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Abstract

Advancements in volume electron microscopy mean it is now possible to generate thou-

sands of serial images at nanometre resolution overnight, yet the gold standard approach

for data analysis remains manual segmentation by an expert microscopist, resulting in a

critical research bottleneck. Although some machine learning approaches exist in this

domain, we remain far from realizing the aspiration of a highly accurate, yet generic,

automated analysis approach, with a major obstacle being lack of sufficient high-quality

ground-truth data. To address this, we developed a novel citizen science project, Etch a

Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells

imaged with serial blockface scanning electron microscopy. We present our approach for

aggregating multiple volunteer annotations to generate a high-quality consensus segmen-

tation and demonstrate that data produced exclusively by volunteers can be used to train

a highly accurate machine learning algorithm for automatic segmentation of the NE,

which we share here, in addition to our archived benchmark data.
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1 | INTRODUCTION

Until recently, the study of cell morphology with electron microscopy

(EM) was often restricted to qualitative illustration, as technological

limitations prevented quantitative analysis of samples in three

dimensions. Development of novel volume EM methodologies, includ-

ing serial blockface scanning electron microscopy (SBF SEM)1 and

focused ion beam SEM (FIB SEM),2 has enabled automated acquisition

of images through greater depths at high resolution,3 with one micro-

scope able to generate hundreds of gigabytes of aligned serial images

per day.

However, our ability to analyse these data has not seen compara-

ble advancement; segmentation of EM images remains a difficult and

time-consuming manual process. Hence, to fully realize the analytical
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potential of EM, there is a great need to develop fast, generalizable

and accurate analysis solutions. Although some EM image analysis can

be automated through application of methods such as machine

learning,4-8 these advances have mainly benefited specific domains

such as connectomics,9,10 where the segmentation problem is focused

on tracing neurons and synapses in serial images from brain and

nerves. This focus has generated a large amount of ‘ground truth’
data that have been successfully used in deep learning to generate

algorithms to automate the task.

The same cannot be said of cell biology, where the segmentation

challenge is more diverse, encompassing common organelles such as

the nucleus, nuclear envelope (NE), mitochondria, endoplasmic reticu-

lum and endosomes, as well as rare or transient organelles such as

autophagosomes, secretory granules and phase-separated entities. As in

connectomics, the production of ground truth segmentations has, to

date, relied on the effort of the expert EM community. At present rates

of data generation, this community alone is unable to generate suffi-

cient ground truth segmentation data, representative of the appearance

of the full range of organelles in different experimental conditions and

biological model systems. To enable data analysis at a scale beyond the

capacity of the research community, we engaged the help of a global

community of willing volunteers through a novel online citizen science

project, ‘Etch a Cell’ (https://www.zooniverse.org/projects/h-spiers/

etch-a-cell), which asked members of the public to manually segment

the NE, which was targeted for volunteer segmentation as it is the most

easily identifiable subcellular structure for which reliable automatic seg-

mentation was not widely available.

The NE is a double lipid bilayer found in most eukaryotic cells

where it surrounds the nucleoplasm and encloses the genetic material

of the cell. Alterations in the structure of the NE have been associated

with disease11 including cancer12,13 and nuclear laminopathies.14

However, despite the clear critical role of the NE in cell function, the

nanoscale three-dimensional structure of this organelle has been

poorly understood to date. In addition to its biological importance,

segmentation of the NE is often a critical first step in the segmenta-

tion of a cell, as this structure provides important context to the three

dimensional spatial distribution of other organelles.

Here, we present our method for establishing a high-quality consen-

sus segmentation from multiple volunteer annotations on the same

image. We demonstrate that exclusively volunteer produced data can be

used to train a machine learning model for highly accurate automatic seg-

mentation of the NE. Finally, we present a novel multi-axis modification

of our machine learning algorithm that resulted in a marked improvement

in model performance. We share all benchmark data and algorithms pro-

duced for the use of the wider research community.

2 | RESULTS

2.1 | Etch A Cell: An online citizen science project
for NE segmentation

An online citizen science project, 'Etch A Cell' (EAC), was devel-

oped to enable large-scale segmentation of the NE in volume EM

data through public engagement. Although online citizen science

has been previously applied in similar contexts,15,16 to our knowl-

edge, this is the first application of non-expert, volunteer effort for

the segmentation of organelles in EM data. To maximize the

potential utility of the data produced for the research community,

the commonly used HeLa cell line17 was selected for analysis. A

benchmark serial image data set was generated at 10-nm pixel res-

olution with SBF SEM (Figure 1 and Movie S1), and n = 18 cells

selected from this volume for volunteer segmentation (Table S1

details the unique cell ID assigned to each region of interest (ROI)

and provides further descriptive information), resulting in a total of

n = 4241 slices for project inclusion after volume pre-processing

(Figure S1AD and Section 4). Raw data have been made available

via the EMPIAR repository (deposition ID: 137, accession code:

EMPIAR10094, https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/

10094/).

2.2 | Development and deployment of EAC

Following an iterative design process lasting approximately

6 months (from October 2016 to the beginning of April 2017), EAC

was launched on 6 April 2017 as a publicly available project on the

Zooniverse online citizen science platform (https://www.

zooniverse.org/). Volunteers could contribute segmentations

through visiting an online classification interface (Figure S1E),

where they were presented with a cell slice at random. A detailed

tutorial provided task instructions (Figure S2), describing how to

segment the NE with the novel ‘Freehand Drawing Tool’ and how

to resolve segmentation ambiguities through viewing the two

neighbouring slices either side of the target slice (Figure S1C-E

and Section 4). Each slice was independently segmented by multi-

ple volunteers with the number of classifications required set at

n = 30 (the ‘retirement limit’). Each individual segmentation could

consist of an arbitrary number of lines, which were recorded as an

array of x,y pairs (Section 4, Figure S1F).

