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Simple Summary: One of the worst aspects of tumors is the relapse of metastatic lesions several
years after the removal of the primary tumor and after the patient has been considered disease-free.
This particular aspect is called “metastatic dormancy”. Unfortunately, this behavior is particularly
hard to study because disseminated cancer cells are technically not detectable by current imaging
techniques. We developed a culture of breast cancer cells and lung epithelial cells that recapitulates
in vitro several aspects of what is observed in the real lung. With this tool we identified a specific
feature: a lysosomal process that is activated in breast cancer cells and which might be used in the
future to target those cells before they wake up.

Abstract: (1) Background: metastatic relapse following a prolonged period of disease-free survival is
a common cause of mortality for many cancer patients. Disseminated dormant cancer cells (DDCCs)
lie below the radar before waking up years, or even decades, after the removal of the primary tumor.
This implies that they are able to survive in a latent state in a foreign environment for an extended
period of time supported by intrinsic and extrinsic factors still to be elucidated. (2) Methods: we
employed a coculture of DDCCs with lung epithelial cells together with RNA sequencing analysis to
understand the overlap in gene transcription between in vivo and cocultured DDCCs. (3) Results:
we found a significant overlap between the processes activated in DDCCs from lungs and in the
coculture, as well as in alveolar type I cells in vivo and in coculture. We identified the transcription
factor EB (TFEB)-lysosomal axis as a relevant process activated in DDCCs upon dissemination to
the lung and confirmed the results in our lung coculture. Interestingly, breast cancer patients with a
higher expression of TFEB targets show increased likelihood of developing relapses. (4) Conclusions:
we propose that lysosomal accumulation following TFEB activation is an important feature of breast
cancer DDCCs that might be exploited for future therapeutic interventions.

Keywords: dormancy; tumor microenvironment; lysosomes; TFEB; in vitro models; organotypic systems

1. Introduction

Metastatic dormancy is a stage during cancer progression in which disseminated
cancer cells undergo quiescence, or a proliferation balanced with apoptosis, for prolonged
time and possibly undergo proliferative switch leading to metastatic disease. This is not
a feature common to all types of cancer [1,2]. For example, breast cancer-positive for es-
trogen receptor shows increased metastatic likelihood up to 20 years after the removal
of the primary tumor, while estrogen receptor-negative subtypes either relapse within
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the first 5 years or don’t relapse at all [3,4]. Even though this is an old concept, only in
the last decade researchers have started to unravel the mechanisms behind metastatic
dormancy, mainly thanks to the development of innovative in vitro models [5,6]. As a
matter of fact, detection, isolation and characterization of scattered metastatic cancer cells
in secondary organs is technically unfeasible. To circumvent this problem, in the last two
decades several groups developed techniques to detect disseminating cells (circulating
tumor cells, CTC) or tumor biomarkers (such as cell-free tumor DNA) from blood-based
biopsies [7,8]. Importantly, several reports showed that the presence of CTCs is a predic-
tor of late recurrence [7]. While CTCs hold the potential to facilitate our understanding
of the molecular mechanisms of dissemination and survival, their characterization has
been limited by the low concentration of detectable CTCs in patients with cancer in the
early stages and high intra-patient heterogeneity. Thus, the design of new organotypic
systems to study the processes involved in metastatic dormancy that include different
components of the metastatic niche in vitro is of paramount importance. The metastatic
niche involves biochemical (oxygen levels, metabolites), biophysical (forces, shear stress,
tissue architecture and stiffness) and stromal components (tissue specific cell populations
and ECM). Several groups developed in vitro models to study metastatic dormancy by
including one or more of the abovementioned components and validated their models
according to different criteria [5]. Here we performed a thorough characterization of the
transcriptional program of DDCCs and lung epithelial cells in our in vitro system and
compared the former with RNAseq data derived from in vivo isolated DDCCs.

Our original lung organotypic system included cellular models of lung parenchymal
cells, such as alveolar type I (AT1)-like cells, alveolar type II (AT2)-like cells and immortal-
ized lung fibroblasts on an air-permeable surface and a mitogen low, nutrient low medium
(MLNL). Upon culture with this lung coculture, human and mouse DDCCs underwent qui-
escence and developed several traits in common with DDCCs isolated from mouse lungs,
such as cellular protrusions and fibronectin fibrillogenesis [9]. Importantly, we showed
that both growth-suppressive and pro-survival signals were released from lung cells.

