
Resource
Representative Sequencin
g: Unbiased Sampling of
Solid Tumor Tissue
Graphical Abstract
Highlights
d Representative sequencing (Rep-Seq) is a new method for

tumor molecular profiling

d Rep-Seq homogenizes residual tumor tissue not taken for

standard pathology

d Representative sampling of tumors generates accurate tumor

mutation burden scores

d Rep-Seq detects more mutations and accurately resolves

clonal from subclonal variants
Litchfield et al., 2020, Cell Reports 31, 107550
May 5, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.107550
Authors

Kevin Litchfield, Stacey Stanislaw,

Lavinia Spain, ..., Charles Swanton,

Nelson R. Alexander, Samra Turajlic

Correspondence
charles.swanton@crick.ac.uk (C.S.),
nelson.alexander@roche.com (N.R.A.),
samra.turajlic@crick.ac.uk (S.T.)

In Brief

Solid tumors are under-sampled in the

clinic, such that only 0.0005% of initial

tumor volume is used as input for

diagnostic testing. Litchfield et al. apply

the principles of representative sampling

to implement an unbiased tumor

sampling approach that improves the

reproducibility and accuracy of next-

generation sequencing.
ll

mailto:charles.swanton@crick.ac.uk
mailto:nelson.alexander@roche.com
mailto:samra.turajlic@crick.ac.uk
https://doi.org/10.1016/j.celrep.2020.107550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.107550&domain=pdf


OPEN ACCESS

ll
Resource

Representative Sequencing:
Unbiased Sampling of Solid Tumor Tissue
Kevin Litchfield,1,13 Stacey Stanislaw,2,13 Lavinia Spain,1,3 Lisa L. Gallegos,2 Andrew Rowan,1 Desiree Schnidrig,1

Heidi Rosenbaum,4 Alexandre Harle,1,5 Lewis Au,1,3 SamanthaM. Hill,2,6 Zayd Tippu,3 Jennifer Thomas,3 Lisa Thompson,7

Hang Xu,1 Stuart Horswell,8 Aoune Barhoumi,2 Carol Jones,2 Katherine F. Leith,2 Daniel L. Burgess,4

ThomasB.K.Watkins,1 Emilia Lim,1 Nicolai J. Birkbak,1,9 Philippe Lamy,9 Iver Nordentoft,9 Lars Dyrskjøt,9 Lisa Pickering,3

Stephen Hazell,10 Mariam Jamal-Hanjani,11,12 PEACE Consortium, James Larkin,3 Charles Swanton,1,11,12,*
Nelson R. Alexander,2,* and Samra Turajlic1,3,14,*
1Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
2Roche Tissue Diagnostics, 1910 E. Innovation Park Drive, Tucson, AZ 85755, USA
3Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK
4Roche Sequencing Solutions, Madison, 500 S. Rosa Road, Madison, WI 53719, USA
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SUMMARY
Although thousands of solid tumors have been sequenced to date, a fundamental under-sampling bias is
inherent in current methodologies. This is caused by a tissue sample input of fixed dimensions (e.g., 6 mm
biopsy), which becomes grossly under-powered as tumor volume scales. Here, we demonstrate representa-
tive sequencing (Rep-Seq) as a newmethod to achieve unbiased tumor tissue sampling. Rep-Seq uses fixed
residual tumor material, which is homogenized and subjected to next-generation sequencing. Analysis of in-
tratumor tumor mutation burden (TMB) variability shows a high level of misclassification using current single-
biopsy methods, with 20% of lung and 52% of bladder tumors having at least one biopsy with high TMB but
low clonal TMB overall. Misclassification rates by contrast are reduced to 2% (lung) and 4% (bladder) when a
more representative sampling methodology is used. Rep-Seq offers an improved sampling protocol for tu-
mor profiling, with significant potential for improved clinical utility andmore accurate deconvolution of clonal
structure.
INTRODUCTION

Over the past decade, clinical researchers have demonstrated

the inability of an individual biopsy or formalin-fixed paraffin-

embedded (FFPE) block to capture the genetic diversity of a

solid tumor (Turajlic et al., 2018; Jamal-Hanjani et al., 2017; War-

rick et al., 2019). This issue stems from the reliance on single-site

samples, which are used as the current standard protocol for tu-

mor sequencing in both research and clinical contexts. Sampling

only once, from a single spatial location, will miss major expand-

ing tumor subclones in other distant tumor locations, creating a

bias that cannot be resolved through excess sequencing depth.

Moreover, this widespread sampling bias is inherently obscured

because the unsampled fixed tumor tissue not submitted for
This is an open access article under the CC BY-N
paraffin embedding is considered surgical waste and is inciner-

ated. The pitfalls of using a non-representative sampling method

are well documented in the ‘‘theory of sampling’’ developed by

Pierre Gy (Gy, 1988) and have been practically demonstrated

across multiple fields, ranging from food contamination to elec-

toral polling and the mining industry (Rohde et al., 2015; Crespi,

1988; David, 1988). In the case of tumor sequencing, this

bias arises within the context of spatially biased intratumor

heterogeneity (ITH) as an important feature of cancer, combined

with the increasing utility of molecular profiling as a tool to

stratify patients for therapy (AACR Project GENIE Consortium,

2017). Failure to address this issue risks undermining the

clinical utility of genomic medicine in cancer, through reduced

sensitivity to detect prognostic and predictive markers, a lack
Cell Reports 31, 107550, May 5, 2020 ª 2020 The Authors. 1
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Figure 1. Current Tumor Sequencing Methods Lead to Under-sampling, Which Can Be Resolved through a Wider Sampling Frame

(A) Top: a density plot of the distribution of tumor volumes from The Cancer Genome Atlas (TCGA), with tumor volume (cubic centimeters) plotted on the x axis

with log scale. Middle: a density plot of the volume of biopsy tissue used as input material for sequencing in the same cohort of TCGA samples. Bottom: the

proportion of tissue sampled (i.e., values from the middle panel divided by those from the top panel for each case), split by tumor stage.

(B) Left: the estimated tumor volume (cubic centimeters) from a clinical audit, split by tissue site. Right: the proportion of tissue sampled, split by tissue site, in the

clinical audit.

(C) The experimental design used for pilot experiment of pooled ‘‘cocktail’’ samples.

(D) Left: the variant allele frequency (VAF) correlation between cocktail sequencing (x axis) compared with true VAFs estimated from multi-biopsy sequencing

(y axis); right: the variant allele frequency (VAF) correlation between single-region sequencing (x axis) compared with true VAFs estimated from multi-biopsy

sequencing (y axis).

(legend continued on next page)
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of reproducibility in sequencing results among samples, misas-

signment of subclonal variants as clonal (Pearson et al., 2016),

and unreliable estimates of tumor mutation burden (TMB). A

frequently proposed solution is to conduct multi-region sampling

and profiling, which although able to address these issues in a

research setting is cost prohibitive and too labor intensive for

wide-scale adoption in clinical practice. Furthermore, the recur-

rent question of how many biopsies should be taken is unan-

swerable because of the high variability in ITH among patients

(Turajlic et al., 2018). We hypothesized that a new sampling

methodology could be implemented to circumvent these limita-

tions, through the use of residual tumor tissue to create a more

representative sample that captures the heterogeneity of the to-

tal tumor mass. We show that this new method better captures

the diversity of the tumor and leads to improved biomarker re-

sults, without the need for increased sequencing depth or for

multiple samples to be profiled per tumor. Furthermore, as the

method described herein removes the physical bias of single-

sample profiling and makes use of residual fixed tumor material

that would otherwise be clinical waste, it empowers clinicians

and researchers with a practical solution to overcome sampling

bias within current tumor sequencing protocols.