2.3 | An overview of volunteer interaction
with EAC

In total, n = 104 612 classifications were submitted by volunteers

before the EAC workflow was deactivated on 1 August 2019. As clas-

sifications could be made by unregistered volunteers, it was not possi-

ble to establish precisely how many individuals contributed, however,

classifications submitted by logged in users were associated with

n = 4749 user IDs and n = 9444 IP addresses, indicating between

5000 and 10 000 individuals contributed. As is often observed for

online citizen science projects,18 a large number of classifications

were received shortly after project launch (Figure S3A), and the num-

ber of classifications submitted by each volunteer varied greatly (from

1 to 5451), indicating a broad range of engagement levels amongst

the community contributing to this project (Figure S3B). Examining
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the Lorenz curve for the distribution of volunteer classification contri-

butions to the project (Figure S3C) and the corresponding Gini coeffi-

cient (0.83), indicated that a small number of volunteers contributed a

large number of classifications, as is commonly observed in citizen

science projects.18 However, it should be noted that a significant pro-

portion of the classifications submitted to the project were made by

individuals only submitting a small number, reiterating the importance

of all individual contributions.

2.4 | Forming consensus from multiple
segmentations – aggregating volunteer annotations

To generate sufficiently high-quality data for downstream analyses,

each individual slice within EAC was presented to multiple volunteers

for segmentation. As expected, most volunteer segmentations were

distributed on and around the NE (Figure 2A,C and Movie S2); how-

ever, distinct classes of segmentation error were observed, including

F IGURE 1 Workflow for the acquisition and segmentation of serial EM images from benchmark samples. In this study we imaged resin-
embedded HeLa cells at 10nm pixel resolution, A, using SBF SEM, B. This produced an image stack, C, of 518 sections (50 nm thickness,
8192 � 8192 pixels, Movie S1) which were used to construct a 3D volume, D. ROIs from within this volume were segmented by both experts, E,
and volunteers, F. Table S1 provides further information about the individual ROIs within the volume

242 SPIERS ET AL.



‘graffiti’ (Figure 2D, possibly produced as an inadvertent consequence

of well-intended classroom-based engagement using this project),

‘false-positive segmentation’ in which non-NE pixels are segmented

(Figure 2E) and ‘false-negative segmentation’ where NE pixels are

missed (Figure 2F). Of these error classes, the graffiti class was com-

paratively rare (Movie S2).

To remove outlying data and establish a ‘consensus’ segmentation

for each slice, it was necessary to aggregate the multiple volunteer anno-

tations. As the Freehand Drawing Tool was developed specifically for

EAC, it was necessary to develop a novel aggregation approach. Because

of the presence of noise, erroneous segmentations, and an unknown, vari-

able number of line segments within the data, this was not trivial; hence,

multiple novel aggregation approaches were developed and explored. Of

these, the ‘CRIA’ algorithm was selected for our analytical pipeline, as it

had a number of advantages compared with other approaches as shall be

outlined.

Briefly, the CRIA algorithm procedure involved the following

steps: first, closed loops were formed from each individual vol-

unteer segmentation (Figure 3A-C), which could consist of

multiple separate lines (Figure S1F). The closed loops were pro-

duced through connecting separate lines after ordering them by

minimizing distances. Next, interior areas were generated from

the closed loops (Figure 3B). The interior areas were overlaid to

generate a height map, with the ‘height’ reflecting the level of

agreement between the separate volunteer segmentations for a

single slice (Figure 3D). The consensus segmentation was deter-

mined through taking a mean ‘height’ level; hence the resulting,

‘final’, segmentation surrounds all the interior areas where half

or more of the volunteer segmentations were in agreement

(Figure 3E,F). This procedure was used to aggregate all volun-

teer segmentations (Figure 3G, Movie S3). The resulting aggre-

gated data have been made available at http://www.ebi.ac.uk/

biostudies/files/S-BSST448/Aggregations and the CRIA code

is available at https://github.com/FrancisCrickInstitute/Etch-a-

Cell-Nuclear-Envelope.

In addition to producing high-quality consensus segmentations

(Figure 3F,G) that showed high visual similarity to expert data

(Figure 4A,B,D,E,G,H, Movies S4 and S5), this aggregation procedure

F IGURE 2 Multiple segmentations were contributed by volunteers for each image in the EAC project. Each cell slice, A, was segmented by
multiple volunteers [contributions from different volunteers shown in different colours, B, and zoomed in panel C]. The volunteer annotations
vary in quality, with identifiable classes of error including; graffiti, D, ‘false-positive segmentation’ where non-NE is segmented, for example, a
region within the NE, indicated with a red arrow, E, and ‘false-negative segmentation’, where NE pixels have been missed, indicated with a red
arrow, F (Movie S2). For downstream analyses it is necessary to aggregate the multiple volunteer segmentations to establish a final ‘consensus’
NE segmentation for each slice. Panels are produced from slice number 70 from C001 (ROI 1656-6756-329) and 5 μm scale bar is shown on
panel A
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had a number of notable benefits. Importantly, the CRIA algorithm

made use of all volunteer annotations in producing the final consensus

segmentation, therefore no volunteer effort went unused. In contrast

to other methods explored, the CRIA algorithm is fully automated and

required no expert involvement, such as manual selection of high-

quality segmentations to seed the algorithm. This is a critical advan-

tage for a number of reasons; avoiding a requirement for manual

intervention minimizes the possibility of perturbing the final, consen-

sus, segmentation through introducing subjectivity and bias associ-

ated with a single individual. Furthermore, eliminating the need for

expert assessment removes a significant analytical bottleneck. Finally,

and perhaps most notably, this approach has shown high-quality seg-

mentations can be generated solely through collective non-expert

effort.