Here we show that a simple coculture of DDCCs with AT1-like cells is sufficient to
induce a gene expression with a high similarity to that activated by DDCCs upon dissemi-
nation to the lungs. Moreover, AT1-like cells exhibit activation of proliferative pathways as
previously observed in vivo. These analyses revealed the activation of transcription factor
EB (TFEB) signaling and lysosomal accumulation in coculture and in vivo, suggesting a
potential new vulnerability of DDCCs.

2. Materials and Methods
2.1. Cell Lines

D2.0R and MCF7-GFP cells were a gift from D. Barkan (University of Haifa, Israel), and
the T47D-DBM-GFP cells were a gift from R. Gomis (Institute for Research in Biomedicine,
Barcelona, Spain). Alveolar type 1-like cells (TT1 cells, a gift from J. Downward, The Francis
Crick Institute, London, UK) were originally provided by T. Tetley (Imperial College, London,
UK). The generation of D2.0R-EGFP is described in [9]. All cells were cultured in DMEM with
10% FBS (Thermo Fisher Scientific, Waltham, MA, USA, 41965-039) and routinely screened
for mycoplasma at the Cell Services facility at The Francis Crick Institute or with a Universal
Mycoplasma Detection kit (ATCC, Manassas, VA, USA, 30-1012 K).

2.2. Lung Organotypic System

The Coculture was prepared for survival analysis and imaging as follows: 1.36 × 105

TT1 cells/well were plated in MLNL medium (low-glucose DMEM (Thermo Fisher Sci-
entific, Waltham, MA, USA, 21885025), 1% FCS) on a Lumox 24-multiwell plate (Sarstedt,
Nümbrecht, Germany, 94.699.00.14). After 24 h, breast cancer cells (100 cells/well for
survival assays, 500 cells/well for imaging) were added to the TT1 cell layer. For survival
assays, GFP-positive cells were manually counted under an inverted fluorescent micro-
scope after 4 days in coculture. For RNA sequencing, 1.36 × 106 AT1-like cells/sample
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were plated in 60 mm dish in a MLNL medium; the next day, 1.8 × 105 D2.0R-EGFP
cells/sample were added (three biological replicates/sample). On day 3 of coculture,
total RNA was extracted using RNeasy Plus Micro Kit (Qiagen, Hilden, Germany) after
separation of EGFP-positive and EGFP-negative (AT1-like cells) by Fluorescence-Activated
Cell Sorter (FACS).

2.3. Lysosomes and Autophagic Flux Visualization

Cocultures were prepared onto coverslips as described above. After 48 h, LysoTracker
Red DND-99 (Thermo Fisher Scientific, Waltham, MA, USA, L7528) was added to the
culture medium to a final concentration of 50 nM and incubated at 37 ◦C for 30 min. Cover-
slips were mounted with ProLong Diamond Antifade Mountant with DAPI (Invitrogen,
Carlsbad, CA, USA, P36962) after fixation in 4% PFA for 12 min at room temperature.

Images were analyzed with Fiji software (https://imagej.net/Fiji (accessed on 27
February 2021)) and Lysotracker+ area was determined with the “Analyze particles” tool
after applying the same threshold to binarized images. We first generated two selections,
one of the whole cell surface (according to GFP) and the other of the nuclear surface (accord-
ing to DAPI). The percentage of Lysotracker+ cytoplasmic area was calculated according to
the formula Lysotracker+ area/(total cell area-nuclear area)*100. For quantification, at least
20 fields were acquired for each condition using the same acquisition settings.

Parental D2.0R cells were transfected with a pCNA3.1-LC3-mCherry-GFP plasmid
by using the Lipofectamine 3000 Transfection Reagent (Invitrogen, Carlsbad, CA, USA,
L3000001) following manufacturer’s instructions. The coding sequence for the fusion pro-
tein [10] was subcloned via Gateway cloning into pCDNA3.1+. One day after transfection,
D2.0R cells were plated on a 13 mm coverslip either on AT1-like layer (coculture, 1.5 × 103