RESULTS

Audit of Current Sampling Protocols
To examine the extent of current under-sampling bias in cancer

genomics, we first analyzed pan-cancer sequencing data from

The Cancer Genome Atlas (TCGA). Clinical annotation files

were extracted for each solid tumor cohort from the Broad Insti-

tute’s TCGAGDAC Firehose repository, fromwhich tumor length

and width data were available for 1,667 samples across six tu-

mor types (STAR Methods). For each sample, total tumor tissue

volume and research sample volume were estimated from the

clinical data, and the two values were compared to assess the

proportion of total tumor mass sampled for each case (STAR

Methods). This revealed that current research protocols sample

on average only 2.3% of the tumor mass (median value for all

stages, n = 1,667 samples), decreasing to 0.5% for stage IV tu-

mors (median value, n = 181) (Figure 1A). We next investigated

this pattern within a routine clinical context, through audit of

randomly selected cases undergoing molecular profiling as

part of standard of care at a major cancer center (see STAR

Methods). In total, 76 cases were audited, across three different

solid tumor types. This revealed a median clinical tumor sam-

pling proportion of only 0.0005% (range 0.000001%–0.2%) (Fig-

ure 1B), reflecting the minimal input material provided from stan-

dard FFPE tumor sections. The remaining R99.9% of tumor

tissue is left unsampled for molecular profiling purposes, leading

to a high level of under-sampling in a clinical context. Thus,

within both research and clinical settings, current tumor

sequencing protocols are associatedwith a high under-sampling
(E) Left: data from 100 non-small cell lung cancer cases, with clonal tumor mutatio

within the same case are joined by gray line). Right: the same data, this timewith cl

lines denote cases for which one paired value is below the 10 muts/Mb thresho

mutations.

(F) Urothelial carcinoma data from 23 patients, following the same format as (E).
bias. Furthermore, we note that sampling bias is also likely to be

affected by the level of heterogeneity and the purity of tumor cells

in the sample (Figure S1).

A More Representative Sample Leads to Increased
Ability toDetect Variants and ImprovedAccuracy in TMB
Estimation
To investigate the effect of spatial bias in single-biopsy sampling,

we first conducted a pilot experiment, creating a single, more

representative sample by pooling extracted DNA from 1,184

multi-region biopsies, taken from 79 primary renal cell carci-

nomas (RCCs), to create ‘‘cocktail’’ solutions per tumor (Fig-

ure 1C). Pooled cocktail samples were subject to next-genera-

tion sequencing (NGS) (median depth 6743), and mutation

calls were compared with previously generated single-biopsy

(reflecting current clinical practice; median depth 6083) and

multi-region biopsy (truth set) data (median depth 6123) (Turajlic

et al., 2018). Multi-region variant allele frequencies (VAFs) were

determined by taking the mean across all regions per tumor,

and single-region samples were selected by random sampling

(see STAR Methods). All samples were processed through an

identical protocol (see STAR Methods). Across all 79 tumors,

the cocktail samples discovered a median of 100% (range

30%–100%) of the truth-set mutations compared with single bi-

opsies, which achieved a median discovery rate of 73% (range

15%–100%), supporting the hypothesis that a more representa-

tive sample leads to improved ability to detect variants (p = 6.63

10�11, pairedWilcoxon test; Figure S2). In addition, VAFs derived

from cocktail samples demonstrated a strong correlation with

true VAF values from multi-region sequencing (r = 0.97), a supe-

rior correlation compared with that achieved by single-biopsy

sampling (r = 0.69) (Figure 1D). This suggests that using a single,

more representative sample provides a more accurate estima-

tion of true cellular mutational prevalence across the total tumor

mass (the true search space), an important consideration for

both prognostic and predictive biomarkers. Within this context,

TMB is emerging as a robust predictive biomarker for immune

checkpoint inhibitor (CPI) therapy, validated across multiple tu-

mor types (Forde et al., 2018; Hellmann et al., 2018; Snyder

et al., 2014; Mariathasan et al., 2018). In particular clonal muta-

tion load (clonal TMB) has been shown to be the key driver of

CPI response (McGranahan et al., 2016; Miao et al., 2018),

with subclonal mutations likely playing a neutral or negative

role in achieving a sustained anti-tumor immune response (Gej-

man et al., 2018). To explore this further in the context of tumor

sampling, we analyzed multi-region TRACERx non-small cell

lung cancer (NSCLC) (Jamal-Hanjani et al., 2017) and urothelial

carcinoma (UC) (Lamy et al., 2016; Thomsen et al., 2016) data-

sets and found high levels of intratumor TMB variability. In total,

20%of NSCLC cases (n = 100) and 52%of UC cases (n = 23) had

one or more single biopsies with high TMB but low clonal TMB

overall (on the basis of the prospectively validated 10.0
n burden (TMB) values compared with single-biopsy TMB values (paired values

onal TMB comparedwith TMBestimates from in silico ‘‘cocktail’’ sampling. Red

ld and one is above. The 10 muts/Mb threshold is defined as 200 missense

Cell Reports 31, 107550, May 5, 2020 3
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Figure 2. Representative Sequencing Method

(A) The methodological workflow for Representative Sequencing (Rep-Seq).

(B) The sampling strategy for case RS1, for validation of the Rep-Seq method against extensive biopsy sampling.

(C) The map of non-synonymous variants discovered in RS1, across tumor biopsies, ctDNA samples, and Rep-Seq biological replicates. PEACPLF is a cfDNA

taken from pleural fluid, and PEACPTF is a cfDNA taken from peritoneal fluid, both at the time of rapid autopsy, and ctDNA is a pooled sample of P1/P10/P16/P20

timepoints.

(D) Jaccard similarity index results, as ameasure of reproducibility, for single-biopsy sequencing versusRep-Seq (left) and ctDNA sequencing versusRep-Seq (right).

(E) The variant allele frequency (VAF) of mutations detected in RS1 Rep-Seq (dark blue) compared with VAF for the same mutation in the whole RS1 tumor

(calculated as an average across all biopsies).
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mutations/Mb threshold for CPI therapy; Forde et al., 2018; Fig-

ures 1E and 1F). These variability rates, in contrast, were

reduced to 2% (NSCLC) and 4% (UC) when we generated in sil-

ico ‘‘cocktail’’ solutions and predicted clonal TMB (from the sin-

gle cocktail sample; see STAR Methods), highlighting the poten-

tial clinical utility of a more representative sample in reducing the

risk for TMBmisclassification (Figures 1E and 1F). Finally, we as-

sessed the ability of cocktail sequencing to determine clonal

versus subclonal somatic copy number alterations (SCNAs), us-

ing the primary RCC dataset (n = 79). Known RCC clonal events

(Turajlic et al., 2018) (e.g., loss of 3p25.3 and gain of 5q35.3) were

found to have higher logR (log2 ratio of coverage for tumor versus

matched normal samples) than other (predominantly) subclonal

alterations (Figure S2), indicating that clonal and subclonal

SCNA events may be distinguishable in a pooled sequencing

approach.
4 Cell Reports 31, 107550, May 5, 2020
Homogenization of Residual Tumor Material to Create a
Truly Representative Sample
Next, we next sought to develop an updated tumor sampling

methodology that was consistent with the theory of sampling

(Gy, 1988) and suitable for clinical adoption (i.e., not reliant on

resource-intensive multiple-biopsy sampling and DNA extrac-

tion, as required for cocktail sampling). Here we demonstrate a

new method called ‘‘representative sequencing’’ (Rep-Seq),

which comprises homogenization of solid tumor masses into

well-mixed solutions, coupled with NGS (Figure 2A). Tumor

masses were sourced as the entire residual tumor material not

taken for pathology assessment following surgery, material

that would otherwise have been treated as clinical waste and de-

stroyed (per College of American Pathologists and Royal College

of Pathologists guidelines) or bio-banked. Residual samples

represented on average 54.8% of the total tumor volume and
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provided on average 223.5 g of tissue per tumor (on the basis of

our pilot cohort of cases; see Table S1). These values are a sig-

nificant increase over the average of 0.0005% sampled, and

0.0001 g of tumor tissue, currently used as sampling input in

standard molecular profiling approaches. Following dissection

of the formalin-fixed residual tumor tissue away from the sur-

rounding normal tissue, the residual tumor mass is homogenized

into a representative solution. From this well-mixed solution,

samples are drawn for DNA extraction, library preparation, and

sequencing (Figure 2A). Rep-Seq was implemented on a proof-

of-concept basis in 11 tumors, from four different cancer types

(Table S1).

