction downstream of the Bed gradient that improves the
precision and reliability of gap gene expression boundaries.
Consistent with this, embryos mutant for either of two gap genes,
Kr and kni, have higher variability in the position of the remaining
domain boundaries than wild-type embryos (Surkova et al., 2013).
In the neural tube, embryos lacking the repressor Gli3 display
transiently increased levels of Gli activity (Balaskas et al., 2012).
Despite this increased signaling, the position of the Nkx2.2 and
other gene expression boundaries in the ventral neural tube appear
unchanged (Persson et al., 2002). Inspection of a mathematical
model of the transcriptional network suggested that cross-repressive
interactions between Pax6 and Nkx2.2 could explain this
insensitivity to the temporary increase in Gli activity. In line with
this, a double mutant lacking both Gli3 and Pax6 displayed a
markedly increased shift in the border of Nkx2.2 expression
(Balaskas et al., 2012). This suggests that the network makes cells
insensitive to transient fluctuations in signaling levels and provides
a means for cells to effectively average morphogen signaling over
time.

The tools and concepts from dynamical systems theory provide a
convenient way to appreciate and visualize these ideas (Jaeger and
Monk, 2014; Jaeger et al., 2008; Strogatz, 2014). For example,
‘phase portraits’ (Fig. 4B) based on mathematical models of the
networks can be used to illustrate the connection between how a
system responds to different levels or durations of signal. In the case
of the transcriptional network in the ventral neural tube, such an
analysis indicates that, compared with Olig2, the induction of
Nkx2.2 requires higher levels and longer durations of Shh-Gli
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activity (Fig. 4B). In addition, the portrait illustrates that a transient
increase in signaling at early times, even if it is above the threshold
necessary for Nkx2.2 induction, is not sufficient to switch from
Olig2 to Nkx2.2 induction. This emphasizes that there are not
separate mechanisms for spatial and temporal patterning: both are
the product of the transcriptional network.

An additional layer of patterning complexity is found in the
neural tube, where the levels of morphogen signaling activity
change over time (Fig. 2C) (Balaskas et al., 2012; Chamberlain
et al., 2008; Junker et al., 2014). As a consequence, there is no
constant relationship between position and the level of signaling. In
the ventral neural tube Shh protein production increases during
development, resulting in an increasing maximum concentration of
Shh at the ventral pole of the neural tube (Chamberlain et al., 2008;
Cohen et al., 2015). Downstream Gli transcriptional activity also
initially increases but then decreases despite the increasing
concentrations of Shh. These adapting dynamics have been
proposed to arise from a combination of three mechanisms:
negative feedback induced by Shh signaling, transcriptional
downregulation of Gli gene expression, and the differential
stability of active and inactive Gli isoforms (Cohen et al., 2015;
Junker et al., 2014). Irrespective of the relative contributions of each
of these mechanisms, the result is that the level of Gli activity
associated with a particular progenitor identity is higher than the
level of Gli activity in these cells at a later time. Models of the neural
tube transcriptional network suggest that mutual repression between
pairs of TFs could provide an explanation for how gene expression
is maintained as Shh signaling decreases below the inducing levels.
In dynamical systems terminology, the network produces a
phenomenon known as ‘hysteresis’ (Strogatz, 2014). This is a
property of multistable systems in which the state of the system is
dependent on the history of inputs it has received, as well as the
current input. In the case of the neural tube, the induction of Nkx2.2
by Shh signaling requires the repression of Pax6 and Olig2 but, once
induced, Nkx2.2 inhibits the expression of these genes thereby
allowing Nkx2.2 expression to be sustained at lower levels of Shh-
Gli signaling (Fig. 4C) (Balaskas et al., 2012). In essence, the
induction of Nkx2.2 and the repression of Pax6 and Olig2 act as a
memory of the past input of Shh signaling. Hence, just as the
temporal sequence of gene expression can be explained by the
dynamics of the transcriptional network so too can the maintenance
of gene expression as a tissue is elaborated (Dessaud et al., 2010; Su
et al., 2012). This does not exclude the possibility that alternative
molecular mechanisms, such as chromatin modifications, also play
arole in stabilizing pattern; however, the structure and dynamics of
the transcriptional network provide a means to accomplish this
without the need for additional layers of regulation.