D2.0R cells/well onto 1.36 × 105 TT1 cells/well plated in MLNL medium the day before)
or on plastic (monoculture, 1.5 × 104 D2.0R cells/well). After 48 h, cells were fixed on ice
cold FA 4% for 15 min and then washed with PBS. Treatment with 100 µM Chloroquine
(Sigma-Aldrich, St. Louis, MO, USA, C6628) for 3 h prior to fixing was used as control. The
coverslips were mounted with ProLong Diamond Antifade Mountant with DAPI (Invit-
rogen, Carlsbad, CA, USA, P36962). Images were acquired with Leica Stellaris confocal
microscope employing the LasX software (63x objective). Quantification was performed
by using ImageJ. Single stacks images were converted into 8-bit format and the threshold
was adjusted to avoid background signal. The mCherry and GFP puncta were counted by
using the “Analyze particles” tool with a filter of 0.4 pixel. Pearson’s correlation coefficient
was calculated by using the colocalization function. The autophagic flux is expressed as
a mean of the ratio between the number of mCherry puncta divided by the area of the
cytoplasm (excluding the nucleus) of a single cell.

2.4. Bioinformatic Analysis

RNA sequencing. Prior to analysis, the quality of the RNA samples was assessed using
the NanoDrop 8000 spectrophotometer v.2.0 (Thermo Fisher Scientific, Waltham, MA, USA,
for quantity) and Agilent 2100 Bioanalyser (Agilent Technologies, Santa Clara, CA, USA,
for integrity). Biological replicate libraries were prepared using the polyA KAPA mRNA
HyperPrep Kit and sequenced on Illumina HiSeq 4000 platform, generating ~24 million
100 bp single-end reads per sample. Read-quality trimming and adaptor removal were
carried out using Trimmomatic (version 0.36). The RSEM package (version 1.3.30) [11],
in conjunction with the STAR alignment algorithm (version 2.5.2a) [12], was used for
the mapping and subsequent gene-level counting of the sequenced reads with respect
to the Ensembl mouse GRCm.38.89 version transcriptome. The normalization of raw
count data and differential expression analysis was performed with the DESeq2 package
(version 1.18.1) [13] within the R programming environment (version 3.4.3) [14]. Differen-
tially expressed genes were defined as those showing statistically significant differences
(False Discovery Rate (FDR) < 0.05). Differential gene lists ranked by the Wald statistic were
used to look for pathways and selected gene sets using the Broad’s Gene Set Enrichment

https://imagej.net/Fiji
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Analysis (GSEA) software (version 2.1.0) with gene sets from MSigDB (version 6) [15]
and additional published and custom datasets (Table S1). Spearman’s rank correlation
was used to compare the normalized enrichment scores by comparisons with different
experiments to determine which pathways were similarly enriched. Scatterplots (generated
using the R base graphics package) shows the correlation between the Wald’s statistic (gene
level differences from DESeq2) or the normalized enrichment score (NES)(pathway level
differences from GSEA) when comparing D2.0R lung-disseminated_vs_monoculture and
coculture_vs_monoculture comparisons.

Survival analysis. Kaplan-Meier were generated with KM Plotter online tool (https:
//kmplot.com/analysis/ (accessed on 27 February 2021)) which calculates log-rank p value.
Options used: “Use mean expression of selected gene”, “Autoselect best cutoff”, “User
selected probe set” and “Derive ER status from gene expression data”.

2.5. Growth Assays

Resazurin staining. AT1-like cells were seeded in 96-well plates (2.176 × 104/well
in quadruplicate) in parallel with standards in the linear range of detection. 24 h after
seeding, 4 nM Bafilomycin A1 (Sigma-Aldrich, St. Louis, MO, USA, B1793) was added
with fresh medium. After 4 days of treatments, cells were washed with PBS and incubated
with 100 µM Resazurin (Sigma-Aldrich, St. Louis, MO, USA, R7017) in culture medium
at 37 ◦C for 2 h. Absorbance at 544/590 nm was measured on live cells by checking that
the signal was in the temporal linear range. An absolute cell number was then calculated
based on the standard curve, after background subtraction (medium without cells).

Cell number quantification with Operetta system. Cells were seeded in 96-well plates
5 × 104 cells/well in quadruplicate). Then, 24 h after seeding, culture medium was renewed
by adding 1, 2 or 4 nM Bafilomycin A1. After 4 days of treatments, cells were fixed for
10 min in PFA 4% at room temperature, washed in sterile PBS and incubated for 15 min
with Hoechst (Life technologies, Carlsbad, CA, USA, H1399, 1 ug/mL). The cells were
automatically counted using the Operetta high-content imaging system based on nuclear
counterstaining. Live-cell analysis was performed using Harmony high content imaging
and analysis software.