Reproducibility and Sensitivity of Rep-Seq Compared
with Biopsy Sequencing
The first tumor processed was RS1, a large clear cell RCC

(ccRCC) tumor (17 cm maximal dimension), selected to allow

extensive sampling for cross-validation purposes. In total, 64

fresh-frozen individual biopsies were taken from the primary tu-

mor, and the remaining formalin-fixed residual mass (1,258 g of

tissue) was homogenized under the Rep-Seq protocol. To define

the variant landscape in this tumor, whole-exome sequencing

(WES) was first conducted on a selection of 7 spatially disparate

primary biopsies and an aliquot of the Rep-Seq sample (median

depth 1623), leading to the discovery of a total of 76 non-synon-

ymous mutations (single-nucleotide variants [SNVs] and small-

scale insertion/deletions). These 76 mutations were subse-

quently captured in a targeted custom panel and successfully

sequenced to high depth (median depth > 10,0003) in the 64 pri-

mary biopsies, 11 biopsies taken from two lymph node (LN) me-

tastases, four separate aliquots drawn from the representative

homogenate of the primary tumor sample (biological replicates),

six circulating tumor DNA (ctDNA) samples collected at different

time points, and three homogenized LN Rep-Seq samples (one

LN was not biopsied) (Figure 2B). This integrated dataset was

used to comprehensively evaluate the Rep-Seq methodology

(Figure 2C). First we evaluated the reproducibility of each

method, comparing the Jaccard similarity index between pair-

wise combinations of tumor biopsies, versus pairwise biological

replicates of Rep-Seq, and pairwise combinations of ctDNA time

points. Median pairwise similarity between biopsies was 0.78,

suggesting that approximately 20–25% of mutations discovered

in individual biopsies cannot be reproduced in subsequent bi-

opsy samples. In contrast, median similarity among Rep-Seq

replicates was higher at 0.95 (Figure 2D), with almost identical

mutation lists discovered by each replicate (Figure 2C). Pairwise

similarity among plasma ctDNA sampleswas low (overall median

similarity index = 0.24; Figures 2C and 2D), reflecting the tech-

nical challenges of ctDNA profiling. The ongoing temporal evolu-

tion of the tumor across ctDNA time points should also be recog-

nized, but we note substantial difference even among samples

drawn close time points (e.g., P16 and P20 were only 21 days

apart but shared no mutations in common). Last, we assessed

the sensitivity of variant detection in case RS1 and note that var-

iants as low as 0.15% VAF were successfully detected in the

Rep-Seq sample (Figure 2E). In addition, the VAFs from Rep-

Seq closely followed the overall tumor VAFs, as measured

from the set of 64 biopsies (overall tumor VAF was calculated
as total alt read count/total read count, summed across all bi-

opsies) (Figure 2E). Only 3 mutations (of the 76 captured) were

not detectable in the Rep-Seq sample, all with VAFs below

0.3%, close to the technical limit of�0.1%VAF for variant detec-

tion using NGS protocols.

Clonal Structure Prediction from Rep-Seq Compared
with Biopsy Sequencing
Next, we investigated the utility of Rep-Seq in determining clonal

structure, given that measures of clonal diversity have been

shown to associate with prognosis (Turajlic et al., 2018; McGra-

nahan et al., 2016). Cancer cell fraction (CCF) estimates were

first calculated for all mutations (n = 76) within the RS1 primary

tumor biopsy set (n = 52 biopsies used, n = 12 excluded because

of low purity; see STAR Methods) and grouped together into

mutational clusters to infer a high-confidence benchmark clonal

structure. Four distinct tumor clones were detected: clone A

(truncal clone, mutations in every cancer cell, CCF = 100.0%,

n = 41 mutations) and (sub)clones B (CCF = 45.6%, n = 2 muta-

tions, and 14q loss as a known RCC driver SCNA event; Turajlic

et al., 2018), C (CCF = 52.8%, n = 6 mutations), and D (CCF =

17.1%, n = 2 mutations) (Figure 3A). The remaining mutations

were predominantly lower frequency and could not be reliably

clustered into subclones. The clustering process was repeated

for the Rep-Seq sample alone (n = 1), and the clonal solution

was then compared between methods (Figure 3A). Rep-Seq

correctly clustered all 41 clonal mutations together into truncal

clone A (CCF = 100.0%), as well as identifying two major (sub)

clones, B (CCF = 40.6%) and C (CCF = 33.3%) (Figure 3A) (we

note that the sets of mutations in subclones B and C were not

fully identical between the multi-region and Rep-Seq solutions).

The remaining mutations in the Rep-Seq sample were again pre-

dominantly lower frequency and could not be reliably clustered,

reflecting the challenge in accurately grouping together low-CCF

mutations. CCF estimates from both methods were validated

against physical mapping of spatial biopsy locations and muta-

tional presence back to images of the sampled tumor: (sub)clone

Bwas found in 20 of 52 primary biopsies (38.4%), and (sub)clone

C was found in 32 of 52 (61.5%) (Figure 3B). This confirmed the

presence of two major, spatially distinct subclones. Intriguingly,

LN metastases LN1 and LN2 were exclusively seeded by clone

B, whereas spatially proximal peri-renal LN sample LN(PR) was

polyclonal, with clones B and C present. Individual mutation

CCFs within each sample were next considered, in order to

assess how well separated truncal events (clone A) were from

subclonal mutations (clones B and C). Within the Rep-Seq sam-

ple, CCF estimates for clonal events (clone A) were clearly sepa-

rated from (sub)clones B and C, reflecting the rapid convergence

of CCF estimates in Rep-Seq toward true values (Figure 3C,

right). In contrast, CCF distributions in single-sample biopsies

overlapped among clones A, B, and C, with sub(clones) B and

C frequently appearing (incorrectly) as clonal in individual bi-

opsies with CCFs of �100% (‘‘illusion of clonality’’; Burrell and

Swanton, 2016). On average across the 52 primary biopsies,

17% (range 6%–35%) of clonal variants suffered from an illusion

of clonality, if they were considered a single-region sample (Fig-

ure 3D) (all 76 mutations included; see STAR Methods). An illu-

sion of clonality persisted even with multi-region biopsy
Cell Reports 31, 107550, May 5, 2020 5
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Figure 3. Clonal Tracking by Rep-Seq and ctDNA in Renal Cell Carcinoma

(A) The phylogenetic tree for case RS1, as derived using extensive multiple-biopsy sequencing (left) and a single Rep-Seq sample.

(B) The clonal distribution across the four slices of the primary RS1 tumor and lymph node metastases.