F IGURE 3 The CRIA algorithm was developed for the aggregation of multiple volunteer segmentations. In this algorithm, each individual
volunteer segmentation, A, was converted into a closed loop, B. This procedure was performed for all the segmentations associated with each
slice of the ROI, as can be seen stacked in C. The closed loops were converted to interior areas and stacked, D. A final, consensus segmentation
was determined as the outline of all interior areas where half or more of the volunteer segmentations were in agreement, E. This generated a
high-quality, volunteer-produced segmentation (5μm scale bar), F. We show here the annotations and aggregation for slice number 150 from
C001 (ROI 1656-6756-329). This process was applied to each slice of all n = 18 volunteer-segmented ROIs, allowing generation of a 3D
reconstruction of each ROI, G (Movie S3)
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2.5 | Machine learning for NE segmentation

Aggregated volunteer NE segmentations were used to train a U-Net

convolutional neural network (CNN) architecture19,20 for automatic

segmentation of the NE in SBF SEM data. Model performance was

assessed through presenting the model with two previously unseen

ROIs, and comparing the resulting predicted NE segmentations with

‘ground truth’ (Table S1 and Section 4 provide further information

about ROIs used for model training, validation and testing).

Two complementary forms of ‘ground truth’ data were available;

expert generated segmentations (available at http://www.ebi.ac.uk/

biostudies/files/S-BSST448/Expert) and aggregated volunteer

F IGURE 4 Consensus volunteer and machine-predicted NE segmentations are high quality. Visual inspection reveals a high similarity
between expert, A, aggregated volunteer, B, and machine predicted, C segmentations [shown for slice number 150 from C001 (ROI
1656-6756-329)], and a high degree of overlap of these segmentations with the NE. Segmentations from slices found at the top and bottom of
the volume (D, E, F) showed greater segmentation variability due to the presence of NE islands and membrane parallel to the cutting plane, which
make these regions more challenging to segment [shown for slice number 40 from C001 (ROI 1656-6756-329)]; 5μm scale bar is shown on panel
A. Despite this, 3D reconstruction of nuclei revealed a high similarity between expert, G, volunteer, H, and machine, I, segmented nuclei [shown
for C001 (ROI 1656-6756-329)] (Movies S4 and S5). Automatic NE segmentation using our trained model applied to our full data volume
captured many nuclei which had not previously been segmented through expert or volunteer effort, J (Movie S9), and the n = 18 nuclei
previously segmented by volunteers, K (Movie S10). Machine-predicted segmentations were produced with TAP
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segmentations (Section 4, Table S1 and Figure 4) providing a means to

test two facets of model performance. In comparing the prediction with

the aggregated volunteer data for each ROI, we were able to establish

how well the model had learnt to perform the task of NE segmentation

from the training data provided, which consisted of exclusively volun-

teer produced segmentations. Comparing model performance to expert

data enabled assessment of how well the model (hence, indirectly, the

volunteers) performed this task in comparison to experts.

The model performed well when compared to aggregated volun-

teer data. The average Hausdorff distance (AHD) between the

predicted segmentation and the aggregated volunteer segmentation

was 1.638 pixels (corresponding to a distance of 16.377 nm) for

C001, and 1.767 pixels (17.675 nm) for C006. The F-measure, recall

and precision of the model were 0.700, 0.792, 0.628, respectively, for

C001 and 0.687, 0.767, 0.621 for C006 (Table 1). Although these

metrics may initially seem poor in comparison to similar previous

work,21,22 it should be emphasized that we are examining the overlap

between lines (the NE) rather than areas (the nucleus). Hence, for eas-

ier comparison of our model with previously reported metrics, we also

provide the F-measure for the nucleus area for a single slice within

each ROI. As anticipated, this metric shows a much higher model per-

formance of 0.995 (C001) and 0.991 (C006).

Reflecting differences in volunteer and expert segmentation skill,

it was expected that we would see reduced model performance

(trained exclusively using volunteer produced data), when comparing

against expert-produced ‘ground truth’ data. We observed an AHD of

3.129 pixels (31.287 nm) for C001 and 3.890 pixels (38.904 nm) for

C006 between the prediction and expert data. The F-measure, recall

and precision were 0.340, 0.697, 0.225, respectively, for C001, and

0.375, 0.697, 0.256 for C006 (Table 1). Although most of these met-

rics indicate good model performance, the F-measure and precision

warrant further explanation. These measures are particularly poor in

the case of comparing the model to the expert data due to an idiosyn-

crasy of the expert data. The width of the available expert data is

narrower (30 nm) compared to both the aggregated and predicted

width of the NE (70 nm), and because of this we see a degradation of

the precision and F-measure metrics. This is because the model has

assigned pixels as NE that do not correspond with pixels annotated by

the expert, therefore, the false-positives rate is seemingly inflated.