2.6. Reporter Assay

At day 1, D2.0R cells were transfected with TFEB transcriptional reporter plasmid
(RAGD promoter cloned upstream of luciferase gene, a gift from Prof. Graziano Martello,
University of Padua, Italy) [16], together with a plasmid with constitutive expression of
Renilla luciferase to normalize for transfection efficiency [17] with Lipofectamine 3000
Transfection Reagent (Invitrogen, Carlsbad, CA, USA, L3000001). After 6 h, 1.8 × 104

transfected cells were plated both on a TT1 layer (coculture, 1.36 × 105 cells/well) and
on plastic (monoculture) in a 24-well format. Subsequently, 48 h after replating, cells
were harvested in Luc lysis buffer (25 mM Tris pH 7.8, 2.5 mM EDTA, 10% glycerol, 1%
NP-40) and the samples on plastic were diluted 1:5 in Luc lysis buffer to balance the
Luciferase/Renilla content compared to the coculture. Luciferase and Renilla activity
were determined in a Tecan plate luminometer with freshly reconstituted assay reagents
(0.5 mM D-Luciferin (Sigma-Aldrich, St. Louis, MO, USA, L9504), 20 mM tricine, 1 mM
(MgCO3)4Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA, 33 mM DTT, 0.27 mM CoA, 0.53 mM
ATP for Luciferase reaction, and 4 µg/mL coelenterazine (Invitrogen, Carlsbad, CA, USA,
C2944) in TBS 1X for Renilla reaction). Each sample was transfected in at least three
biological duplicates in each experiment.

2.7. Reverse Transcriptase Real Time PCR (RT-qPCR)

At day 1, AT1-like cells (1.36 × 106 cells/sample) were plated in MLNL medium in
60 mm dishes. At day 2, D2.0R-EGFP cells (1.8 × 105 cells/sample) were plated on top of an
epithelial layer or on plastic and cultured for three days before being harvested. Total RNA
was extracted using RNeasy Plus Micro Kit (Qiagen Hilden, Germany) from the whole

https://kmplot.com/analysis/
https://kmplot.com/analysis/
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coculture, and retrotranscribed; the mouse genes were amplified by using mouse-specific
qPCR primers. In particular, the total RNA was retrotranscribed with dT-primed M-MLV
Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA, 28025013). qPCR
analysis was carried out in a QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA, USA) with Fast SYBR Green Master Mix (Applied Biosystems,
Foster City, CA, USA, 4385612). D2.0R cells were normalized to GFP expression levels (not
expressed in AT1-like cells). The list of primers used in qPCR is provided in Table S3.

2.8. Statistical Methodology

The normal distribution of data was tested with Shapiro–Wilk test for experiments
with a sample size greater than 10. For sample sizes lower than 10, it is not easy to assess
the underlying data distribution, so non-parametric tests were preferred. For samples
sizes lower than five, we preferred parametric tests owing to the minimum possible
p value becoming large in the non-parametric case. For normally distributed samples,
we performed Student’s two-tailed t-test for single comparisons (paired or unpaired) and
ANOVA test (one-way or two-ways) for multiple comparisons. For non-normal data, we
performed the two-tailed Mann–Whitney test for single comparisons and the Kruskal–
Wallis test for multiple comparisons. Statistical analyses were performed with GraphPad
Prism Software. For survival plots (Kaplan–Meier analysis), data were analyzed with a
KM Plotter (https://kmplot.com/analysis/ (accessed on 27 February 2021)) online tool,
which calculates the log-rank p value (Mantel–Cox method). The Gene Set Enrichment
Analysis (GSEA) was generated from the GSEA online tool (http://software.broadinstitute.
org/gsea/index.jsp (accessed on 27 February 2021)), which also calculated the two primary
statistics of the analysis: Normalized Enrichment Score (NES) and False Discovery Rate
(FDR). NES is calculated by normalizing the enrichment score to the gene-set size; the
FDR represents an estimated likelihood that a gene set with a given NES represents a
false positive.