(C) The cancer cell fraction (CCF) estimates for mutations in tumor clones A, B, and C in each biopsy sample (left) and in the Rep-Seq sample (right).

(D) The illusion of clonality simulation data, with the number of simulated biopsy samples plotted on the x axis and the percentage of variants that incorrectly

appear to be clonal (illusion of clonality) on the y axis (from 100 simulated sample combinations).

(E) ctDNA data for RS1, with the VAFs plotted (y axis) for mutations in clones A, B, and C.
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sampling, with simulation showing that two random biopsies

yielded an illusion of clonality rate of 9% (range 0%–25%), three

of 6% (range 0%–25%), four of 4% (range 0%–15%), and five of

3% (range 0%–15%) (Figure 3D). Furthermore these results are

likely to represent a conservative under-estimation of true illu-

sion of clonality rates, as 3-dimensional sampling was conduct-

ed along the z axis in this case.We note that if standard 2-dimen-

sional tumor slice sampling had been conducted only on slice 4,

which was monoclonal for clone C, no number of biopsies would

have prevented clonal illusion (Figure 3B), and critically, clone B

(which metastasized to the LNs) would have been completely

missed.

Given the broad applicability of liquid biopsies, and previous

work demonstrating that both clonal and subclonal mutations

can be identified (Abbosh et al., 2017), a pertinent question is
6 Cell Reports 31, 107550, May 5, 2020
to what extent ctDNA samples from plasma represent true clonal

diversity compared with a more representative sampling of the

primary tumor. Taking advantage of a well-characterized primary

tumor, and five longitudinal ctDNA time points, we investigated

this question. At pre-surgery time points (P1 and P10), variants

from clones A, B, and C were all detectable at VAFs of 0.1%–

1.0%, but many variants were missed, including some clone A

truncal events, reflecting the technical challenges of profiling

ctDNA. Mean VAF within clone A was overall higher than within

(sub)clones B and C, but large inconsistency was observed in

terms of individual variants analyzed across time points (Fig-

ure 3E). At post-surgery time point P16, the highest VAF variant

was from clone C, and similarly at time point P20, a clone B mu-

tation was highest, both above any clone A truncal mutations

(Figure 3E). At later stage time points, however (post-mortem
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sampling), all clonal mutations were detected, with highly

consistent VAF frequency (Figure 3E). Correlation coefficients

of VAFs from ctDNA, compared with the count of how many bi-

opsies a mutation was present in, ranged from r = �0.17 (time

point P16) to r = 0.78 (pleural fluid obtained post-mortem).

Rep-Seq CCFs had the highest correlation with biopsy count

data (r = 0.90). This suggests that inferring de novo clonal struc-

ture from ctDNA alone remains challenging, but tracking clonal

markers that have been previously identified from tumor tissue

remains highly informative (e.g., for minimal residual disease

[MRD] tracking). We note, in the context of MRD tracking, that

a larger panel of variants is likely to increase sensitivity to detect

relapse at earlier time points (e.g., in the RS1 data at time point

p16, an MRD panel based on mutations from a single biopsy

would have missed disease relapse 53% of the time, compared

with a 0%miss rate using a Rep-Seq-based panel; Table S2). In

terms of the clonal dynamics of RS1, an interesting pattern was

observed, with clone C dying out at later ctDNA time points and

becoming undetectable (Figure 3E). This supports the predicted

metastatic seeding pattern, as determined by biopsy and Rep-

Seq profiling, that is, that clone B achieved distal metastatic

seeding, whereas clone C was contained within the (peri-)renal

area (Figure 3B). As an additional validation, copy number anal-

ysis was conducted on 31 further biopsies sampled from 20

distinct anatomical sites of metastatic disease present at the

time of RS1 autopsy. All sites contained loss of 14q, a driver

event found only in clone B in the primary tumor (Figure S3).

We note that in single-region biopsy sequencing, metastasizing

clone B would have been missed 32 times out of 52 (61.5%).

Rep-Seq Implemented on Lymph Node Samples in the
Context of Metastatic Melanoma
To understand the utility of Rep-Seq profiling on LN residual ma-

terial (asopposed toRS1, forwhicha largeprimary tumorwasalso

available), we homogenized two LN samples (internal iliac LN and

right inguinal LN) from a patient with metastatic melanoma (case

RS2). In parallel, single-biopsy LN (right inguinal LN) sequencing

was additionally conducted (biopsy taken prior to homogeniza-

tion), as well as multi-region biopsies sequenced from a further

eight distinct anatomical sites of metastases, in order to validate

the Rep-Seqmethodology (total n = 17 samples). All samples un-

derwent WES (median coverage �2003), with tissue sampled at

the time of rapid autopsy (STAR Methods). The first question

was to compare the results from LNRep-Seqwith those from sin-

gle-sample LN sequencing, which would be the standard sam-

pling approach in the context of a LN dissection. CCF clustering

analysis was completed for the LN single sample (see STAR

Methods; Figure 4A), and the calculated tree was monoclonal in

structure (100% of mutations were predicted clonal, n = 90). Re-

sults from the homogenized Rep-Seq LN sample, in contrast,

calculated a polyclonal tumor structure, with only 63% of muta-

tions (n = 58) being clonal and the remainingmutations (n = 34) be-

ing subclonal, clustered into four distinct subclones (Figures 4B

and 4C). To verify which solutionwas correct (mono- versus poly-

clonal), a joint clustering analysiswascompleted across all biopsy

samples (n = 16 from LN and eight distal metastases) to yield a

high-confidence clonal solution (Figure 4D). The tumor was

indeed found to be polyclonal, with a total of seven distinct tumor
subclones detected (Figure 4D). A major branch encompassing

multiple distinct subclones (Figure 4D, far left of tree) was found

to be shared across pelvic, liver, paravertebral, abdominal wall,

loin soft tissue, and supra-renal metastases but was absent in

two distinct right groin soft tissue masses (Figure 4D). The right

groin masses were each characterized by distinct tumor sub-

clones (Figure 4D). A number of individual sites were also found

to be polyclonal in nature (e.g., liver, paravertebral mass) contain-

ing both themajor left-handsubclone branch and the distinct sub-

clones present in the right groin masses (Figure 4D). These poly-

phyletic patterns would be consistent with either polyclonal

dissemination from the primary or metastasis-to-metastasis

seeding.Wenote that not all tumor subclonesweredetectable us-

ing the Rep-Seq LN methodology, but the representative sam-

pling methodology was accurate enough to clearly distinguish

this asapolyclonal tumor,witha lowerproportionofmutationsbe-

ing clonal. This finding was supported by extensive sampling of

multiple metastases. The single-site sample, in contrast, incor-

rectly predicted a monoclonal tumor structure, with all mutations

being clonal in nature. Clinically, we note that this patient received

three lines of immune CPI therapy (adjuvant nivolumab, ipilimu-

mab, and pembrolizumab) and failed to respond throughout,

with progressive disease recorded for all rounds and sites of

CPI treatment (Figure 4E). Although only descriptive in nature,

this lack of response would be consistent with the hypothesis of

a heterogeneous subclonal neoantigen repertoire being associ-

ated with poor response to immunotherapy (Wolf et al., 2019).

For completeness, we additionally obtained archival FFPE blocks

for the RS2 primary tumor sample, and at median �2003

sequencing coverage, none of the metastasizing clones were

detectable, highlighting thechallenge ofmelanomaprimary tissue

sampling where the tumor size is so small.