Unfortunately, it was not feasible to amend our expert ground truth

through either asking an expert to resegment the ROIs (this was not

practical due to time constraints) nor was it recommendable to dilate

the width of the expert segmentation (as this would introduce greater

errors, e.g. incorrectly assigning cytoplasm pixels as NE). Despite this,

upon visual inspection, it was found that the model performance was

arguably superior to the expert segmentation as more relevant pixels

appeared to be assigned to the NE by the model (Figure 4), which

raises questions regarding the legitimacy of ‘ground truth’ data pro-

duced by a single expert, as shall be discussed later.

2.6 | Improved model performance with tri-axis
prediction

Although the model performed well, expert visual inspection revealed

some regions of under-segmentation (Figure S4A). These regions were

not randomly distributed across the data, but were instead localized

to sites at the top and bottom of the volume (the highest and lowest

z slices, Figure S4B,C), presumably due to the higher degree of visual

ambiguity in these regions caused by the presence of a greater num-

ber of NE islands and the membrane being oriented parallel to the

SBF SEM imaging plane. To improve the automated segmentation, we

sought to leverage additional information available in the volume. The

data examined here were downscaled in the xy plane to 50 nm to be

isotropic, therefore, it was possible to transpose the stack and run the

model on each axis (Figure S4D-F). This resulted in three orthogonal

NE predictions which were recombined to form a final segmentation,

with pixels assigned to NE in all three predictions accepted

(Figure S4G, Movies S6 and S7) and over-segmented pixels removed

using a connected components analysis (Figure S4H). Visual inspec-

tion revealed a significantly improved segmentation (Figure S4I); how-

ever, it was not possible to quantify this improvement due to a lack of

appropriate ground truth data.

The tri-axis prediction (TAP) approach was applied to the entire

volume (Figure 4, Movies S1, S8 and S9), and took a total of

48 minutes to produce NE predictions for all nuclei within the volume

(Figure 4J), including the n = 18 nuclei already segmented with volun-

teer effort (Figure 4K and Movie S10). TAPs have been made available

at http://www.ebi.ac.uk/biostudies/files/S-BSST448/Aggregations.

Serendipitously, a cell within the volume was undergoing mitosis,

TABLE 1 CNN performance metrics. Model performance was assessed by comparing the predicted NE segmentation to ground truth for two
ROIs [ROI 1656-6756-329 (cell ID = C001) and ROI 3624-2712-201 (cell ID = C006)]. We report multiple metrics of model performance
(Section 4) against two complementary modes of ‘ground truth’ data available (aggregated volunteer data and expert-produced segmentations)

Cell ID ROI F-measure Recall Precision AHD (pixels) AHD (nm) F-measure area (single slice)

Prediction compared to aggregated volunteer data

C001 ROI_1656-6756-329 0.700 0.792 0.628 1.638 16.377 0.995

C006 ROI_3624-2712-201 0.687 0.767 0.621 1.767 17.675 0.991

Prediction compared to expert data

C001 ROI_1656-6756-329 0.340 0.697 0.225 3.129 31.287 0.993

C006 ROI_3624-2712-201 0.375 0.697 0.256 3.890 38.904 0.9924
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allowing us to observe that our model performed well in this challeng-

ing context in which the NE had partially broken down, despite not

having been exposed to training data of this type (Figure 5A and

Movie S11). This is in contrast to some other approaches for NE iden-

tification which rely on the presence of a clear boundary, such as

flood or marker based watershed methods.23 The ability of the algo-

rithm to segment disassembled mitotic NE is particularly surprising

given the NE effectively regresses to become ER during mammalian

cell division. Further analysis of the features identified by the model

may be useful in defining the transition of the NE to the ER and back

during mitosis. TAP was also applied to an alternative region from the

same resin-embedded sample imaged at higher resolution (5 nm) on

the same microscope (which also contained both mitotic and

interphase cells, Figure 5B and Movie S12), and to a HeLa cell from

the same sample imaged by an alternative volume EM methodology

(FIB SEM) (Figure 5C and Movie S13). Visual inspection of these data

sets showed good model performance indicating the model is general-

izable to novel contexts; however, it should be acknowledged that

some erroneous over-segmented pixels can be observed, particularly

in the peripheral ER and edges of lipid droplets bordering the nuclear

region in mitotic cells (Figure 5B and Movie S12), indicating there is

scope for future improvement.

To provide a comparison of the approach presented here with an

alternative, commonly used, image processing technique, we applied

edge detection (Section 4) to a single ROI from the volume [cell

ID = C001 (ROI 1656-6756-329)]. As expected, edge detection was

found to be capable of detecting the NE reasonably well; however, it

was unable to isolate this structure from the many other membranes

present in the cell, such as the mitochondria and endoplasmic reticu-

lum (Movie S14). The additional spatial context provided by the U-

Net architecture allows the model to distinguish between similar

edges based on the 3D structures of their neighbourhoods, and as

outlined, the TAP modification enables segmentation of indistinct

edges resulting from the membrane being aligned in the cutting plane.

Finally, considering the overarching objective of this research was

to facilitate faster analysis of volume EM data, we calculated the time

benefit of our predictive model. For an expert to manually segment a

single ROI would have taken approximately 30 hours.24 Prediction

took approximately 1 minute per image stack for a single ROI, there-

fore, our model prediction represents 1800 times faster data analysis.