3. Results and Discussion

Our first objective was to understand to what extent a coculture of DDCCs and
AT1-like lung epithelial cells could recapitulate pathways and processes observed in vivo
in the two populations. To do so, we derived the total RNA of D2.0R cells (a model of
DDCCs) from different conditions: monoculture on plastic, coculture with AT1-like cells
and DDCCs isolated from mouse lungs [9]. In parallel, we also isolated and purified
total RNA from AT1-like cells in monoculture and after a coculture with DDCCs. We
then performed RNA sequencing of the purified samples and a GSEA of different pairs
of samples (outlined in Figure 1A). We first compared the RNA sequencing from AT1-
like cells in the monoculture to that of the AT1-like cells cocultured with DDCCs. Our
transcriptomic analysis of cocultured AT1-like cells revealed that the DDCCs profoundly
affect several signaling and metabolic pathways in lung epithelial cells. We detected
downregulation of several signaling (Wnt, TGFβ, PI3K, Notch) and metabolic pathways
(glycolysis and lipid metabolism) as well as an activation of electron-transport chain process
and proliferation gene sets (Figure 1B). The induction of a proliferative response in lung
epithelial cells by disseminated cancer cells was of particular importance as it reinforced
our previous findings in vitro and in vivo, where we observed proliferation in AT1 cells
directly contacting DDCCs with multiple techniques [9].

We then turned our attention to the analysis performed in DDCCs and compared
the RNA sequencing from D2.0R cells. Remarkably, there was a highly significant corre-
lation between genes regulated in the coculture with those from lung-disseminated cells
(Figure 1C, left). Moreover, the correlation became even stronger when the pathways
and processes were compared rather than single genes (Figure 1C, right). For example,
proliferative signatures were downregulated in cocultured DDCCs, in line with what we
previously observed with proliferation markers in vitro and in vivo [9]. This indicates that

https://kmplot.com/analysis/
http://software.broadinstitute.org/gsea/index.jsp
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Cancers 2021, 13, 1007 6 of 13

our coculture faithfully modeled processes observed in vivo both in DDCCs and lung
epithelial cells.

1 
 

 
 
 
 

Figure 1. Comparison of the transcriptional programs activated in disseminated dormant cancer cells (DDCCs) from
coculture, monoculture and lungs. (A) Outline of the transcriptomic analysis. (B) Enrichment map of lung AT1-like cells
upon coculture with indolent breast cancer cells. The map shows gene-set enrichment results of AT1-like cells cocultured
with D2.0R-EGFP cells compared with AT1-like cells in monoculture. Node size, genes in pathway; node color, enrichment
score (red indicates enrichment in cocultured AT1-like cells, blue indicates enrichment monocultures of AT1-like cells);
edge width, overlap size between connected nodes. (C) Scatterplots show the correlation between, left, the Wald’s statistic
(gene level differences from DESeq2) and, right, the normalized enrichment score (pathway level differences from GSEA)
of D2.0R-EGFP cells disseminated in vivo (lungs), in coculture or monoculture as indicated. (D) Profile of the running ES
score for KEGG_LYSOSOME gene set after GSEA of D2.0R-EGFP cells disseminated in vivo, in coculture or monoculture
as indicated.

Gene signatures related to lysosomal biogenesis and vesicle transport stood out as
processes significantly upregulated in disseminated cancer cells in vivo and upon coculture
with AT1-like cells (Figure 1D). We then looked at lysosomal vesicles in mouse and human
models of DDCCs alone or in coculture with AT1-like cells. To do so, we took advantage
of the Lysotracker probe, which consists of a fluorophore linked to a weak base. This
compound is freely membrane permeant at natural pH and effectively labels acidic com-
partments, such as lysosomes, in live cells. In line with the hypothesis from transcriptome
analysis, lysosome accumulation was observed in different human and mouse DDCCs
in coculture compared to monoculture (Figure 2A,B). Of note, both monocultures and
cocultures were maintained in a mitogen-low, nutrient-low medium (MLNL) and thus, a
basal staining of the lysosomal compartment was visible. Nevertheless, the coculture with
AT1-like cells significantly increased the accumulation of lysosomes (Figure 2A,B).
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Figure 2. Accumulation of lysosomal vesicles in cocultured DDCCs. (A) Lysosomal accumulation in D2.0R-EGFP, MCF7-
EGFP and T47D-DBM-EGFP cells upon monoculture or coculture with AT1-like cells as visualized by Lysotracker staining.
Dashed box: area magnified in the middle images. Scale bar: 20 µm. (B) Quantification of the relative cytoplasmic area with
Lysotracker+ staining. Mann-Whitney test. n = 3 independent experiments. (C) Representative pictures of mCherry and
GFP fluorescent signals in D2.0R cells transfected with mCherry-GFP-LC3 tandem construct upon monoculture or coculture.
Scale bar: 20 µm (monoculture), 15 µm (coculture). (D) Cytoplasmic area with mCherry+ve puncta in cells showed in (C).
Kruskal–Wallis test, multiple comparisons. n = 2 independent experiments. (E) Colocalization of mCherry+ve and GFP+ve
signals in cells showed in (C) expressed with Pearson’s correlation coefficient. Kruskal–Wallis test, multiple comparisons.
n = 2 independent experiments.

