
SOFTWARE Open Access

Pan-cancer detection of driver genes at the
single-patient resolution
Joel Nulsen1,2, Hrvoje Misetic1,2, Christopher Yau3,4 and Francesca D. Ciccarelli1,2*

Abstract

Background: Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for
precision oncology. Most established methods identify driver genes that are recurrently altered across patient
cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering
our understanding of cancer mechanisms and limiting the choice of therapeutic interventions.

Results: We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene
systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise
sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its
applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a
low false-positive rate, are stable and disrupt well-known cancer-related pathways.

Conclusions: sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or
belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of
precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-
trained models in all TCGA cancer types (https://github.com/ciccalab/sysSVM2).

Keywords: Cancer genomics, Cancer driver genes, Systems-level properties, Patient-level driver detection

Background
Cancer is characterised by the acquisition of somatic al-
terations of the genome, the majority of which are
thought to have little or no phenotypic consequence for
the development of the disease. Identifying the genes
whose alterations instead have a role in driving cancer
(cancer drivers) is one of the major goals of cancer gen-
omics and numerous methods have been developed so
far to achieve this.
Most of these methods work at the cohort-level, which

means that they identify driver genes within a cohort of
patients. For example, recurrence-based methods such

as MutSigCV [1] and MuSiC [2] search for genes whose
mutation rate (single nucleotide variants (SNVs) and
small insertions or deletions (indels) per nucleotide) is
above the background level. This is because mutations
in cancer drivers are more likely to become fixed and
recur across samples than those in non-driver genes.
GISTIC2 [3] adopts a similar approach for recurrent
copy number variants (CNVs). OncodriveCLUST [4]
and ActiveDriver [5] look specifically for mutations clus-
tering in hotspot positions or encoding post-
translational modification sites. TUSON [6] and 20/20+
[7] predict new drivers based on features of canonical
oncogenes and tumour suppressors, including the pro-
portion of missense or loss-of-function to silent muta-
tions occurring across patients. dNdScv [8] computes
the nonsilent to silent mutation ratio to identify gene
mutations under positive selection, while OncodriveFM
[9] focuses on biases towards variants of high functional
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impact. Finally, network-based methods like HotNet2
[10] incorporate gene interaction networks to identify
significantly altered modules of genes within the cohort.
Albeit with different approaches, all these methods rely
on the comparison of alterations and/or altered genes
across patients.
Cohort-level methods have been of great value leading

to the identification of more than 2000 well-established
(canonical) or candidate cancer driver genes [11, 12].
However, these approaches fail to identify rare driver
events that occur in small cohorts or even in single pa-
tients because of low statistical power. Moreover, they
are not ideal for application in the clinical setting be-
cause they return lists of drivers in entire cohorts, rather
than predictions in individual patients.
Patient-level methods ideally predict cancer drivers in

each patient but are more challenging to implement. A
few attempts such as OncoIMPACT [13], DriverNet [14]
and DawnRank [15] combine transcriptomic and gen-
omic data to identify gene network deregulations in indi-
vidual samples. Such methods require user-specified
gene networks and deregulation thresholds, which can
affect their results [13]. In addition, matched exome and
transcriptome data from the same sample are not always
available, especially in clinical settings where shotgun
transcriptomic sequencing is still rare. Alternative ap-
proaches such as PHIAL [16] match the patient muta-
tions with databases of known clinically actionable or
driver alterations but have a limited capacity to identify
as-yet unknown driver alterations. To overcome this
limitation, iCAGES [17] combines deleteriousness pre-
dictions and curated database annotations to learn fea-
tures of true positive and true negative driver alterations.
We recently developed sysSVM, a patient-level driver

detection method based on one-class support vector ma-
chines (SVMs) [18]. sysSVM learns the distinct molecu-
lar features (damaging somatic alterations) and systems-
level features (gene properties) of canonical drivers. It
then predicts as drivers the altered genes in individual
patients that best resemble these features. When applied
to 261 patients with oesophageal adenocarcinomas,
sysSVM successfully identified the driver events in every
patient [18].
Here, we further develop sysSVM to be applied to any

cancer type and benchmark it against other available ap-
proaches, showing that it has a lower false positive rate
and better patient coverage. We also develop optimal
models for identifying driver genes in all 34 cancer types
available in The Cancer Genome Atlas (TCGA) [19] and
validate them in osteosarcoma, a rare cancer type that
was not part of TCGA. The software, optimised models
and their associated driver predictions are provided as a
resource that can be used to identify and study driver
events in cancers at the single patient resolution.