3 | DISCUSSION

We show here that volunteer effort through online citizen science can

be effectively applied to the task of manual segmentation of organ-

elles in electron micrographs, enabling data analysis at a scale not

achievable by experts alone. We demonstrate the data produced is of

sufficient quality for task automation through training a CNN capable

of segmenting the NE at high accuracy. Although prior work has

shown crowdsourced volunteer effort can be productively applied to

comparable tasks, such as the marking of single particles from cryo-

EM micrographs to generate 3D protein reconstructions,15 and to the

marking of whole cells,16 to our knowledge this is the first study to

demonstrate the ability of volunteers to effectively perform manual

freehand segmentation of an organelle in volume EM data.

Such large-scale, systematic segmentation makes quantitative

examination of organelle morphology feasible. This has the potential

to drastically advance our understanding of NE morphology and func-

tion, in both normal and diseased states such as cancer12,13 and

nuclear laminopathies.14 Yet, even with the collaboration of a commu-

nity of citizen scientists it will not be possible to segment data at a

scale proportional to current data production rates, and this challenge

will become greater with further technological advancement. Hence,

we sought to automate NE segmentation using volunteer produced

segmentations as training data for a CNN,19 resulting in a model able

F IGURE 5 Model shows high NE segmentation performance in
novel contexts. Applying TAP to the full data volume allowed us to
observe that the model performed well when segmenting the partially
broken down NE of a mitotic cell, A (Movie S11). TAP also showed
good performance when applied to the same resin-embedded sample
(which also contained both mitotic and interphase cells) imaged at
higher resolution (5 nm) on the same microscope, B (Movie S12) and
when applied to a HeLa cell from the same sample imaged by an
alternative volume EM methodology, FIB SEM, C (Movie S13). All
scale bars are 5 μm
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to segment the NE to a high standard in a matter of minutes, rather

than the hours, days or weeks required for manual segmentation. Crit-

ically, our model was trained exclusively with volunteer segmentations

and required no expert microscopist input or intervention.

Although our model performed surprisingly well when applied to

data produced under different conditions, there was scope for

improved performance. Hence, we remain far from our aspiration of a

highly-accurate, yet broadly applicable approach for the automated

analysis of microscopy data for a single organelle, let alone each fea-

ture of interest in every volume acquired. It is anticipated that future

work in this arena may be accelerated through application of

approaches including transfer learning25 and multiclass predictive

models.26 However, unless significant advances are seen in

unsupervised machine learning approaches, it is expected that an ade-

quately trained generic model will still require a large quantity of gro-

und truth annotations, covering each organelle from a wide variety of

imaging conditions and different cell types. Clearly, the lack of suitable

training data remains a significant barrier to the development of a

broad automated approach; however, as we have demonstrated here,

large training data sets can be produced through volunteer

engagement.

Many avenues exist for the extension of this research, including

segmentation of other organelles, examination of data from other

imaging modalities and the analysis of data from further cell lines or

tissue types. We expect that such future projects would be signifi-

cantly expedited by the workflows and analyses established in this

first iteration of EAC. However, consideration will be required to

effectively apply the methods and tools presented here to novel con-

texts. For example, it is anticipated that many of the organelles to be

targeted in future citizen science projects, such as the mitochondria

and endoplasmic reticulum, will likely display greater structural het-

erogeneity than the NE. We expect that this will pose two key chal-

lenges in the context of crowdsourcing segmentations through online

citizen science. Firstly, this structural variability will impact the diffi-

culty of manual segmentation of different organelles under different

conditions, we will therefore need to refine and modify novel projects

accordingly. For example, in designing our second EAC project for the

segmentation of mitochondria (‘EAC – Powerhouse Hunt’ https://

www.zooniverse.org/projects/h-spiers/etch-a-cell-powerhouse-hunt)

it was necessary to adjust the field of view presented to the volunteer

to ensure a reasonable number of mitochondria of an appropriate

size were presented for segmentation. Other design modifications

included providing a broad selection of mitochondrial image examples

in project training materials. For organelles that can only be unequivo-

cally identified by functional markers (e.g. autophagosomes labelled

with green fluorescent protein) other study design adjustments will

need to be explored such as presenting correlative light images in con-

junction with EM images to guide segmentation. Beyond study design

modifications, in such challenging instances it may also be possible to

achieve higher data quality through engaging the help of a greater

number of volunteers in providing segmentations for each image. Sec-

ondly, it is anticipated that the likely increased structural heterogene-

ity of future target organelles will require adjustment of our

aggregation pipeline, for example, to enable the aggregation of many

independent structures within a single ROI. However, preliminary

work to aggregate mitochondrial segmentations indicates that this,

while being an important consideration, is not insurmountable: the

analytical pipelines presented here may require modification; how-

ever, they do not require complete reinvention.

Although challenging from a study design perspective, the possi-

bility of designing a portfolio of projects of varying difficulty provides

a rich opportunity to engage volunteers through serving a greater

variety of skills and interests. Reassuringly, citizen scientists have

proven capable of performing a growing array of challenging tasks,

from identifying supernovae27 to visually assessing the quality of brain

registration in functional magnetic resonance imaging studies.28 We

have been astonished that it is possible to train non-experts to recog-

nize and segment complex organelles in minutes with just an online

tutorial. We therefore remain confident in the abilities of our volun-

teer community to successfully perform novel segmentation tasks.