We next asked whether an increased lysosomal compartment was a consequence
of increased autophagic-flux. To do so, we employed the tandem fluorescent reporter
mCherry-GFP-LC3 [16]. LC3 is a vertebrate homologue of ATG8, one of the core genes
of the autophagic machinery, and is associated with pre-autophagosomal structures, au-
tophagosomes and autolysosomes [18]. During autophagosomes formation, fluorescence
of GFP and mCherry was visible, and autophagosomes were visible as yellow spots. When
autophagosomes fused with lysosomes, forming autolysosomes, the internal pH of the
vesicles dropped, quenching GFP fluorescent signal, while leaving unaltered the red signal
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from mCherry [19]. Autolysosomes thus appeared as red dots, while autophagosomes were
yellow dots. As shown in Figure 2C–E, DDCCs in monoculture show predominantly red
vesicles compared to yellow vesicles, indicating low accumulation of autophagosomes. To
our surprise, cocultured DDCCs showed an increased number of mCherry+ve spots highly
overlapping with GFP+ve puncta (Figure 2D,E). An increased number of autophagosomes
can be the result of opposite effects on autophagic-flux: induction of autophagosomes for-
mation or block of autophagosomes maturation to autolysosomes. To distinguish between
the two, we treated DDCCs with 100 µM chloroquine, which impairs lysosomal acidifica-
tion and thus autophagosome degradation after phusion with lysosomes. Interestingly,
while chloroquine increased the number of yellow puncta, i.e. autophagosomes, in mono-
cultured DDCCs, it didn’t alter the autophagic flux in cocultured DDCCs (Figure 2C–E).
This indicated that the autophagic flux was already blocked in cocultured DDCCs and
macroautophagy cannot account for the observed lysosomal accumulation.

Having established an in vitro system that mimics lung-specific, in vivo processes
upon dissemination of DDCCs, we asked whether functional lysosomes were required for
the survival of DDCCs in this context. Blocking lysosome acidification with Bafilomycin A1
led to the reduced survival of human and mouse DDCCs in the coculture without affecting
epithelial cells (Figure 3A,B). We then compared sensitivity to Bafilomycin A1 of DDCCs in
MLNL medium in the monoculture or in coculture. Importantly, the coculture with AT1-like
cells increased the DDCCs sensitivity to inhibition of lysosomal acidification (Figure 3C,D).
As lysosomal flux is a core process of each cell, all the cells were expected to be sensitive to
the inhibition of lysosomal function to some extent. That said, our results indicated that
increased lysosomal accumulation in cocultured DDCCs was accompanied by increased
sensitivity to the lysosomal acidification blockade compared to DDCCs cultivated alone.

 

2 

 

 

 
 Figure 3. DDCCs are sensitive to inhibition of lysosomal function. (A) Relative cell number of the indicated indolent breast

cancer cells upon coculture with AT1-like cells, after treatment with 4 nM Bafilomycin A1 for 4 days. n = 4 for D2.0R, n = 3
for MCF7 and T47D-DBM cells (independent experiments). Dunn’s test. (B) Mean normalized cell viability, assayed by
resazurin staining, of AT1-like cells treated or not with 4 nM Bafilomycin A1 for 4 days. n = 3 independent experiments.
Two-tailed t-test with Welch correction. (C) Relative number of D2.0R cells in coculture, after 4 days of treatment with
different doses of Bafilomycin A1 or control treatment. n = 3 independent experiments. Kruskal–Wallis test. (D) Relative
number of D2.0R viable cells in monoculture after 4 days of treatment with different doses of Bafilomycin A1 or control
treatment. n = 3 independent experiments. Kruskal–Wallis test.