Implementation
The sysSVM approach to driver detection prioritises
genes with features similar to those of canonical cancer
drivers, i.e. genes whose modifications have experimen-
tally proven roles in cancer initiation and progression
(Additional file 1: Supplementary Note). Canonical
drivers differ from other human genes by an array of
systems-level properties that define them as a group and
do not strictly depend on the function of the single gene.
These properties include gene duplicability in the human
genome [20] and through vertebrate whole-genome du-
plications [21], gene essentiality across cell lines [11],
breadth of expression in healthy tissues at the gene and
protein levels [11, 22, 23], protein connectivity and glo-
bal topology in the protein-protein interaction network
[20], participation in protein complexes [22], number of
targeting miRNAs [21], gene evolutionary origin [21]
and protein length and domain organisation [22, 23]
(Additional file 2: Table S1). Canonical drivers can also
be described using molecular properties that reflect the
somatic alterations that they acquire in cancer. These in-
clude alterations with predicted damaging effects on
protein function (copy number gains and losses as well
as truncating, non-truncating damaging and hotspot
mutations) and overall mutational burden and copy
number of the gene (Additional file 2: Table S1).
To leverage the systems-level and molecular properties

of canonical drivers, sysSVM first identifies a set of true
positive canonical drivers damaged within a cohort of
patients (Fig. 1a). It then uses the features of this posi-
tive set to train one-class SVMs based on four kernels
(linear, radial, sigmoid, polynomial). Finally, it ranks the
remaining damaged genes in individual cancer patients
with a combined score that weights the kernels based on
their sensitivity (Additional file 1: Supplementary Note).
Highly ranked genes have the most similar properties to
those of canonical drivers and will be then considered
the cancer drivers for that patient. We use one-class
SVMs for sysSVM because, while canonical drivers rep-
resent a reliable set of true positives, identifying a true
negative set of non-cancer genes is not possible. For ex-
ample, possible negative genes could be known false
positives of driver gene detection methods [1, 22]. How-
ever, these genes are representative of false positives ra-
ther than true negatives, so training a classifier on them
is likely to introduce unwanted bias. A one-class support
vector machine for novelty detection is therefore an op-
timal way to solve this issue.

Results
Simulation of pan-cancer datasets
In order to optimise the use of sysSVM for any cancer
type, we simulated 1000 cancer-agnostic samples starting
from all TCGA tumours with matched mutation, CNV
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and gene expression data (Additional file 1: Supplemen-
tary Methods). We ensured that the tumour mutation
and copy number burdens were similar between real and

simulated samples (Fig. 1b) and that gene mutation and
copy number status in the simulated dataset was the
same of TCGA (Additional file 1: Figure S1A). As a

Fig. 1 sysSVM approach for driver prioritisation. a Overview of sysSVM. Molecular (somatic SNVs, indels and mutation burden) and systems-level
features (Additional file 2: Table S1) of damaged canonical drivers in the analysed samples are used for training. The best models of support
vector machines (SVMs) with four kernels are selected using cross-validation and trained on the whole set of damaged canonical drivers. Finally, a
combined score is used to prioritise driver genes in individual patients. The SVM implementation was generalised for optimal performance on a
simulated cancer-agnostic dataset through data normalisation, parameter tuning and feature selection. b Generation of a simulated reference
cohort from TCGA data. Values of damaging mutation burden and ploidy were randomly assigned to samples. Damaged genes were then
extracted from real samples with similar values of damaging mutation burden (± 10% for mutations) and ploidy (± 0.1 for CNVs). Dots represent
individual TCGA (orange) or simulated (yellow) samples. Red lines indicate average numbers of genes with damaging mutations or CNVs in TCGA
samples, for each given values of damaging mutation burden or ploidy. c Frequencies of canonical drivers in real and simulated samples.
Oncogene gain-of-function, tumour suppressor loss-of-function and both types of TP53 alterations were considered. d Gene sets used for sysSVM
optimisation. The training set included oncogenes (OGs) and tumour suppressor genes (TSGs), as well as TP53. All other damaged genes were
used for prediction and assessment. These included other canonical drivers (without a proven OG or TSG role), candidate cancer genes from
published cancer sequencing screens, known false positives of established driver detection methods and the remaining damaged genes. Bars
indicate the number of unique damaged genes across the reference cohort of 1000 simulated samples
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result, the frequency of damaging alterations in known
oncogenes and tumour suppressors was comparable be-
tween the two datasets, with TP53, PIK3CA and
CDKN2A among the most frequently altered genes in
both (Fig. 1c). We further verified that gene alteration
frequencies in the simulated data were not significantly
biased by cancer types with large cohort sizes in TCGA
(Additional file 1: Figure S1B), confirming the suitability
of the simulated data as a representative pan-cancer
cohort.
The simulated cohort for sysSVM optimisation (here-