The challenge of motivating increased engagement and high-

quality contributions will become increasingly important as our reper-

toire of citizen science projects expands and diversifies. Manual seg-

mentation is a challenging task requiring a large time investment. We

must therefore continue to develop novel modes of engaging our

community and work to reduce the effort required to segment each

slice. Mechanisms to achieve reduced volunteer effort per slice may

include ‘smart subject assignment’29,30 – the intelligent passing of

slices of appropriate difficulty to volunteers. Furthermore, it may be

possible to actively retire slices from the project once an acceptable

segmentation quality has been achieved – this would enable volunteer

effort to be reduced for ‘easier’ images, and to instead be applied to

images of greater difficulty.

Incorporating ‘computers in the loop’ may provide additional

mechanisms for reducing segmentation effort. Future pipelines may

include presenting volunteers with predicted segmentations for cor-

rection, rather than full segmentation. Feedback loops between

computer-prediction and crowdcorrection could enable real-time

model refinement, improve predictions and therefore progressively

reduce need for volunteer correction, resulting in greater project effi-

ciency. Predictive models need not be fully optimized to be useful; if a

model is not yet able to accurately segment its target organelle, it may

still provide valuable information that could be fruitfully leveraged, for

example, the anticipated number of a particular organelle class and

their approximate location. This would provide a mechanism for

assessing volunteer ability, segmentation quality and subject difficulty.

We have demonstrated that experts can be removed from the

task of manual segmentation, however, researcher time remains nec-

essary to generate the infrastructure supporting this effort and for the

continued refinement of multiple aspects of the analytical pipelines

underlying these studies. More critically, researcher effort continues

to be needed to interpret and assess the quality of volunteer or

machine produced segmentations. This is a particularly challenging com-

ponent of this work, as the required quality of a ‘final segmentation’ is
often intimately linked to the research question being addressed.

Related to the ubiquitous challenge of finalizing segmentations and
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establishing ‘truth’ in this domain: it can be difficult to definitively

assign pixels of noisy and nuanced micrographs to different regions, and

much inter-expert (and intra-expert) variation can exist. The potential

for pixel-assignment disagreement raises an interesting possibility

regarding additional value of collectively producing segmentations;

when multiple individuals annotate each slice, rather than a single

expert, it is possible to produce a level of confidence that each pixel

belongs to a certain region, rather than simply a binary designation.

Such a segmentation-confidence map may be more reflective of the

reality of cell morphology, where a subset of pixels may not definitely

belong to a particular region. This may provide insight, with regions of

variable confidence being of possible biological relevance, for example,

we may expect nuclear pores in the NE to be less confidently desig-

nated as this organelle.

Future collaboration of the crowd and computing is poised to

enable, for the first time, the large-scale, generalizable, yet accurate,

quantification of multiple subcellular structures across many data

modalities at the nanoscale.

4 | MATERIALS AND METHODS

4.1 | Cell model

HeLa cells were cultured in large Petri dishes in DMEM. Prior to fixa-

tion, the cells were dissociated from the dishes using trypsin, pelleted,

and briefly washed in DMEM. Fixation was carried out by first

resuspending the cells in an equal quantity of double-strength fixative

[5% glutaraldehyde and 8% formaldehyde in 0.1 M phosphate buffer

(pH 7.4), for a working concentration of 2.5% glutaraldehyde and 4%

formaldehyde] for 15 minutes at room temperature, before pelleting

and resuspending in single-strength fixative for 30 minutes at room

temperature, and 30 minutes at 4�C. The cells were then embedded

as a pellet in Durcupan resin following the method of the National

Centre for Microscopy and Imaging Research.31

4.2 | Data acquisition

SBF SEM data were collected using a 3View2XP (Gatan, Pleasanton,

California) attached to a Sigma VP SEM (Zeiss, Cambridge). Small por-

tions of the cell pellets were mounted on pins using conductive epoxy

resin (Circuitworks CW2400), trimmed to form an approximately

400 � 400 � 150 μm pillar, and coated with a 2 nm layer of platinum.

Images were acquired at 8192 � 8192 pixels using a dwell time of

6 μs (10 nm reported pixel size, horizontal frame width of 81.99 μm)

and 50 nm slice thickness. The SEM was operated at a chamber pres-

sure of 10 pascals, with high current mode inactive. A 20-μm aperture

was used with an accelerating voltage of 3 kV. Raw data consisted of

a total of 518 images acquired sequentially, representing a depth

of 25.9 μm and total volume of 17 4135 μm3 (10 nm data set,

Figure 1 and Movie S1). One image was excluded from analysis due to

a technical fault resulting in loss of the cut material and the

production of a blank image. To enable further analyses and

benchmarking, raw data have been made available via the EM-PIAR

repository (deposition ID: 137, accession code: EMPIAR-10094,

https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10094/). Digital

micrograph (DM4) files were read into Fiji with the Bio-Formats

library32 and subsequently saved as TIFFs.

4.3 | Expert production of ground truth data

Ground truth segmentations for two ROIs were obtained by manual

annotation in the Amira software package.33 The two cells segmented

by expert effort were cell ID = C001 (ROI 1656-6756-329) and cell

ID = C006 (ROI 3624-2712-201) (Table S1). Expert segmentations

have been made available at http://www.ebi.ac.uk/biostudies/files/S-

BSST448/Expert.