TFEB, a member of the MiT-TFE family of transcription factors, is a master regula-
tor of lysosome biogenesis and associated metabolic processes [20–22]. To gain insight
into its role in the activation of lysosomal compartment in our different conditions, we
queried our transcriptomic analysis with a gene list of 471 TFEB direct targets and with a
selection of TFEB direct targets with known lysosomal function [23,24]. Both signatures
were highly enriched in DDCCs in vivo (lung-disseminated) and cocultured dormant cells,
suggesting that activated TFEB might be responsible for the observed lysosomal accumu-
lation (Figure 4A). To investigate this hypothesis experimentally, we took advantage of
a luciferase reporter containing CLEAR sites, that is, the DNA consensus sites predomi-
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nantly found in the promoter regions of autophagy-lysosomal genes and recognized by
TFEB and the other members of MiT-TFE family [23,24]. D2.0R cells were first transfected
with the luciferase reporter and then cultivated in monoculture or coculture before being
analyzed for luciferase expression. As shown in Figure 4B, TFEB transcriptional activity
was increased in DDCCs upon coculture with AT1-like cells compared to DDCCs alone.
Moreover, several endogenous TFEB lysosomal target genes were enriched in coculture
compared to monoculture (Figure 4C). So far, results have shown an increase in TFEB
transcriptional response and lysosomal accumulation in DDCCs in vivo and in coculture
with lung epithelial cells. We also showed that inhibition of lysosomal accumulation led
to increased cell death of DDCCs in coculture. To test whether TFEB transcriptional re-
sponse correlated with increased persistence of DDCCs in patients, we queried publicly
available datasets of gene expressions from breast cancer patients with a signature of TFEB
direct targets and observed that higher expression of the gene signature in ER-positive
breast cancer patients was significantly linked with the increased likelihood of relapses
(Figure 4D). These data suggest the activation of TFEB-dependent lysosomal biogenesis
in DDCCs in vivo and in a lung coculture system and support its involvement in survival
and persistence of disseminated indolent breast cancer cells in patients. 
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Figure 4. Transcription factor EB (TFEB) transcriptional response is activated in cocultured DDCCs (A) Profile of the running
ES score for gene sets including TFEB direct targets (all targets or subselection of lysosomal genes, Table S1) after Gene
Set Enrichment Analysis (GSEA) of D2.0R-EGFP cells disseminated in vivo, in coculture, or monoculture as indicated. (B)
Relative induction of transfected TFEB-luciferase reporter in D2.0R-EGFP cells cocultured with AT1-like cells compared to
monoculture. n = 3 independent experiments, ratio paired two-tailed t-test, mean with SEM. (C) Relative induction of TFEB
direct lysosomal targets in D2.0R-EGFP cells cocultured with AT1-like cells compared to monoculture. n = 2–3 independent
experiments. Two-way ANOVA, multiple comparisons. (D) Kaplan–Meier curve showing Relapse-Free Survival of ER+
breast cancer patients derived from the database at https://kmplot.com/analysis/ (accessed on 27 February 2021), stratified
according to the TFEB signature (Table S2).
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Delayed relapses of metastatic cancers are a significant hurdle in cancer therapy. While
some types of cancers, such as lung and colon cancers, metastasize shortly after the detec-
tion of the primary tumors, other cancers (e.g., breast and prostate as well as melanoma)
persist as indolent undetectable metastatic lesions for many years before reawakening [3,5].
In particular, ER-positive breast cancers showed increased propensity for late relapses com-
pared to ER-negative subtypes [4]. The development of eradication therapies for DDCCs
while still in a quiescent phase, will significantly benefit the survival of cancer patients.
As disseminated indolent cells are characterized by limited growth, the accumulation of
genetic lesions is unlikely to explain the shift in their behavior. Moreover, the role of the
microenvironment, as well as of systemic signals, are likely to significantly influence the re-
currence of dormant metastatic cancer cells. Recent evidence points towards dissemination
strategies that proceed in parallel with the development of the primary tumor [25,26]. Due
to the asymptomatic nature of DDCCs, the detection and isolation of those cells in patients
is still technically and ethically unfeasible except for cells disseminated in the bone mar-
row [2,3]. For this reason, the development of in vitro systems that faithfully recapitulate
features of the DDCCs’ microenvironment crosstalk is of paramount importance [5,6,27].
Here, we present evidence that a simple coculture of DDCCs and lung stromal cells is
sufficient to induce a transcriptional response largely overlapping with the one obtained
from in vivo isolated DDCCs (Figure 1C). Moreover, this overlap is not limited to DDCCs,
as cocultured lung epithelial cells showed the activation of proliferative pathways, which
agreed with the increased proliferation observed in AT1 cells in vivo [9]. Starting from this
evidence, we interrogated our transcriptomic analysis and identified the TFEB-lysosomal
pathway as the main transcriptional response activated in vivo and in coculture in DDCCs.
This result was experimentally validated by staining cocultured DDCCs with a lysosome-
specific dye and with a TFEB transcriptional luciferase reporter. Although our in vitro
system does not encompass all the components of the in vivo metastatic niche, it includes
the presence of organ-specific epithelial cells (as AT1 cells cover the majority of distant
lung surface), cellular density and a low DDCC-epithelial cells ratio, low mitogenic cultur-
ing medium and ECM deposition (over several days of culture). Importantly, metastatic
dormancy and reawakening is a paradigmatic example of the role of tumor heterogeneity.
Indeed, the majority of disseminated aggressive breast cancer cells, don’t proliferate upon
lung-dissemination, and they show markers for growth arrest [28]. The cellular model
system here employed, D2.0R cells, is morphologically and phenotypically heterogeneous,
so it could be exploited in the future to study how genetic and microenvironmental factors
affect the emergence of aggressive clones.