after referred to as the reference cohort) was composed
of 1000 samples with 18,455 genes damaged 309,427
times. Of these, 686 were canonical drivers with an ex-
perimentally proven role in cancer [12, 24], 1605 were
candidate cancer genes from 273 cancer screens [11], 43
were known false positive predictions of driver detection
methods [1, 25] and 16,121 were the remaining damaged
genes (hereafter referred to as the rest of genes; Fig. 1d,
Additional file 2: Table S2). We annotated seven mo-
lecular and 25 systems-level features of all damaged
genes (Additional file 2: Table S1) and used these fea-
tures for training and prediction. As a training set, we
selected 457 of the 686 canonical drivers with proven
roles as oncogenes (236) or tumour suppressors (221).
We restricted somatic alterations of oncogenes and
tumour suppressors to gain-of-function or loss-of-
function alterations, respectively (Additional file 1: Sup-
plementary Methods). Since we could not reliably define
the remaining 229 damaged canonical drivers as either
oncogenes or tumour suppressors, we could not restrict
their somatic alterations to the appropriate type. There-
fore, we did not use them for training but could still use
them for prediction and performance assessment
(Fig. 1d), together with 43 false positives and 16,121 the
rest of genes.

sysSVM optimisation on the pan-cancer reference cohort
Using the reference cohort, we optimised sysSVM in
terms of data normalisation, parameter tuning and fea-
ture selection (Fig. 1a). So as not to bias the optimisation
with a particular set of kernel parameters, we imple-
mented 512 models with parameter combinations repre-
senting a sparse coverage of a standard grid search
(Additional file 1: Supplementary Note). We then mea-
sured the ability of each of these 512 models to prioritise
the 229 canonical drivers not used for training over the
rest of damaged genes or the false positives. We did this
by computing the area under the curve (AUC) in each
sample and taking the median AUC as representative of
the whole cohort (Additional file 1: Supplementary
Methods).
First, we derived the optimal settings for data normal-

isation in terms of centred and un-centred data

(Additional file 1: Supplementary Note). All models ro-
bustly prioritised canonical drivers above the rest using
either centred or un-centred data but showed lower per-
formance in distinguishing canonical drivers from false
positives (Fig. 2a). We reasoned that false positives from
recurrence-based driver detection methods [1] shared
some features with canonical drivers. For example, they
encoded long and multi-domain proteins. When remov-
ing protein length and number of domains from the fea-
ture list (Additional file 2: Table S2), the performance
substantially improved particularly for un-centred data
(Fig. 2b). We therefore removed protein length and
number of domains from the model.
Second, we selected the optimal sets of parameters in

each kernel. Hyper-parameter choice is known to have
substantial impacts on classification and it is an open
problem for one-class SVMs [26]. Since the parameters
for each kernel needed to be selected separately (Add-
itional file 1: Supplementary Note), we could not use
AUC of the combined multi-kernel model for assess-
ment. Instead, we used the sensitivity of each kernel to
predict canonical drivers calculated from three-fold
cross-validation on the training set. Sensitivity was in-
deed a good predictor of the overall AUC of canonical
drivers over the rest of genes (Fig. 2c) and false positives
(Fig. 2d). We therefore developed an approach to select
the parameters that conferred the highest sensitivity in
multiple iterations of cross-validation (Additional file 1:
Supplementary Methods). In the reference cohort, pa-
rameters chosen in this way converged within 2000
cross-validation iterations for all kernels (Additional file 1:
Figure S3A).
Finally, since the presence of highly correlated fea-

tures can hinder SVM performance [27], we per-
formed systematic feature selection by assessing the
pairwise correlations between all 25 systems-level fea-
tures. Four features (gene expression in 1 ≤ tissues ≤ 6
and in ≥ 37 tissues; protein expression in 0 ≤ tissues ≤
8 and central position in the protein-protein inter-
action network) exhibited a significant degree of
inter-correlation (Pearson |r| > 0.5, FDR < 0.05, Add-
itional file 1: Figure S3B). Removing them led to fas-
ter convergence of kernel parameters
(Additional file 1: Figure S3A) and improved perform-
ance overall (Additional file 1: Figure S3C).
Based on these results, we chose the default settings

for the cancer agnostic SVM classifier, which we
named sysSVM2 [28]. By default, data are un-centred
but scaled to have unit standard deviation. Six of the
original systems-level features are excluded resulting
in a total of seven molecular and 19 systems-level
features (Table 1). Finally, kernel parameters opti-
mised on the reference cohort are provided as a de-
fault (Additional file 1: Figure S3A), although users
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may perform specific cross-validation iterations on
their own cohorts.
We then assessed the performance of sysSVM2 in

prioritising cancer drivers over other genes. We con-
firmed that, overall, the prediction scores of 229 canon-
ical drivers outside the training set were significantly
higher than those of any other gene category (Fig. 2e).
Candidate cancer genes also scored significantly higher
than the rest of genes, indicating that they were also in

top ranking positions. We also measured the relative
ranks of genes in individual samples using receiver oper-
ating characteristic (ROC) curves. Comparing canonical
drivers to the rest of genes and to false positives gave
AUCs of 0.73 and 0.93, respectively (Fig. 2f), demon-
strating that canonical drivers were prioritised above the
rest of genes and especially above false positives. This
was not surprising as the properties of canonical drivers
differ substantially from those of false positives