The focus on signaling dynamics raises the possibility that
gradients are interpreted prior to reaching steady state. Theoretical
work suggests that this can reduce the effects of fluctuations and
thereby increase the precision of spatial boundaries (Bergmann
etal., 2007; Saunders and Howard, 2009; Tamari and Barkai, 2012).
In addition, the kinetics of target gene responses could be exploited
to control differential gene responses: target genes with a high
transcription rate are rapidly expressed to produce an early onset and
long-range pattern, whereas genes with lower transcription rates
produce shorter-range responses. Such a mechanism has been
proposed for Nodal signaling during mesendoderm induction in
zebrafish (Dubrulle et al., 2015). The consideration of signaling
dynamics also leads to the idea that cells use the temporal derivative
or integral of the signal to pattern a tissue. Behavior consistent with
this has been suggested for TGFp (Sorre et al., 2014) and Dpp
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(Wartlick et al., 2011). This could result in more accurate patterning
than that achieved by mechanisms based on simply interpreting
absolute morphogen concentration (Richards and Saunders, 2015).
Mechanistically, the way cells ‘calculate’ a derivative or integral
would probably rely on the downstream transcriptional network. In
the case of the neural tube, the transcriptional network could be
described as a system that uses the integral of Shh signaling to
define gene expression patterns.

As mentioned above, there are marked differences in the time
scale over which patterning takes place in the blastoderm and neural
tube. What causes this difference in time scales is unclear. Several
features of the two tissues might contribute. In the blastoderm, the
syncytial structure allows gradients of TFs to form promptly and
directly in the shared cytoplasm. In the cellularized neural tube,
however, morphogen signaling relies on extracellular gradients
transduced through intracellular cascades. It is notable that, in the
case of Shh signaling, transduction is unlikely to be rapid because it
relies on the degradation of repressor isoforms of the Gli proteins
and the gradual accumulation of newly synthesized Gli proteins that
can be converted into activated isoforms (Briscoe and Thérond,
2013). However, in addition to these differences in the kinetics of
the patterning cues, properties of the repressor proteins might also
contribute to the different time scales (Cohen et al., 2015; Humke
et al., 2010). For example, gap proteins have relatively short half-
lives and are mostly degraded by the onset of gastrulation (Kraut and
Levine, 1991; Pisarev et al., 2009), which would allow the
transcriptional network to approach its steady state more rapidly
than could be achieved if the gap genes were long lived. The half-
lives of the neural tube TFs have not been measured but their
stability might contribute to the rate of patterning, and it is possible
that modulating these half-lives provides a mechanism to alter the
speed of pattern formation in distinct species.

Anti-parallel gradients and pattern scaling

Another common feature of the two developmental systems is that
both involve anti-parallel patterning cues emanating from the
opposite poles of the patterning axis. The anterior gradient of Bed in
the blastoderm is complemented by a gradient of the TF Caudal
(Cad) emanating from the posterior pole (Mlodzik and Gehring,
1987). In the neural tube, gradients of BMP and Wnt from the dorsal
pole complement the ventral Shh gradient (Barth et al., 1999;
Jessell, 2000; Muroyama et al., 2002; Nguyen et al., 2000). In both
tissues, the anti-parallel gradients have opposing activities. Bed
activates anterior gap gene expression, whereas Cad promotes the
expression of more posterior gap genes (Rivera-Pomar et al., 1995).
In addition, Bed represses Cad translation in anterior regions of the
embryo via direct binding to cad RNA (Chan and Struhl, 1997;
Niessing et al., 2002). This creates a gradient of Cad protein that is
shaped directly by the Bcd protein gradient. Removal of Bed
expands the Cad expression domain into anterior regions, which
probably contributes to (but is not sufficient for) the posteriorization
of this region in bcd mutants. In the neural tube, the activation of
ventral gene expression by Shh signaling is opposed by BMP and
Whnt (Alvarez-Medina et al., 2008; Kicheva et al., 2014; Liem et al.,
2000; McMahon et al., 1998; Mizutani et al., 2006). Ex vivo assays
of neural progenitors indicate that modulating BMP signaling alters
the response to a fixed dose of Shh (Liem et al., 2000; Mizutani
et al., 2006), and in mouse embryos lacking the BMP inhibitor
noggin there is a loss of ventral cell fates despite normal production
of Shh protein (McMahon et al., 1998). Likewise, Wnt signaling
also inhibits the ventral target genes to promote dorsal identities
(Alvarez-Medina et al., 2008). Thus, in both tissues, pattern

formation appears to depend on the integration of signaling
activities emanating from opposite poles.