Rep-Seq Implemented on an Extended Cohort of
Primary Solid Tumors across Four Tissue Types
The Rep-Seqmethod was additionally conducted in a further ten

cases as a technical feasibility exercise. Cases RS3 and RS4

were ccRCC tumors and predominantly monoclonal in structure

(Figure S4). Cases RS5–RS11 were tumors of breast, colorectal,

and lung origin, and tumor-specific driver mutations were suc-

cessfully detected in all specimens (Table S3). The highest

mutation burden was observed in RS8 (colon), with 980 and

251 non-synonymous SNVs and indels and presence of cosmic

mutational signatures 6 and 15 associated with mismatch repair

deficiency (Figure 5A), which was confirmed by immunohisto-

chemistry staining showing loss of MLH1. Signature analysis of

the three NSCLC tumors (RS9, RS10, and RS11) showed evi-

dence of signature 4 (smoking associated) uniquely in these

three tumors only (Figure 5A). Hence the mutational signatures

derived from Rep-Seq were consistent with expected patterns.

Tumor Purity-Enriched Rep-Seq Protocol
Finally, an additional benefit of tissue homogenization is the

preservation of the cellular integrity of the tissue and therefore

the ability to add a cell-sorting step prior to DNA purification,

to enrich for higher tumor purity. As a proof of principle, flow sort-

ing was conducted on RS12 (colorectal tumor), preferentially

selecting isolated tumor nuclei on the basis of the presence of
Cell Reports 31, 107550, May 5, 2020 7
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Figure 4. Clonal Tracking by Rep-Seq in Metastatic Melanoma

(A) The phylogenetic tree for case RS2 using single-biopsy lymph node sequencing (right inguinal LN).

(B) The phylogenetic tree for case RS2 using Rep-Seq LN sequencing.

(C) The proportion of mutations, clonal and subclonal, in RS2 on the basis of single-biopsy (top) and Rep-Seq (bottom) profiling.

(D) The extended phylogenetic tree for caseRS2, on the basis of joint clustering of LN and eight distalmetastases samples. Clone presence ismarked on the basis

of anatomical site of disease, with absent clones in a given site shaded in lighter color. Note that the right inguinal LN now becomes subclonal in composition,

because of the benefit of multi-region joint clustering. Previously in (A), these same mutations are incorrectly clustered to the truncal clone (illusion of clonality)

because of the limitations of single-biopsy sampling.

(E) The clinical history of case RS2. The best response by RECIST version 1.1 criteria is denoted in parentheses. SD, stable disease; PD, progressive disease.
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cytokeratins 8 and 18 and high forward/side scattering. WES

was conducted, first on a standard sample from the Rep-Seq

protocol (non-sorted Rep-Seq, depth 2213), which showed tu-

mor purity of 0.44. Strong enrichment was observed in the

flow-sorted Rep-Seq sample (depth 2153), with purity of 0.89,

which resulted in an approximate doubling of the effective tumor

cell sequencing coverage (from 903 to 1843), for the same over-

all bulk sample sequencing depth and cost (Figure 5B). In terms

of variant discovery, 365 non-synonymous SNVs were observed

in common between both standard and flow-sorted samples,

and then an additional 68 mutations (an increase of 19%) were

found uniquely in the flow-sorted sample, presumably because

of the increased sensitivity from higher effective tumor depth

(Figure 5B). Only 5 mutations (1.4% of the total, all with VAFs <

5%) were found with the opposite pattern (i.e., in the standard

sample but missing in the flow-sorted sample), which suggests

in this case that flow sorting did not create systematic bias
8 Cell Reports 31, 107550, May 5, 2020
such that certain tumor subclones are excluded. The additional

sensitivity in mutation detection enabled a larger set of sub-

clones to be defined (Figure 5C).

DISCUSSION

Here we present Rep-Seq as a newmethod to achieve unbiased

tumor sampling, drawing DNA molecules from a well-mixed ho-

mogenized solution of all residual surgical tumor material. This

method removes the spatial bias inherent in current single-

biopsy approaches and significantly increases the probability

of detecting the genomic heterogeneity of solid tumors in a single

sample protocol. Successful delivery of precision medicine in

oncology is contingent on a reliable identification of biomarkers.

ITH affects the interpretation of prognostic biomarkers and pre-

dictive biomarkers of response to targeted and immunotherapy,

most notably TMB. Rep-Seq offers a clear opportunity to
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Figure 5. ExtendedRep-SeqCohort and Tu-

mor Purity Enrichment

(A) Non-synonymous mutation count for cases

RS5–RS11 (top), along with mutational signature

analysis results (bottom).

(B) Left: RS12 coverage data for the overall bulk

mixed cell population and then an estimated tumor

cell coverage, along with purity estimates. Data

are shown for standard Rep-Seq, and then tumor

purity-enriched Rep-Seq, for comparison pur-

poses. Right: the number of non-synonymous

variants detected in normal and purity-enriched

Rep-Seq samples. Variant counts are color coded

on the basis of either being ‘‘shared’’ (i.e., present

in both samples) or ‘‘private’’ (i.e., variant is pre-

sent in only that sample and absent from the

other).

(C) Phylogenetic trees for the normal and flow-

sorted RS12 tumor subclones.
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overcome the issue of ITH in these contexts and could feasibly

be adopted in routine clinical practice.

In our analysis we first show the extent of under-sampling in

current research studies, with data from TCGA demonstrating

an average tissue sampling proportion of 2.3%. This bias is

evenmore pronounced in a routine clinical context, with our audit

data from standard molecular profiling at a major cancer center

demonstrating that only five cancer cells in every million

(0.0005%) are being sampled. This rate of under-sampling raises
the risk for misinterpreting clinically rele-

vant tumor sequencing results, asdemon-

strated by a high level of variability in TMB

scores between single sites and the true

clonal mutation load. Indeed, in NSCLC

and UC, we show that 20% and 52% of

cases, respectively, have at least one bi-

opsy classified as high TMB, when the

overall clonal TMB is low. Thismisclassifi-

cation risk canbe reduced throughusinga

more representative sample, with discor-

dance rates being reduced to 2% and

4%, respectively, using in silico ‘‘cocktail’’

analysis. We note, however, that the in sil-

ico ‘‘cocktail’’ samples may have slightly

higher tumor purity than the main Rep-

Seq methodology, as the latter takes all

residual tumor material as input rather

the biopsy-sampled regions.

To address the issue of spatial sam-

pling bias in a manner consistent with

the theory of sampling, as well as the

challenge of multiple-biopsy sampling

being too labor intensive for routine clin-

ical use, we next sought to develop an up-

dated tumor sampling methodology. We

demonstrate Rep-Seq as a new method

able to overcome both these points,

through sampling a large volume of tumor
tissue (average sampled proportion 55%), but maintaining a sin-

gle (n = 1) DNA sample for downstream NGS library preparation

and sequencing. The source of material in Rep-Seq is unique by

making use of excess residual tumor tissue from surgery, which

would otherwise be destroyed as clinical waste or bio-banked

for research use. Homogenization of this residual tissue makes

an ideal source for DNA extraction and sequencing, given the

more representative nature of the sample, and generates a sub-

stantial amount of material that can be retained for future
Cell Reports 31, 107550, May 5, 2020 9
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research use. Such practices of homogenized sampling have

been in routine practice in other fields for many decades, such

as the sampling of mineral deposits. This fact, combined with

the large amount tissue processed as clinical waste, highlights

the sub-optimal nature of current molecular profiling sampling

approaches in oncology. Here we demonstrate the utility of

Rep-Seq through extensive sampling in a cohort of pilot cases,

primarily as a proof-of-concept study. We show that the repro-

ducibility in variant detection between replicates in Rep-Seq is

high (Jaccard similarity index = 0.95) and superior to that of sin-

gle-biopsy sequencing (0.78). In case RS1, sampling of >50 bi-

opsies, from five tumor slices, validated the accuracy of Rep-

Seq clonality predictions. In contrast, single-biopsy sequencing

suffered from a high rate of illusion of clonality, with 17% of mu-

tations appearing clonal when in reality they were subclonal.