Fig. 2 sysSVM optimisation on the simulated reference cohort. Model performances on the reference cohort using centred (left) and un-centred
(right) data with all 25 systems-level features (a) or excluding protein length and number of protein domains (b). A sparse grid of 512 parameter
combinations in the four kernels was tested. The performance of each model was measured using the area under the curve (AUC), comparing
the ranks of canonical drivers to the rest of genes and false positives. Median AUC values across all samples were plotted. Red dotted lines
represent the minimum AUC values. Correlation between model average sensitivity and AUCs of canonical drivers over the rest of genes (c) or
false positives (d). The sensitivity of each kernel was measured on the training set over 100 three-fold cross-validation iterations. The median
values over the four kernels are plotted. R and p values from Pearson’s correlation test are reported. Dotted red lines indicate the linear regression
curves of best fit. e Distributions of sysSVM2 prediction scores for different types of damaged genes in the reference cohort. Whiskers extend to
1.5 times the interquartile range (IQR). Statistical significance was measured using two-sided Wilcoxon tests. The median values of the
distributions are labelled. ****p < 2.2 × 10−16. f Receiver operating characteristic (ROC) curves, comparing canonical drivers to the rest of genes
(green) and to false positives (brown). Recall rates were calculated for each sample separately and the median ROC curve across samples was
plotted. Median areas under the curve (AUCs) for both comparisons are also indicated

Nulsen et al. Genome Medicine           (2021) 13:12 Page 5 of 14



(Additional file 1: Figure S3D), further supporting that
known false positives are not representative of non-
cancer genes.

Effect of training cohort size on sysSVM2 performance
The sample size of patient cohorts can highly vary across
cancer types. For example, in TCGA, it ranges from 32
samples for diffuse large B cell lymphoma (DLBC) to
726 for breast cancer (BRCA, Additional file 2: Table
S3), with a median of 201 samples. We therefore sought
to address how the sample size of the training cohort af-
fected sysSVM2 performance.
Starting from all TCGA samples and using the previ-

ously described approach, we simulated 40 training co-
horts, ten of which were composed of ten samples, ten
of 100 samples, ten of 200 samples and ten of 1000 sam-
ples. We then trained sysSVM2 on each of these 40 co-
horts independently and used the resulting models to

rank damaged genes in the reference cohort and to com-
pare their performance.
The distributions of AUCs of canonical drivers over

the rest of genes or false positives were high for all four
cohort sizes (Fig. 3a). This suggested that sysSVM2 was
overall very effective in prioritising cancer genes inde-
pendently of the training cohort size. We then compared
the composition of the prioritised gene list in each sam-
ple across models of a given size. We measured a com-
position score of the top five genes accounting for the
number and position of canonical drivers, candidate can-
cer genes and false positive genes (Additional file 1: Sup-
plementary Methods). Similar to the AUC, the
composition score of the top five genes was also very
similar across training cohorts (Fig. 3b). However, a few
models trained on ten or 100 samples returned false
positives in the top five positions while no false positives
were predicted by models trained on larger cohorts of

Table 1 Twenty-six features derived from molecular and systems-level properties of genes and used to predict cancer drivers in
sysSVM2. Molecular properties describe gene alterations in individual cancer samples. Systems-level properties are global gene
properties (see also Additional file 2: Table S1)