4.4 | Volume pre-processing to produce images for
online citizen science

Approximately, 40 cells were visualized within the full volume (Movie

S1). Of these, cells with nuclei not intersecting the edge of the field of

view in any slice were manually selected for study inclusion. This

ensured each 2D slice presented to volunteers contained a complete

NE, simplifying the labelling of this structure and reducing the likeli-

hood of mis-identification. A total of n = 18 appropriate cell volumes

were selected using this criterion. Each selected cell was cropped

from the full volume (Figure 1A-C) and exported as a sequence of

TIFF images using the following procedure within Fiji software; a 3D

ROI was created around each selected cell, with a size of

2000 � 2000 pixels in x,y. The number of slices (synonymous with

‘subjects’ in Zooniverse terminology) per cell ranged from 150 to

300 due to inherent differences in cell size and variability in cell com-

pleteness across the z-axis in the data volume (12 of the 18 cells were

not complete in the z-axis, Table S1 and Movie S1). To ensure reason-

able web browser download times, the raw images for each ROI were

downscaled to 1000 � 1000 pixels in x,y, and converted from digital

micrograph DM4 format to JPEG with quality of 90% to reach an

image size of approximately 600 kb using the Fiji software package34

with the Bio-Formats tool.32

4.5 | Development of EAC with the Zooniverse
Project Builder

Cell images were presented to volunteers for NE segmentation via an

online citizen science project, ‘EAC’. This project was designed and

deployed on the Zooniverse platform (https://www.zooniverse.org/)

using the Project Builder (https://www.zooniverse.org/lab). The Zoo-

niverse Project Builder is a free, web-browser-based toolkit that pro-

vides the core infrastructure necessary for designing, building and

implementing all components of an online citizen science project,
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including the project workflow and supporting materials such as the

project tutorial (Figure S2). Project development took approximately

6 months, during this time the project workflow was designed and all

supporting materials produced, including an in-depth tutorial to com-

prehensively explain the NE segmentation task (Figure S2). Prior to

launch, the project was refined through a multi-step review process

involving thorough assessment of the project by both Zooniverse vol-

unteers and the Zooniverse research team. For key Zooniverse terms,

refer to https://help.zooniverse.org/getting-started/glossary/.

4.6 | EAC workflow design

The pre-processed slices were uploaded to EAC for volunteer segmenta-

tion using a python script (https://github.com/FrancisCrickInstitute/Etch-

a-Cell-Nuclear-Envelope) that interfaced with the Zooniverse Panoptes

API (https://github.com/zooniverse/Panoptes).

Slices were embedded within the project ‘workflow’. The

‘workflow’ of a Zooniverse citizen science project refers to the series

of tasks a volunteer is asked to complete when presented with data in

the project's classification interface.

In the EAC project workflow, upon being presented with one of

the uploaded cell slices at random, volunteers were asked to perform

the task of segmenting the NE using a Freehand Drawing Tool applied

directly to the image in a web browser (Figure S1E). Upon submission

of the classification, the individual lines drawn by the volunteers were

recorded as arrays of x,y pairs defining a line path (Figure S1F).

To support volunteers in the task of NE segmentation, a detailed pro-

ject tutorial was provided on the classification interface (Figure S2). To

enable more accurate annotation, pan and Zoom functionality was

enabled. Furthermore, to provide the volunteer with a limited amount of

three-dimensional context to help resolve segmentation ambiguities, the

image to be segmented was presented as the central image within a

‘flipbook’ of five images, with the two neighbouring images on either side

corresponding to the ±250 and 500 nm planes in the z-dimension

(Figure S1D,E)

To produce data of sufficient quality for downstream analyses,

each individual image was presented to multiple volunteers to enable

the generation of a ‘consensus’ from the aggregation of multiple

annotations. The minimum number of required annotations is denoted

the ‘retirement limit’ and was set at n = 30 for this project. Therefore,

each individual image received at least 30 volunteer segmentations. A

small subset of images received more than this, as a small number of

images continue to be presented to volunteers in the project classifi-

cation interface after all available data have been segmented.

4.7 | Citizen science data export

The EAC project workflow examined in this manuscript was

deactivated on 1 August 2019 and the project data exported from

the data exports page of the Zooniverse Project Builder as a

comma separated value (CSV) file. A single classification could

consist of an arbitrary number of individual lines (a line being

defined as a single continuous stroke annotation). Each segmenta-

tion is recorded in a JavaScript Object Notation formatted string

within the annotation field of the CSV file. Each line within the

annotation is represented as a series of (x,y) pairs defining a line

path (Figure S1F). The unaggregated segmentation data have been

made available at http://www.ebi.ac.uk/biostudies/files/S-BSST448/

etch-a-cell-classifications.csv.

4.8 | Data aggregation with CRIA

Multiple volunteer segmentations were produced for each slice

uploaded to the EAC project. It was therefore necessary to remove

outlying data and establish a ‘consensus’ segmentation for each slice.

The CRIA algorithm was developed to aggregate the volunteer seg-

mentations. In this approach, first, each individual volunteer segmen-

tation was converted into a closed loop. This procedure was

performed for all segmentations associated with each slice of the ROI.

Next, these closed loops were converted to interior areas and stacked.

A consensus segmentation was determined by taking the outline of all

interior areas where half or more of the volunteer segmentations

were in agreement (Figure 3A,F). This procedure was repeated for

every slice within each ROI. Aggregated volunteer data have been

made available at http://www.ebi.ac.uk/biostudies/files/S-BSST448/

Aggregations. CRIA code is available at https://github.com/

FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope.