Lysosomes are membrane-enclosed acidic organelles that serve as endpoints of several
endocytic pathways as well as of self-catabolic processes such as apoptosis. Far from being
mere digestive structures, lysosomes are a part of a network that senses nutrient availability
and cellular requirements and coordinates responses to signaling pathways, metabolic
adaptation, stemness, migration, proliferation and cell death [21,22]. Multiple pathways
funnel into lysosomal compartments: caveolin-dependent and -independent endocytosis,
phagocytosis and macropinocytosis. Hydrolases within the lysosomal compartment break
down macromolecules such as lipids, proteins, carbohydrates and proteins into monomers
that can be used as building blocks according to cellular need [22]. In this view, it’s not
surprising that lysosomes have been shown to be essential for cancer cells in several con-
texts [22]. Aggressive cancer-cell proliferation relies on an adequate supply of extracellular
nutrients, which is often impaired by a lack of mature blood vessels within the tumor [29].
Thus, scavenging for macromolecules from the microenvironment becomes an essential
strategy for cancer cells to support their survival and growth. That said, uncontrollable
cell growth is not a feature of DDCCs, at least during the prolonged quiescent period.
Interestingly, it has been recently shown that enhanced lysosomal flux is essential for
quiescence and stemness of neural and hematopoietic stem cells [30,31], via the control of
epidermal growth factor receptor (EGFR) and glycolysis, respectively. This suggests that
the requirement of lysosomal activation, beyond nutrient supply, is likely cell- and context-
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dependent. The role of lysosomes in DDCCs has never been directly addressed; however,
two works have presented conflicting results on the role of autophagy [32,33]. Our results
with lysosomal inhibitor Bafilomycin A1 support a positive role for autophagic-lysosomal
flux in the survival of DDCCs (Figure 3A,C), while results in Figure 2C–E suggest that
recycling and degradative routes other than macroautophagy must account for the ob-
served lysosome accumulation. Importantly, our results showed that increased lysosomal
accumulation makes DDCCs more sensitive to lysosomal inhibition compared to cells
cultivated on plastic (Figure 3C,D). Thus, this simple coculture might be used as a platform
for the screening of compounds aimed at eradicating lung-disseminated metastatic breast
cancer cells.

4. Conclusions

Our data showed that a coculture of DDCCs with epithelial lung cells is sufficient to
induce transcriptional processes significantly overlapping with those observed in DDCCs
isolated from mouse lungs. From this analysis we identified the TFEB–lysosomal axis as the
most significant pathways activated in DDCCs in vivo and in coculture, suggesting a role in
the survival of disseminated cancer cells. As support for this hypothesis, cocultured DDCCs
showed increased sensitivity to a lysosomal blockade compared to cells in monoculture
and increased activation of a TFEB transcriptional reporter.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/5/1007/s1, Table S1: Gene sets added for GSEA, Table S2: TFEB direct targets list, Table S3:
qPCR oligos used in the study.
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