Category Property Feature Type

Molecular Gene mutation Mutational load (n) Continuous

Non-truncating damaging mutations (n) Continuous

Truncating mutations (n) Continuous

Hotspot mutations (n) Continuous

Gene copy number Gene copy number (n) Continuous

Gene is amplified Binary

Gene is deleted Binary

Systems-level Gene duplication Gene is duplicated Binary

Gene is an ohnolog Binary

Gene essentiality Cell lines in which gene is essential (%) Continuous

Gene is essential Binary

Gene expression Tissues expressing gene (n) Continuous

Gene is expressed in 0 tissues Binary

Gene is expressed in 7 ≤ tissues≤ 36 Binary

Protein expression Tissues expressing protein (n) Continuous

Protein is expressed in ≥ 41 tissues Binary

Protein-protein interaction network (PPIN) PPIN degree Continuous

Protein is a PPIN hub Binary

PPIN betweenness Continuous

PPIN clustering coefficient Continuous

Protein complexes Complexes the protein is part of (n) Continuous

miRNA interactions miRNAs targeting the gene (n) Continuous

Gene evolutionary origin Pre-metazoan origin Binary

Metazoan origin Binary

Vertebrate origin Binary

Post-vertebrate origin Binary

PPIN protein-protein interaction network, miRNA micro RNA
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200 or 1000 samples. Finally, we measured the ratio be-
tween observed and expected canonical drivers and false
positives in the top five genes (Fig. 3c, Additional file 1:
Supplementary Methods). Independently of the training
cohort size, false positives in the top five genes were al-
ways lower than expected, confirming that sysSVM2 effi-
ciently distinguished false positives from drivers. The
number canonical drivers in the top five genes was more
than twice the expected number in > 85% of samples
and more than five times the expected value in around
65% of samples. As with the other metrics, the perform-
ance of sysSVM2 did not change substantially with the
size of the training cohort.
Since we used the same reference cohort for predic-

tion, we could directly compare the gene ranks in each
patient across models, thus assessing their prediction

stability. To do so, we measured the rank-biased overlap
(RBO) score that compares two ranked lists giving
greater weight to the higher-ranked positions [29] (Add-
itional file 1: Supplementary Methods). The distributions
of RBO scores of the top five genes were significantly
higher for large training cohorts compared to those
composed of ten samples (Fig. 3d). Moreover, models
trained on large cohorts showed overall higher gene
overlap in the top five genes (Fig. 3e).
These results showed that, although sysSVM2 success-

fully separates canonical drivers from other genes inde-
pendently of the training cohort size, small cohorts lead
to occasional false positive predictions and to unstable
gene ranking. Since the median cohort size of TCGA
cancers is 201 samples, sysSVM2 is likely to separate ca-
nonical drivers from the rest of genes with a very low

Fig. 3 Effect of cohort size on sysSVM2 performance. a Distributions of AUCs comparing the ranks of canonical drivers to the rest of genes
(green) and false positives (brown). Models were trained on ten simulated cohorts composed of ten, 100, 200 and 1000, for a total of 40
simulated cohorts. These were then used to predict on the same reference cohort of 1000 samples. The AUC was measured for each set of
predictions in each sample. b Distributions of composition scores of the top five predictions in terms of canonical drivers, candidate cancer
genes, false positives and rest of genes (Additional file 1: Supplementary Methods). The composition score was measured for each set of
predictions in each sample. Six training cohorts of size ten and two cohorts of size 100 gave negative composition scores in at least one sample,
indicating highly ranked false positive genes. c Ratios between observed and expected numbers of canonical drivers and false positives in the
top five predictions (O/E ratios). For each size of the training cohort, the percentages of samples with a false positive O/E ratio of zero and
canonical driver O/E ratios greater that 2, 5 and 10 are shown (Additional file 1: Supplementary Methods). d Rank-biased overlap (RBO) score of
the top five predictions in each sample (Additional file 1: Supplementary Methods). RBO scores measured the similarity between the predictions
from every possible pair of models trained on cohorts of a particular sample size. Statistical significance was measured using two-sided Wilcoxon
tests. ****p < 2.2 × 10−16. e Distribution of the number of top five predictions shared between models trained with the same cohort size. The
overlap was calculated between each pair of predictions in each sample
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false positive rate and stable gene rankings for most can-
cer cohorts.

Benchmark of sysSVM2 against existing methods
Next, we sought to compare the predictions of
sysSVM2 on real cancer data to those of other driver
detection methods. To do this, we used 657 gastro-
intestinal (GI) adenocarcinomas from TCGA (73
oesophageal, 279 stomach, 219 colon and 86 rectal
cancers, Additional file 2: Table S3). Overall, this co-
hort had 17,122 unique damaged genes, including 438
tumour suppressors and oncogenes used for sysSVM2
training (Additional file 2: Table S2). After ranking
the remaining 16,684 damaged genes, we confirmed
the overall ability of sysSVM2 to prioritise the 228
canonical drivers not used for training over the rest
of damaged genes and false positives also in real data
(Fig. 4a).

To identify the list of cancer drivers of each patient,
we adopted a top-up approach. Starting from the GI
canonical drivers [11] damaged in each sample, we
added sysSVM2 predictions progressively based on
their rank to reach five drivers per patient (Add-
itional file 1: Supplementary Methods). This was
based on the assumption that each cancer requires at
least five driver events to fully develop, in concord-
ance with recent quantifications of the amount of ex-
cess mutations arising from positive selection in
cancer [8, 30]. While 154 patients had damaging al-
terations in five or more GI canonical drivers, 503 pa-
tients (77%) needed at least one prediction (Fig. 4b),
highlighting the need for additional cancer driver pre-
dictions. This resulted in 564 unique sysSVM2
drivers.
We then predicted the drivers in the same GI samples