A consequence of cross-talk between the anti-parallel gradients is
that it results in partial redundancy between the patterning cues.
This could contribute to the absence of a strict correlation between
morphogen levels and target gene boundaries and the establishment
of pattern in embryos in which a gradient has been flattened or
removed. For example, although the position of some gap genes is
shifted in embryos in which the Bed gradient has been flattened,
well-defined gene expression boundaries continue to form in the
correct spatial order (Chen et al., 2012; Ochoa-Espinosa et al.,
2009). Perhaps, in these embryos other asymmetric activities that
provide polarized inputs into the gap network are revealed (Liu
et al., 2013; Lohr et al., 2009). Alternatively, the residual, albeit
shallow, gradient observed in the ‘flattened Bed’ embryos might
contribute to the persistence of pattern. Similarly, in the neural tube
of mouse embryos lacking Shh and Gli3 (Litingtung and Chiang,
2000; Persson et al., 2002), the signals emanating from the dorsal
pole of the neural tube might account for the remaining spatial
pattern of ventral pd-TFs (Liem et al., 2000; Mizutani et al., 2006).
In this view, the dorsal signals provide differential input into the pd-
TFs expressed dorsally and, by repressing ventral pd-TFs, set up the
patterns of gene expression.

It is notable in embryos lacking Shh and Gli3 that ventral pattern
appears less precise than normal (Litingtung and Chiang, 2000;
Persson et al., 2002). Indeed, theoretical analyses indicate that one
advantage of the integration of anti-parallel morphogen gradients is
that it provides a more accurate way to obtain positional information
(Howard and ten Wolde, 2005; McHale et al., 2006; Morishita and
Iwasa, 2009; Srinivasan et al., 2014). Using opposing gradients to
measure position relative to the two poles of the tissue would allow
quantitative adjustments in the formation of pattern, allowing it to
scale to the size of the tissue (Howard and ten Wolde, 2005; McHale
et al., 2006). In this way, the pattern in a larger individual would be
stretched to fit the tissue and vice versa. Alternatively, studies of
Drosophila strains selected for differences in embryo size show that
larger embryos contain consistently higher levels of bcd mRNA
than smaller embryos (Cheung et al., 2011, 2014). However, a
cause-and-effect relationship between amounts of bcd RNA and
embryo size has not yet been established.

The presence of anti-parallel gradients can also improve the
accuracy of patterning by averaging fluctuations in the levels of each
morphogen associated with the inherently noisy processes of
gradient formation. Molecularly, these mechanisms can be
implemented in several ways. For example, one signal could
control the expression of components of the transduction pathway of
the opposing signal. This might be relevant in the neural tube, where
the Shh signaling effector Gli3 appears to be regulated by Wnt
activity (Alvarez-Medina et al., 2008). Hence, by acting as a
transcriptional repressor of Shh target genes, Gli3 could restrict
ventral progenitor specification. Alternatively, mutual repression
between pd-TFs that are induced by the opposing gradients also
provides a mechanism to increase the precision of boundaries and
scale the pattern to embryo size (Manu et al., 2009a,b; Sokolowski
et al., 2012; Surkova et al., 2013). In this respect, computational
simulations indicate that, in the Drosophila blastoderm, the
diffusion of gap proteins between nuclei, which is permitted by
the lack of cytoplasmic membranes, assists the repair of any errors in
patterning while still allowing the rapid generation of sharp
boundaries (Tkacik et al., 2015). More complex mechanisms that
involve feedback and ‘shuttling” of morphogen ligands by secreted
inhibitors have also been identified in some morphogen-patterned
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tissues (for a review see Shilo et al., 2013). Further investigations
will be necessary to gain a better molecular understanding of the
various mechanisms and the contributions that they make in each
tissue.

Conclusions and perspectives

The combined experimental and computational modeling
approaches described here build upon the morphogen and
positional information concepts developed over the last half
century, but support revisions to the theory. Central to this are
three ideas. First, gradients establish tissue polarity, but do not
pattern tissues via strict concentration thresholds. Thus, there is no
strict correspondence between specific threshold concentrations of a
morphogen and the position of a gene expression boundary.
Second, pattern formation is achieved through transcriptional
networks comprising gradient effectors, uniformly expressed
factors and pd-TFs that respond to and refine the graded inputs.
These transcriptional activities are interpreted by modular
regulatory elements containing clusters of binding sites for the
network of factors. Third, the integration of gradient-induced
polarity with the transcription network produces a dynamical
system that refines and positions gene expression boundaries along
the patterning axis. Together, this means that positional information
is not a static measure but a process that arises from the dynamics of
interactions within the network.

These principles might apply to other morphogen-patterned
systems. An example in the Drosophila embryo is the Dorsal (D1)
morphogen, which is crucial for establishing target gene expression
patterns at specific positions along the dorsal-ventral (DV) axis
(Roth et al., 1989). There is good evidence that DI target genes are
differentially sensitive to DI concentrations, but, at the level of the
CREs associated with DI target genes, activation mechanisms are
combinatorial, with multiple proteins (Twist and Zld) involved in
refining the apparent sensitivities of individual target genes (Foo
et al., 2014; Hong et al., 2008b; Jiang and Levine, 1993). There is
also support for the idea that the binding of repressors to target gene
CREs is important for boundary positioning (Crocker and Erives,
2013; Ozdemir et al., 2014), which echoes the interplay between
activators and repressors along the Drosophila AP axis and in the
vertebrate neural tube.