Conversely, single-biopsy sequencing also frequently missed

important events, with 62% of biopsies missing the metasta-

sizing clone. And notably all biopsies from tumor slice 4 missed

the lethal clone, indicating that even extensive multi-region sam-

pling is still susceptible to spatial bias, unless implemented on a

3-dimensional basis. Ultimately, any biopsy-based sequencing

approach will retain spatial bias to some degree when tumor tis-

sue is left unsampled, which hence emphasizes the benefit of a

homogenization-based sampling approach.

In case RS2, we used Rep-Seq to profile LN metastases from

a patient with primary melanoma, which revealed polyclonal

disease. This was confirmed by extensive biopsy sequencing

of eight further sites of distal metastases, which validated poly-

clonality, with multiple distinct subclones present across

anatomically separate sites. Results from single-biopsy LN

sequencing, in contrast, predicted a monoclonal tumor, which

was shown to be incorrect. With increasing evidence now sup-

porting clonal neoantigens as a key driver of immunotherapy

response (Miao et al., 2018; Gejman et al., 2018), the accurate

delineation of clonal versus subclonal alterations is of clinical

relevance. This is descriptively illustrated in case RS2, in which

lack of response to three lines of immunotherapy was

observed, in the context of a high subclonal neoantigen reper-

toire. We additionally implemented Rep-Seq on a further ten

cases (RS3–RS12), from lung, colorectal, and breast cancer

types, showing mutation rates and signatures in line with ex-

pected results. Finally, as a further extension of the Rep-Seq

protocol, we demonstrate flow sorting as a method to achieve

tumor purity enrichment. For case RS12, purity was increased

from 44% to 89%, with no observed shift or bias introduced

to the sequencing results. Purity enrichment complements

well the homogenization-based Rep-Seq approach and could

significantly reduce sequencing costs (the same equivalent

coverage of tumor cells could have been achieved in half the

cost for case RS12).

We acknowledge small cohort size as a limitation of this

work and confirm that a larger prospective study of Rep-Seq

(n = 500 cases) is under way (ClinicalTrials.gov identifier

NCT03832062). In addition, although Rep-Seq yields accurate

and unbiased estimates of clonal and major subclonal muta-

tions, this comes with the trade-off of losing resolution to

detect lower frequency tumor (sub)clones. This trade-off may

be acceptable in a clinical context, in which lower frequency
10 Cell Reports 31, 107550, May 5, 2020
mutations may be less directly actionable than widely

expanded clonal or major subclonal driver events. Furthermore,

we show with deep custom panel sequencing in case RS1 that

low-frequency mutations can be reliably detected in Rep-Seq

down to 0.3% VAF, with sensitivity determined by current limits

in NGS accuracy. As more sensitive sequencing assays (e.g.,

duplex sequencing) become adopted, it is likely that Rep-Seq

can be used to search for ultra-low-frequency events. We

also acknowledge that Rep-Seq will not be applicable in all pa-

tient contexts, for example, patients with advanced-stage dis-

ease who undergo only biopsy sampling (no other surgeries).

However, in metastatic cases undergoing resection, as well

as primary surgery, there is broad potential for bio-banking

and homogenization of residual material using the Rep-Seq

approach. Finally, there is also potential scope for hybrid ap-

proaches, in which a large part of the residual material is ho-

mogenized, but then a portion (e.g., a transverse section) is

also retained for spatially dependent analysis (e.g., imaging,

spatial transcriptomics).

In summary, here we implement Rep-Seq as a new tumor

sampling methodology combined with NGS, which adopts a

more representative sampling approach via homogenization of

residual tumor tissue. This method offers a clinically practical so-

lution to the dramatic under-sampling bias inherent in current

molecular profiling workflows. We find the reproducibility of re-

sults in Rep-Seq to be significantly higher than for current sin-

gle-biopsy sequencing approaches (at same equivalent

sequencing depth), and greater accuracy was also achieved in

determining clonal from subclonal variants. We note that these

results are predicted from the theory of sampling, a statistically

driven rule set for sampling solid masses that are heteroge-

neous. These results offer potential clinical utility in the context

of both prognostic (e.g., greater sensitivity to detect metastasis

driving subclones) and predictive biomarkers (e.g., improved

clonal TMB estimates).
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Mouse anti-cytokeratin 8/18 antibody Ventana Medical Systems cat # 760-4344; RRID:AB_10583331

Goat-anti-Mouse antibodyconjugated with
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Invitrogen cat # A11001; RRID:AB_2534069

Goat-anti-Mouse antibody conjugated with

Alexa Fluor 647

Invitrogen cat # A-21236; RRID:AB_141725

Chemicals, Peptides, and Recombinant Proteins

BD FACS Aria Bectin Dickinson cat # 656700

CC1 buffer Ventana Medical Systems cat # 950-124

antibody diluent buffer Ventana Medical Systems cat # 251-018

autoMACS buffer Miltenyi Biotech cat # 130-091-221

phosphate buffered saline Fisher Scientific cat # 14190

Tween 20 Fisher Scientific cat # AC233362500

DAPI Sigma cat #D9542

Pepsin Sigma cat # P7012

Proteinase K VWR cat # 0706

Critical Commercial Assays

cobas cfDNA Sample Preparation Kit Roche 7247737190

AVENIO ctDNA Enrichment Kit Roche 8061041001

AVENIO ctDNA Library Prep Kit Roche 8061050001

HyperCap Target Enrichment Kit, 96 Reactions Roche 8286345001

SeqCap EZ MedExome Enrichment Kit Roche 7681330001

NimbleGen SeqCap Hybridization and Wash Kit Roche 5634253001

HiSeq Rapid SBS Kit v2 Illumina FC-402-4021

HiSeq SBS Kit V4 250 cycle kit Illumina FC-401-4003

xGen Dual Index UMI Adapters IDT N/A

SeqCap EZ Prime Choice Probes- Onco Roche 4000030990- 08247498001

SeqCap EZ Share Choice- Onco Roche 4000007080- 08332975001

SeqCap EZ Custom Design Roche 8332975001

SeqCap Adaptor Kit A Roche 7141530001

HiSeq� 2500 Sequencing System Illumina SY-401-2501

cBot System Illumina SY-301-2002

20 micron cell strainer Pluriselect cat # 43-50020-03

IKA disposable grinding chamber IKA-Works cat # MT 40.100

IKA Works Tube Mill Control system IKA-Works cat # 0004180001

Deposited Data

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Rep-Seq data for cases RS1-RS12 This paper European Phenome Genome Archive:

EGAS00001004246

Software and Algorithms

Burrows-Wheeler Aligner (BWA) v0.7.15 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Samtools v1.3.1 Li and Durbin, 2009 http://samtools.sourceforge.net/

Picard 1.81 http://broadinstitute.github.io/picard/
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Mutect v1.1.7 Cibulskis et al., 2013 http://software.broadinstitute.org/

cancer/cga/mutect

VarScan v2.4.1 Koboldt et al., 2009 http://varscan.sourceforge.net/

Scalpel v0.5.3 Fang et al., 2016 https://github.com/hanfang/scalpel-protocol

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

CNVkit v0.7.3 Talevich et al., 2016 https://github.com/etal/cnvkit

R package ‘Copynumber’ Nilsen et al., 2012 http://bioconductor.org/packages/release/

bioc/html/copynumber.html

ABSOLUTE v1.0.6 Carter et al., 2012 http://software.broadinstitute.org/cancer/cga/

absolute

bedtools package Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

AlleleCounter N/A https://github.com/cancerit/alleleCount

ASCAT Van Loo et al., 2010 https://github.com/Crick-CancerGenomics/ascat
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Samra