using two cohort-level (PanSoftware [31] and dNdScv

Fig. 4 sysSVM2 benchmark on TCGA gastro-intestinal cancers. a Median receiver operating characteristic (ROC) curves across 657 gastro-intestinal
(GI) samples from TCGA. Curves compare the ranks of canonical drivers to the rest of genes or to false positives. The median areas under the
curve (AUCs) are also indicated. b Distribution of GI canonical drivers across the GI cohort. Lists of canonical drivers for each GI cancer type were
obtained from NCG6 [11] and mapped to samples of the corresponding cancer type where they were damaged. Numbers of samples are
indicated above each bar. Samples with five or more GI drivers did not require additional driver predictions. c Comparison of performance
between sysSVM2 and four other driver detection methods. The set of unique drivers predicted by each approach were compared in terms of
recall of GI canonical drivers, other canonical drivers (non-GI and outside the sysSVM2 training set) and false positives and proportion of novel
predictions not previously associated with a cancer driver role. The number of genes in each category is reported in brackets. The recall of GI
canonical drivers could not be assessed for sysSVM2 because these were part of the training set. They were however considered as drivers by
default, rather than predicted by the algorithm. NA, not applicable. d Proportions of 657 GI samples left with no predicted drivers (left) or fewer
than 5 predictions. The one sample left with fewer than 5 predictions by sysSVM2 (TCGA-FP-8210, stomach cancer) had four damaged
genes overall
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[8]) and two patient-level (OncoIMPACT [13] and Dri-
verNet [14]) detection methods. PanSoftware integrated
26 computational driver prediction tools and we took
the list of 40 damaged drivers directly from the original
publication [31], given that we used a large subset (87%)
of the same TCGA GI samples. We ran the other three
methods with default parameters (Additional file 1: Sup-
plementary Methods) and obtained 25 predicted drivers
with dNdScv, 607 with DriverNet and 1345 with
OncoIMPACT.
We compared sysSVM2 to the four other methods in

terms of recall rates of canonical drivers or false posi-
tives, proportion of novel predictions and patient driver
coverage. Overall, cohort-level methods had higher recall
rates of GI canonical drivers, fewer novel predictions
and a comparably low false positive recall than sysSVM2
(Fig. 4c). However, unlike sysSVM2, neither cohort-level
method predicted drivers in all patients, leaving the vast
majority of them with less than five predictions and
some with no predictions (Fig. 4d).
Compared to sysSVM2, the other two patient-level

methods had higher recall rates of the 228 canonical
drivers, a comparably high proportion of novel predic-
tions but higher false positive rate (Fig. 4c). Namely,
sysSVM2 made only one false positive prediction in one
patient while DriverNet and OncoIMPACT predicted
four and seven false positives in 124 and 306 patients,
respectively (Additional file 1: Figure S4A). Overall, all
three methods had high patient driver coverage, but
sysSVM2 outperformed the other two with only one
sample where it predicted less than five drivers (Fig. 4d).
Interestingly, the overlap of predictions between
sysSVM2 and the other patient-level methods was statis-
tically significant (Additional file 1: Figure S4A) even
when only top-up predictions were considered (Add-
itional file 1: Figure S4B). This suggested that the major-
ity of predictions converged to the same genes.
These results showed that cohort-level methods have

high specificity and sensitivity to identify cancer-specific
canonical drivers but often fail to find drivers in a sub-
stantial subset of patients. Compared to other patient-
level detection methods, sysSVM2 outperforms them in
terms of specificity and patient coverage.

Compendium of sysSVM2 models and patient-level
drivers in 34 cancer types
In order to provide a comprehensive resource of trained
models [28] and patient-level drivers, we sought to apply
sysSVM2 to 7646 TCGA samples of 34 cancer types
with at least one somatically damaged gene (Add-
itional file 1: Supplementary Methods).
To find the best training setting for the algorithm on

real cancer samples, we compared the performance of
sysSVM2 trained on the whole pan-cancer cohort as well

as on the 34 cancer types separately. In the pan-cancer
setting, we used all 477 tumour suppressors and onco-
genes damaged across the whole cohort. In the cancer-
specific setting, we used instead only the subsets of these
genes damaged in each cancer type (Additional file 2:
Table S3). We then predicted on the remaining damaged
genes and applied the top-up approach as described
above, starting from the cancer-specific canonical drivers
damaged in each patient (Additional file 2: Table S3).
We found that 6067 samples (79%) required at least one
sysSVM2 prediction in order to reach five drivers
(Fig. 5a). These corresponded to 4369 and 4548 unique
genes in the pan-cancer and cancer-specific settings, re-
spectively, with a significant overlap of predictions
(3896, p < 2.2 × 10− 16, two-sided Fisher’s exact test).
We then compared the performance of pan-cancer