4.9 | Model architecture

A U-Net CNN architecture19,20 was trained with aggregated volun-

teer segmentations for the automatic segmentation of the NE. This

architecture uses convolutional layers and an autoencoder-style

compression path. Hyper-parameter optimization was performed

through random search, resulting in selection of the following model

parameters: patch size of (12, 256, 256), dropout rate of 0.3, 32 start

filters, Adam optimizer with an initial learning rate of 0.0005, and

batch normalization. Informed by the expected and visible width of

the membrane in the data (60-80 nm), a NE width of 70 nm was

selected.

Training data for the model consisted of the aggregated volunteer

segmentations. A voxel resolution of 50 nm was selected. Table S1

details the ROIs used for model training, validation and testing. Two

ROIs were selected for model validation: cell ID = C005 (ROI 2052-

5784-112) and cell ID = C010 (ROI 3588-3972-1). Two ROIs were

used for model testing: cell ID = C001 (ROI 1656-6756-329) and cell

ID = C006 (ROI 3624-2712-201); these two ROIs had been manually

segmented by both expert and volunteers. One ROI (cell ID = C013,

ROI 1716-7800-517) was excluded from training due to having

received insufficient data from the citizen science to perform data

aggregation. Using a local high performance compute cluster

(Section 4, Nvidia Tesla V100-SXM2-32GB) to train this model took
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approximately 4 hours (1 hour for data pre-processing; 100 seconds

per epoch = 3 hours in total).

The loss function used for the model was the smoothed dice

coefficient (or F-measure), where

Dice loss¼1� smoothed dice coefficient:

4.10 | Model performance metrics

A commonly applied approach to assess the quality of a model predic-

tion vs ground truth for image data is to directly map the pixels

between the two images. We report the F-measure, which is similar

to the Dice coefficient. This measures the coincidence of predicted

cell membrane to ground truth membrane. The F-measure of the

nucleus area (as opposed to the NE) is also reported to enable easier

comparison with previous work. As this metric requires a closed area,

this was performed on a qualified single slice near the centre of the

cell. Finally, we also report the AHD, in both pixels and nm, between

the predicted NE and the position of the ground truth NE. This metric

takes an average of all minimal distances between pixels in the predic-

tion (P) and ground truth (G):

AHD G,Pð Þ¼ 1
Gk k

X
g � G

min
p � P

d g,pð Þf g
� �

4.11 | Tri-axis prediction

A multi-axis modification of our machine learning model was

implemented to improve performance (Figure S4). Data were down-

scaled in the xy plane to 50 nm to be isotropic, and the stack transposed

to run the model over each axis (Movies S6 and S7). The resulting three

orthogonal NE predictions were recombined to generate a final seg-

mentation. All pixels assigned to NE in all three predictions were

accepted, and connected components analysis was to remove over-

segmented pixels (Section 4). This approach was named ‘TAP’. TAP
results for each ROI have been made available at http://www.ebi.ac.uk/

biostudies/files/S-BSST448/Predictions. TAP code is available at

https://github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope.

4.12 | Post-processing of 3D volumes

Connected components analysis35 was implemented as a post-

processing step at multiple points within the analyses presented.

Within the single-axis implementation of the machine learning model,

connected components analysis was used to remove objects below a

threshold of 10 000 voxels. This threshold was selected as it resulted

in the removal of small areas of erroneous over-segmented pixels,

while legitimate membrane was preserved due to its comparatively

large size. Connected components analysis was also used to isolate

the predicted NE segmentation for the target nuclei within each ROI,

to discard any predicted NE associated with peripheral cells poten-

tially present. In the TAP modification of the machine learning model,

connected components analysis was similarly used to remove over-

segmented pixels by removing objects below a threshold of 10 000

voxels and to identify and isolate the target nuclei within each ROI by

selecting the largest connected component. The Python package,

scikit-image36 was used to automate these aspects of the data analy-

sis pipeline (https://github.com/FrancisCrickInstitute/Etch-a-Cell-

Nuclear-Envelope). Where NE segmentations produced by TAP are

presented for the whole volume (e.g. Figure 4J), objects below a more

stringent threshold of 100 000 voxels were removed using Mor-

phoLibJ.23 3D renderings of segmentations were generated using Fiji's

3D Viewer plugin.37

4.13 | Edge detection

Edge detection was performed with Fiji's “Find Edges” function (based on

a 2D 3 � 3 Sobel filter) after data rescaling and pre-processing with a

median filter. Edge detection was applied to each slice of a single ROI (cell

ID = C001 (ROI 1656-6756-329), Movie S14). Edge detection code is

available at https://github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-

Envelope.

4.14 | Computing resource

Data analysis was performed on available high performance comput-

ing. This included Google Colaboratory (http://www.colab.research.

google.com/), Amazon Web Services (AWS) cloud computing service

(http://aws.amazon.com/), and a local high performance compute

cluster called ‘CAMP’ (Crick Data Analysis and Management Plat-

form). For reproducibility and convenience, the final analytical pipeline

was packaged and tested on AWS.

4.15 | Code availability

All assets relating to the analysis and training have been made

available on public repositories and a single automated pipeline for

reproducing the work has been containerized using Docker to cap-

ture environment configurations. The agnosticity of the container-

ized pipeline has been tested by running on a public cloud instance

(AWS). Further information regarding re-running the pipeline has

been provided in the readme on GitHub. We provide both repro-

ducibility instructions (using the original data) and instructions

for applying the trained model to other data sets. Code is available

at: https://github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-

Envelope.
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