Turajlic (samra.turajlic@crick.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical studies
Cases RS1, RS3 and RS4 were diagnosed with renal cell carcinoma, and were consented for research under the TRACERx Renal

study (National Health Service Research Ethics Committee approval 11/LO/1996), as previously described5. Autopsy samples

fromRS1 andRS2were obtained through the PEACEStudy (NIHR 18422), where samples are harvestedwithin�48 hours fromdeath

(see secondary author list for the full list of PEACE consortium investigators). Residual surgical material for cases RS5, RS6, RS7,

RS8, RS9, RS10, RS11 and RS12 were was obtained from commercial providers of research specimens (GLAS Consultants, Win-

ston-Salem, NC. (IRB#: 120160685) and The MT Group, Van Nuys, CA (MTG-015)) from U.S. hospitals, under IRB approval. Sex/age

of each case is as follows: RS1M/54, RS2M/41, RS3M/75, RS4 F/75, RS5 F/55, RS6 F/81, RS7 F/90, RS8M/65, RS9M/83, RS10 F/

68, RS11 F/75, RS12 (n.a.).

METHOD DETAILS

Clinical audit of current molecular profiling practices
Institutional review board approval was obtained for a service evaluation to quantify the tumor volume routinely profiled as a diag-

nostic standard of care in resected colorectal, melanoma and sarcoma tumors (SE725), where surgery and molecular profiling

were both undertaken at the RoyalMarsdenNHSFoundation Trust was reviewed. Caseswere included if therewere > 2macroscopic

tumor dimensions recorded on the histopathology report and if information was available on the number and thickness of slides used

for molecular profiling. The audit data is shown in Table S4.

Regional biopsy and cocktail sample preparation
Multi and single region biopsy sampling of surgically resected tumor tissue was conducted using the same method as previously

described (Turajlic et al., 2018). Cocktail samples (as displayed in Figure 1) were created for each tumor, by pooling extracted

DNA taken from all single-regions taken for each tumor, in equimolar ratios. A median of 9 single—region samples were pooled

per cocktail. For the autopsy samples from RS1 and RS2, 3mm3 sections were dissected from snap frozen tumor core biopsies

(6mm diameter) and tissue disrupted using the Tissue Raptor. They were then processed through a QIAGEN QIAshredder and

DNA was purified using the QIAGEN All Prep DNA/RNA Mini kit according to manufacturer’s instructions. Germline DNA was ex-

tracted from whole blood or a buffy coat.

Grossing and homogenization of residual tumor tissue
Following diagnostic histologic sampling and removal of fresh biopsies, three distinct clinical surgical waste tissues from a kidney

radical nephrectomy (RS1) containing: 1) a primary tumor, 2) para-aortic lymph node cluster, and 3) renal hilar nodes were fixed in
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10% neutral buffered formalin for 24 h to mimic the standard clinical workflow. After fixation, samples were exchanged into phos-

phate-buffered saline (PBS, 14190, Fisher Scientific, USA) for 24 h, then stored in ethanol for until dissected. Tumor tissue was

identified by a pathologist through macroscopic evaluation and physical palpation, and all identifiable tumor was dissected away

from the surrounding tissue. An area of normal tissue (at least 5 cm from the tumor) was also dissected by a pathologist and retained.

Lymph nodes detected during gross examination of the RS1 specimen included hilar and peri-renal nodes were also dissected as an

independent tissue samples. All dissected tissue was weighed prior to homogenization.

Residual primary tumor tissuewas split into two-625 g portions; eachportionwas combinedwith 600mL autoMACSRunningBuffer

(Miltenyi Biotec Inc., 130-091-221) and homogenized in a liquidizer (Cookworks, BL9292E-GS) for 3min at the highest setting. The pri-

mary tumor homogenates (2.5 l total) weremanually combinedandmixed in aplastic container, dividedbackand re-liquidized for addi-

tional homogenization and mixing, and pooled together into a large plastic container. Segregated tissues of renal hilar lymph nodes,

peri-renal node, normal kidney tissue, and para-aortic lymph nodes were each homogenized independently in autoMACS Running

Buffer (1:1,mass: volume) with an IKA TubeMill (IKAWorks Inc.WilmingtonNorth Carolina, 0004180001) for 2min at 15,000 rpmusing

single-use blending containers. When tissue mass exceeded the capacity of an individual blender container, homogenates for the

same sample were pooled by mixing as described above. Samples of each tissue homogenate were stored in methanol (1:1, v:v) at

4�C. Case RS2 was lymph-node material from a patient with primary melanoma, and cases RS3 and RS4 were primary renal tumors,

and all were processed through the same homogenization protocol as RS1. For RS2 primary melanoma tissue, the FFPE blocks were

trimmed by razor-blade to remove excess paraffinwax that did not contain any tissue. Remaining wax embedded tissuewas removed

fromFFPEplastic cassette andminced into approximately 1mmcubedpieces using razor blade. Tissue pieceswere deparaffinisedby

5 sequential 1.5 hour 52 degrees’ Celsius xylene washes until all but trace wax was removed and only tissue remained. Xylene was

removed from the sample using a room temperature 10 minute acetone wash followed by three sequential 20 minute 100% ethanol

washes. Ethanol was removed, and the sample hydrated for blending, in two 10 minute sequential washes of 1x PBS.

For cases RS5 to RS12, each specimen had been subjected to standard sampling for diagnosis and staging purposes. These

cases were considered surgical waste and slated for incineration, thus were stored in formalin for four to six weeks. Upon arrival,

tissue was transferred to PBS for 12-24h. Tumor tissue was identified by a pathologist through macroscopic evaluation and physical

palpation, and all identifiable tumor was dissected away from the surrounding tissue. An area of normal tissue (at least 5 cm away

from the tumor) was also dissected by a pathologist and retained. All dissected tissue was weighed prior to homogenization.

Dissected tumor and normal tissue were homogenized separately in single-use blender containers (IKAWorks Inc. Wilmington North

Carolina, 0004180001), or single use consumer grade blenders (Hamilton Beach, 51102, Glen Allen, VA) in autoMACSbuffer (1:1,m:v)

for 2 min at 15,000 rpm or at the highest setting. Resulting homogenates were stored at 4�C until further processed.

Genomic DNA purification from tissue and cfDNA
An aliquot of each tissue homogenate (1200 ml) was collected by centrifugation at 5000 rcf. for 2 min, rinsed with TE buffer pH 8.0

(VWR, AAJ62745-EQE) twice, and incubated in 5 mL protease digestion buffer [9.75 mL TE buffer pH 8.0, 60 mg Proteinase K

(VWR, 0706), and 0.25 mL 20% SDS in aqueous solution (Amresco, 0837)] at 56�C for 2-16 h. Digested tissue (100 ml) was used

for genomic DNA purification by High Pure PCR Purification Kit (Roche Applied Sciences, Mannheim Germany, 11 732 668 001) ac-

cording to manufacturer’s protocol. Purified genomic DNA was quantified using a NanoDrop 8000 (Thermo Fisher Scientific) and

stored at �20�C. cfDNA was isolated from plasma using cobas cfDNA Sample Preparation kit (Roche, 07247737190).