and cancer-specific settings of sysSVM2 in prioritising
canonical drivers over rest of genes or false positives.
The AUCs differed significantly (FDR < 0.05) and sub-
stantially (|difference in medians| > 0.05) in only five
cancer types (Fig. 5b, Additional file 1: Figure S5A and
S5B). All of them were composed of small cohorts with
< 200 samples and in all cases the pan-cancer setting
showed better performance than the cancer-specific set-
ting. The composition score of the top five predictions
also differed significantly and substantially (|difference in
medians| > 1) in only three cancer types (Fig. 5c, Add-
itional file 1: Figure S5C). All these cancer types were
again characterised by small training cohorts and
showed higher performance in the pan-cancer setting.
Predictions of cancer-specific models and the pan-
cancer model were mostly similar, with the exception of
cancer types with small training cohorts (Additional file 1:
Figure S5D and S5E). Overall, these results confirmed
the trend observed in the simulated data and indicated
that the pan-cancer and cancer-specific settings per-
formed similarly well in most cases, except for small co-
horts where the pan-cancer model performed better.
Based on these results, we used the pan-cancer setting

for cancer types with small cohorts (N < 200) and the
cancer-specific setting for the others, as this could reflect
cancer-type specific biology without jeopardising per-
formance or stability. The final list of patient-specific
predictions in 34 cancer types was composed of 4470
unique genes, the vast majority of which (93%) were rare
(< 10 patients) or patient-specific (Fig. 5d, Add-
itional file 2: Table S4). A gene set enrichment analysis
on these genes revealed 984 enriched pathways overall
(Reactome level 2 or above, FDR < 0.01, Additional file 1:
Supplementary Methods, Additional file 2: Table S5).
Interestingly, when mapping these pathways to broader
biological processes (Reactome level 1), a few processes
were widely enriched in almost all cancer types (Fig. 5e).
These included well-known cancer-related processes
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such as chromatin organisation [32], DNA repair [33],
cell cycle [34] and signal transduction [35]. Therefore,
although not recurring across patients, sysSVM2 predic-
tions converged to perturb similar biological processes
that are known to contribute to cancer.

sysSVM2 predictions in an independent cancer cohort
We finally sought to assess whether the sysSVM2
models trained on TCGA could be applied for driver
prediction in a cancer type not included in TCGA. We
therefore analysed 36 osteosarcomas from the Pan-

Fig. 5 sysSVM2 predictions in 34 cancer types. a Number of damaged canonical drivers per sample. Lists of canonical drivers for each cancer type
were obtained from NCG [11] and mapped to samples of the corresponding cancer type. Six thousand sixty-seven samples with less than five
canonical drivers damaged underwent the top-up procedure to reach five drivers. Difference in areas under the curve (AUCs) between the pan-
cancer and cancer-specific settings in ranking canonical drivers over the rest of human genes and false positives (b) and in the composition score
of the top five predictions (c). The median values of the distributions in each cancer type were used for comparison, with the yellow and blue
regions indicating better performance in the pan-cancer and cancer-specific settings, respectively. The number of samples used for training is
indicated on the x-axis. Colour dots represent cancer types where the two settings differ both significantly (FDR < 0.05, Wilcoxon rank-sum test)
and substantially (|difference in medians| > 0.05 for AUCs, > 1 for composition score). ACC, adrenocortical carcinoma; TGCT, testicular germ cell
tumours; PAAD, pancreatic adenocarcinoma; READ, rectum adenocarcinoma; MESO, mesothelioma; UVM, uveal melanoma; and OSCC,
oesophageal squamous cell carcinoma. d Recurrence of damaging alterations in 282 canonical driver genes and 4470 sysSVM2 top-up predictions
across 7646 samples. e Gene set enrichment analysis of sysSVM2 top-up genes, grouped in broad biological processes (Reactome level 1).
Numbers of pathways enriched in at least one cancer type out of the total pathways tested are reported in brackets. Red vertical strokes indicate
the mean number of cancer types that pathways from each broad process are enriched in (bottom x-axis)
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Cancer Analysis of Whole Genomes (PCAWG) consor-
tium [30]. Osteosarcoma is a rare, genetically heteroge-
neous bone cancer with poor prognosis and only six
well-established canonical drivers [36, 37].
We annotated the genomic data of the PCAWG co-

hort finding 4969 damaged genes overall with a median
of 93 damaged genes per sample (Additional file 2: Table
S2). Only two of these samples had three damaged
osteosarcoma canonical drivers while 19 (53%) of them
had no canonical driver (Fig. 6a), highlighting the need
for further predictions. Given the small cohort size, we
used the TCGA pan-cancer setting to rank the damaged
genes in each osteosarcoma. Considering the top five
predictions per sample, we got 129 unique genes (Add-
itional file 2: Table S6), which were poorly recurrent
across samples (Fig. 6b), reflecting again the genetic het-
erogeneity of osteosarcoma.
At the cohort level, sysSVM2 predictions included five

