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Searching for the needle in the haystack:

deconvoluting the evolutionary dynamics

of residual disease in human glioblastoma

The evolution of divergent subpopulations of cancer cells within

the same tumour has been proposed to underlie the development

of treatment resistance and the recurrence of malignancy across

multiple tumour types [1]. In this issue of Annals of Oncology,

Spiteri et al. [2] utilise multi-region whole-exome sequencing to

unravel the complex nature of cancer evolution in time and space

that underlies glioblastoma (GBM) recurrence and offer novel

insights into the phylogenetic relationships between the initial

bulk tumour mass, clinically occult residual disease following ini-

tial radical therapy, and relapsed GBM.

GBM is the most common primary brain malignancy in adults

characterised by a devastating prognosis and a lack of effective ther-

apeutic options. Since the 1970s, treatment has consisted of maxi-

mal resection followed by focal external beam radiotherapy [3],

and more recently concomitant temozolamide has seen modest

improvements in outcomes, although even in selected clinical trial

populations median survival remains just 14–15 months [3, 4].

Following initial radical therapy, tumour recurrence inevitably

occurs and is the predominant source of mortality in these

Annals of Oncology Editorials

VC The Author(s) 2019. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

This is an Open Access article under the  CC-BY license.

http://creativecommons.org/licenses/by/4.0/


patients [3]. Clinical phenotypes of relapse vary; local relapse—

within 2 cm of initial debulking surgery—occurs in the majority

of cases, although up to a third of patients relapse with distal re-

currence or with multifocal disease [5]. Indeed, diffuse parenchy-

mal infiltration is a hallmark of GBM [6] and scattered tumour

cells migrate throughout the substance of the brain along blood

vessels [7] and white matter tracts [8] and are also present in the

sub-ventricular zone (SVZ), a neural stem cell niche, at diagnosis

[7, 8]. Recurrence is usually a substrate of this residual infiltrative

disease and an understanding of the genomic events and evolu-

tionary trajectories underlying these recurrence events are critical

for improving patient care.

The genomic architecture of untreated GBM was revealed

through genomic sequencing studies such as The Cancer

Genome Atlas (TCGA) [9, 10] identifying distinct genetic and

epigenetic alterations in several core oncogenic signalling path-

ways and distinct transcriptional profiles that allowed stratifica-

tion of the disease into clinically relevant subtypes. However,

these initial single-region profiling studies failed to capture to

complexity of the genomic landscape in GBM and multi-region

profiling of individual tumours revealed significant intratumou-

ral heterogeneity at both the genomic and transcriptomic

level [11].

Insights into the temporal evolution of GBM have been

revealed by profiling matched therapy naive and recurrent

tumours, revealing significant heterogeneity in both somatic

mutations and copy number alterations at relapse [12]. Thus, sal-

vage therapies targeting genomic and epigenomic changes seen at

baseline can fail due to the expansion of minor subclones in the

original tumour. It is crucially important, therefore, to identify

and characterise these recurrence-initiating clones and their ther-

apeutic vulnerabilities so that they can be targeted.

Spiteri et al. present their analysis [2] of 69 tissue samples col-

lected from 10 patients with IDH1 wildtype GBM and 1 patient

with IDH1 mutant anaplastic astrocytoma. They performed

multi-region whole-exome sequencing from the primary tumour

mass, SVZ and infiltrative margin collected using fluorescent

guided resection and, in two cases, matched tissue from a second

surgery at local relapse were available for comparison (Figure 1)

[2].

In keeping with previous reports in this disease, they demon-

strated intra-tumoural heterogeneity at the level of both somatic

driver mutations and copy number alterations spatially within

the bulk tumour mass at presentation and temporally at recur-

rence. They inferred the clonal relationship between the primary

tumour mass and residual disease identified in the SVZ and the

infiltrating margin and validated their observations of these rela-

tionships by utilising molecular clock haplotyping, which allows

orthogonal reconstruction of the observed evolutionary relation-

ships [13].

Their analyses suggest that tumour cells isolated from the re-

sidual disease in the infiltrative margin and the SVZ relate to early

ancestral clones rather than the most advanced dominant clone

in the primary tumour implying that the diffuse infiltration of

cancer cells characteristic of GBM is an early event in tumorigen-

esis. In the two cases where tissue was available at relapse, the
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Figure 1. Residual disease in glioblastoma. (A) At surgery, only the primary tumour mass (red online) is removed (in dark grey the resection
cavity). (B) However, infiltrative cells in the normal brain parenchyma (green online) and sub-ventricular zone (SVZ) (blue online) are left be-
hind. (C) Residual glioblastoma cells infiltrated throughout the brain can give rise to relapse, both locally and distally. Reproduced this figure
with permission from Spiteri et al. [2].
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recurrent tumour bulk and GBM cells in the SVZ had acquired

several new mutations, but no de novo mutations were detected

at the infiltrative margin at recurrence.

The authors are to be commended for their presentation of this

work which makes an important contribution to the growing

body of evidence of evolutionary divergence and molecular diver-

sity in this disease. Notably, Kim et al. [12] published an analysis

of 38 primary/recurrence GBM pairs, observing that local recur-

rences typically retain a high proportion of genomic aberrations

from the therapy naive tumour, whereas distal recurrences were

characterised by branched patterns of evolution where the recur-

rent tumour undergoes a divergent evolutionary path from the

most recent common ancestor. Intriguingly, Spiteri et al. observe

these early branching patterns in the relationship between the pri-

mary tumour and the invasive margin implicating the clones pre-

sent in the infiltrating margin as the substrate for distal relapse.

Importantly, the work from Spiteri et al. also corroborates the

recent findings of Lee et al. [14] who published data derived from

28 patients with GBM, suggesting that the human SVZ harbours

cells containing low-frequency GBM driver mutations that mi-

grate to other parts of the brain and give rise to malignant glioma.

These findings underlie the importance of fully characterising the

residual disease in patients with GBM with the inherent ability to

seed re-growth and resistance to rescue therapeutics.

Recent reports [15, 16] have indicated that personalised multi-

epitope neoantigen vaccinations may be feasible for tumours

such as glioblastoma, which typically have a relatively low muta-

tional load and an immunologically ‘cold’ tumour microenviron-

ment. The therapeutic success of such vaccination approaches

will rely on the targeting of the recurrence-initiating clones that

remain following initial radical therapy.

Spiteri et al. are to be congratulated for overcoming the various

technical, ethical and logistical challenges associated with the

conduct of longitudinal cohort studies in GBM. Given the diffi-

culty of obtaining research material in these patients we agree

that, as stated by the authors, future analyses should be compli-

mented by post-mortem studies such as CASCADE (Cancer

Tissue Collection after Death) and PEACE (Posthumous

Evaluation of Advanced Cancer Environment, NCT03004755)

which afford the highest resolution sampling to better under-

stand the evolutionary history underlying this devastating disease

and inform future therapeutic targets both molecular and

immunogenic.
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