A major consequence of this view of morphogen patterning is that
there is no mechanistic difference between spatial and temporal
patterning: both spatial gradients and temporal changes in
morphogen input can produce similar gene expression patterns.
This might explain apparently conflicting observations that have
argued against the importance of the long-range spread of a
morphogen ligand in some tissues (see Box 3). Moreover, boundary
precision and size scaling are built into the system. The system is
robust to fluctuations in the morphogen signal and provides an
effective memory when morphogen signal declines, which offers an
explanation for the striking ‘canalization’ of pattern formation in
many developing tissues.

Consistent with this, unbiased computational analyses and
screens for artificial transcriptional circuits capable of producing
stripes of gene expression have also identified mechanisms that
rely on the dynamics of the network (Cotterell and Sharpe, 2010;
Frangois and Siggia, 2010). A systematic survey of morphogen-
regulated networks comprising three TFs identified six distinct
classes of network design that generated striped gene expression
(Cotterell and Sharpe, 2010). Each of these used a different
dynamical mechanism to interpret the morphogen but all relied on
cross-regulatory interactions between the TFs. Similarly, an in
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Box 3. Other morphogen-based patterning systems: the
case of Wingless (Wg)

The Wnt family member Wg has been implicated in patterning the DV
axis of the Drosophila wing disc (Campbell and Tomlinson, 1999;
Jazwinska et al., 1999; Minami et al., 1999; Neumann and Cohen, 1997;
Zecca et al., 1996). Wg is secreted from the DV boundary at the center of
the wing disc, forming a long-range gradient, and experimental evidence
suggests that cells distant from the boundary respond directly to Wg.
Nevertheless, recent studies revealed that a membrane-tethered version
of Wg, which is not released from cells, is able to pattern the DV axis
almost as well as secreted Wg (Alexandre et al., 2014). This challenges
the requirement for a spatial gradient of Wg. One possible explanation is
that Wg expression in the wing disc is dynamic. At early developmental
stages, Wg is expressed throughout the disc but, over time, the
expression of Wg becomes restricted to the DV boundary (Alexandre
et al., 2014). Thus, cells furthest from the DV boundary at the lateral
margins of the wing are exposed to Wg for only a brief time at early
developmental stages, whereas those closer to the DV boundary receive
Wg for longer periods of time. If Wg is interpreted by a transcriptional
network that operates with similar principles to the blastoderm and neural
tube networks, then different durations of Wg signaling will have the
same effect as a spatial gradient of Wg. In this view, either a spatial or
temporal gradient of Wg (or a combination of both) could direct pattern
formation, and assaying the dynamics or outcome of patterning would
not distinguish between static gradient and temporal patterning
mechanisms.

silico evolutionary approach to identify transcriptional networks
that interpret either static or dynamic morphogen gradients also
resulted in cross-regulatory networks, the structures of which were
reminiscent of known morphogen interpreting networks (Frangois
and Siggia, 2010). Notably, in this study, networks that had
evolved to interpret temporal changes in morphogen signaling
were also capable of pattern formation when challenged with a
static spatial gradient. This emphasizes the importance of network
dynamics for understanding pattern formation and supports the
idea that the mechanisms identified in the gap gene and neural
tube networks represent general principles for morphogen
interpretation.

Despite much progress, many questions remain. Elucidating the
components and operation of the transcriptional networks
continues and, for many tissues, the relative importance of the
spatial or temporal component of gradients needs to be
determined. How opposing gradients cross-talk and are
integrated into networks is poorly understood. New technologies
(e.g. CRISPR/Cas9) will permit the manipulation of regulatory
sequences in the native locus, which should allow rapid progress
in understanding how patterning information is integrated.
Alongside these experimental objectives, improved models and
simulations will undoubtedly be important and necessitate
improved quantification of the components of the systems. This
includes not only measuring the number of molecules of key TFs
but also measurements of protein-DNA interactions and rates of
transcription and translation of target genes. Models that simplify
and abstract aspects of a system will help provide an intuitive
understanding of its operation, whereas increasingly complex
simulations will result in more realistic models and a means to
interpret more and diverse forms of data. Together, therefore, our
comparison of patterning in the Drosophila blastoderm and the
vertebrate neural tube suggests a unified framework for
morphogen-mediated pattern formation and establishes a
research agenda that will likely take us through further revisions
of this fascinating problem.
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