of the six (83%) osteosarcoma canonical drivers [36, 37].
At the patient level, the six osteosarcoma canonical
drivers were damaged 27 times and in 14 of these cases
(53%) they were in the top five predictions (Fig. 6c). This
proportion rose to 81% when considering the top ten
predictions. In addition to osteosarcoma canonical
drivers, 26 sysSVM2 predictions were canonical drivers
in other cancer types, 16 were candidate cancer driver
genes and 81 had no previously known involvement in
cancer (Additional file 2: Table S6). Despite this, these
81 genes were enriched in eight pathways (FDR < 0.1),
most of which have a known role in cancer (Fig. 6d).

Moreover, they included genes known to promote osteo-
genesis such as YAP1 and YES1 [38, 39].
These results showed that sysSVM2 is able to identify

reliable cancer drivers in individual patients even for
cancer types not used for training. This has relevant im-
plications particularly in the case of rare cancers that are
poorly studied and have little genomic data available.

Discussion
Identifying the complete repertoire of driver events in
each cancer patient holds great potential for furthering
the molecular understanding of cancer and ultimately
for precision oncology. While many recurrent driver
genes have now been identified, the highly heteroge-
neous long tail of rare drivers still poses great challenges
for detection, validation and therapeutic intervention.
Our method allows to identify driver genes in indi-

vidual patients. These genes converged to well-known
cancer-related biological processes and further studies
could potentially use these predictions to investigate
particular aspects of cancer biology, such as driver
clonality and their progressive acquisition during can-
cer evolution. Extending the algorithm with additional
sources of data is another avenue for future work.
For example, transcriptomic and epigenomic data
could enhance the ability of sysSVM2 to identify
driver events. Additionally, recent efforts have identi-
fied a large number of driver events in non-coding
genomic elements [30]. Given such a training set of
true positives, sysSVM2 could be further developed to

Fig. 6 Validation of sysSVM2 in osteosarcoma. a Distribution of osteosarcoma canonical drivers across the PCAWG osteosarcoma cohort. Lists of
canonical drivers for osteosarcoma derived from the literature [36, 37] and mapped to samples where they were damaged. Numbers of samples
are indicated above each bar. b Recurrence of the 129 sysSVM2 predictions across the PCAWG osteosarcoma cohort. The percentages of genes
that are predicted in 1, 2 and ≥ 3 are shown. c Patient-level predictions of osteosarcoma canonical drivers by sysSVM2 when considering the top
five genes. The number of samples in which each canonical driver is damaged (yellow) and predicted as a driver by sysSVM2 (pink) is shown. d
Gene set enrichment analysis of 81 sysSVM2 predictions with no previously reported involvement in cancer. Reactome level 2 and above were
considered and pathways with FDR < 0.1 are shown
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identify non-coding drivers in individual patients, as
long as appropriate features could be identified. The
general approach of identifying drivers using a com-
bination of molecular and systems-level properties af-
fords great flexibility for such developments.
It is increasingly common for sequencing studies to in-

tegrate multiple tools for driver detection [31], since
building a consensus can make results robust to the
weaknesses of individual methods. sysSVM2 also has its
weaknesses. For example, while systems-level properties
distinguish cancer genes as a set, there are some cancer
genes that do not follow this trend [11] and are thus
likely to be missed by the algorithm. Our approach in
the current work of topping up known driver genes with
predictions from sysSVM2 is a simple example of how
sysSVM2 can be used in conjunction with other ap-
proaches. More broadly, it is likely the case that patient-
level driver detection will eventually rely on an entire
ecosystem of different methods. In this work, we have
demonstrated that there is a place for sysSVM2 in such
an ecosystem.

Conclusions
In this work, we developed a cancer-agnostic algorithm,
sysSVM2, for identifying cancer driver in cancer individ-
ual patients [28]. By refining the machine learning ap-
proach upon which the original algorithm was built [18],
we broadened its applicability to the pan-cancer range of
malignancies represented in TCGA. sysSVM2 success-
fully and stably prioritises canonical driver genes for
most publicly available cancer cohorts. For those com-
posed of fewer samples, the models optimised on the
whole pan-cancer dataset offer a valid alternative. More-
over, compared to other patient-level driver detection
methods, sysSVM2 has better patient coverage and a
particularly low rate of predicting established false posi-
tives. sysSVM2 can be used to identify driver alterations
in individual patients and rare cancer types where ca-
nonical drivers are insufficient to explain the onset of
disease, as we have validated in osteosarcoma. This po-
tentially opens up further research and therapeutic
opportunities.
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