Target-enriched NGS Library construction and sequencing
Illumina compatible indexed NGS libraries were constructed from genomic DNA from tissue using the SeqCap EZ HyperCap Work-

flow User’s Guide, v1.0 (Roche Sequencing Solutions) with notable parameters specified below. Briefly, 1 mg of purified genomic

DNA was enzymatically fragmented for 33-40 min at 37�C and prepared for adaptor ligation using the KAPA HyperPlus library

prep kit according tomanufacturer’s instructions (Roche Sequencing Solutions, KK8514). SeqCap sequencing adaptor final reaction

concentration was 2 mM, and adaptor ligation reaction time was extended to 14-18 h, at 16�C. No pre-capture PCR was used

following ligation reaction purification. SeqCap EZ library probe baits for either MedExome (07681330001), Onco_EZ

(08333076001), or a custom RS1 specific (see data analysis section below for design criteria) target-enrichment panel (Roche

Sequencing Solutions) and 2 nM blocking oligos (Roche Sequencing Solutions), were incubated for 18-22 h at 47�C following manu-

facturer instructions. Post-capture PCR was performed using KAPA HiFi HotStart ReadyMix and LM-PCR oligos for 14 cycles. Post-

capture purified library concentrations were determined by Qubit (ThermoFisher) and fragment size distribution analyzed by Bio-

analyzer 2100 (Agilent). Amplified enriched libraries were each diluted to 2nM and stored at �20�C prior to pooling for sequencing.

Pooled libraries were sequenced using MiSeq and HiSeq instruments (Illumina) according to manufacturer’s recommendations for

paired-end sequencing using (Illumina) runs with 101 base paired-end reads. cfDNA sequencing libraries were constructed using the

AVENIO ctDNA Targeted Kit (Roche, 08061076001) by following the AVENIO ctDNA Analysis Kits Reagent Workflow User Guide

v1.0.0. Amplified, adaptor-ligated samples were concentrated together with the Hybridization Supplement using a Vacufuge plus in-

strument (Eppendorf). Each sample was resuspended in the appropriate Enhancing Oligo, the custom RS1-specific panel, and Hy-

bridization master mix. Enrichment, hybridization cleanup and amplification were performed according to manufacturer instructions.

Samples (equal mass) were pooled, and sequenced usingHiseq (Illumina), according to instructions, with 151 base paired-end reads.

Multi-region, cocktail and single regions samples, from 79 renal cell carcinomas as displayed in Figure 1, underwent renal driver
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Panel_v6 library preparation and sequencing, usingmethods as previously described (Turajlic et al., 2018). Multi-region whole exome

library preparation and sequencing for RS1 was conducted by external laboratory (Eurofins Scientific), using Agilent SureSelect Hu-

man All Exon v5 kits. Multi-region whole exome library preparation for RS2 was conducted at the UCL Pathogen Genomics Unit,

using Agilent SureSelect Human All Exon v5 kits, and sequenced by external laboratory (GENWIZ). Sequencing coverage metrics,

and library kits, for all samples profiled is provided in Table S5.

Flow sorting method to increase tumor purity
A representative sample from formalin fixed residual tumor tissue from RS12 was generated by homogenization in an IKA blender in

autoMACS buffer (1:1 mass to volume). Aliquots of the homogenate (1 g) were further dissociated to individual nuclei by adapting a

previously describedmethod (Hedley et al., 1983). Briefly, tissuewas collected by centrifugation, resuspended in CC1 (VentanaMed-

ical Systems, Tucson, AZ) buffer (5:1 mass to volume), and heated at 80�C for 30 min. Tissue was washed once with PBS, and re-

suspended in PBS containing 1 mg/ml proteinase K (1:1 mass to volume) (VWR USA) and incubated at 50�C for 10 min. The sample

was exchanged into 5mg/ml pepsin in 150mMNaCl, pH 1.5 (Sigma, USA) and incubated 30min at 37�C. The sample was adjusted to

pH 8 with 5 M NaOH, and exchanged into PBS, 0.5% BSA and 0.5% Tween 20 (Fisher Scientific, USA (AC233362500) prior to filtra-

tion through a 20-mm filter (Pluriselect, San Diego, CA) to collect nuclei.

Nuclei were then collected by centrifugation at 400 x g and exchanged into antibody diluent for 30 min at 20�C. Samples were

exchanged into mouse anti-cytokeratin 8/18 primary antibody (Ventana Medical Systems, Tucson, AZ) for 1 hour at 4�C, washed

three times in 0.5mLPBS, 0.1%BSA and 0.1%Tween 20, and incubated for 30min at 4�C in goat-anti-mouse antibodies conjugated

to Alexa Fluor 488 or Alexa Fluor 647 (2 mg/ml) (Invitrogen, San Diego, CA) and DAPI (3 mM) (Sigma, USA). Stained samples were

washed and filtered prior to analysis and sorting using a BD FACS Aria (656700, Bectin Dickinson) equipped with a 355 nm,

60 mW laser and 450/50 nm filter for DAPI; 488 nm, 60 mW laser and 530/30 nm filter for AF 488; and 633 nm, 100 mW laser and

670/30 nm filter for AF 647. No compensation was used. DAPI was used for doublet discrimination. RS11 tumor nuclei were enriched

by FACS after gating to include cytokeratin positive (CK+), high side-scatter (SSC) nuclei and exclude cytokeratin negative (CK-), low

SSC nuclei. The flow cytometry gating strategy is shown in (Figure S5).

QUANTIFICATION AND STATISTICAL ANALYSIS

Tumor volume sampling analysis
For the the clinical audit data, all samples had data on width (W) and length (L) dimensions available, and tumor volume (T_V) was

estimated using the following formula:

T_V =
�
W2 3 L

��
2

(taken from the literature as the most accurate tumor volume measurement approach (Faustino-Rocha et al., 2013)).

Biopsy volume (B_V) was calculated based on the 2D surface area analysis of 8 typical slides, with each slide scanned using the

Aperio AT2whole slide scanner at 40x. Each imagewas annotated by hand, following the perimeter of the tissue, and the surface area

calculated via using the Aperio ImageScope software. The average surface area was 3.37cm2 and this value was multiplied by slide

thickness (10 mm), and the total number of slides used, to obtain B_V estimates per tumor.We note that in caseswheremultiple slides

were used for molecular profiling, (up to 5 were used), each slide was taken from the same block (i.e., all from one fixed spatial loca-

tion). The proportion of total tumor volume sampled in each case is then simply calculated as B_V / T_V. For the cancer genome atlas

(TCGA) dataset analysis, we extracted summary clinical annotation files for each solid tumor cohort from the Broad Institute TCGA

GDAC Firehose repository. Tumor dimension data was available for n = 1667 samples, across 6 tumor types: ACC, KICH, KIRC,

KIRP, PAAD and THCA. Tumor volume (T_V) was calculated as per above using the formula: T_V = (W2 3 L) / 2. In cases where

only one dimension was given (i.e., the maximal dimension) this was assumed to be the tumor length, and the tumor width was esti-

mated using a L:W ratio of 1:0.8, with the 0.8 standard value estimated as themedian ratio value observed across all cases with avail-

able length and width data. Biopsy sample volumes were calculated from exact length (L), width (W) and depth (D) dimensions,

as given in the clinical annotation files, with biopsy shape assumed to be cuboid and biopsy volume (B_V) calculated as B_V =

L 3 W 3 D. Where biopsy dimensions were missing in the clinical annotation files, a standard biopsy volume (B_V) of 0.48cm3

was assumed, based on the median value from all other bases where data was available. The proportion of total tumor volume

sampled in each case is then simply calculated as B_V / T_V. In Figure 1A, significance was assessed with a Wilcoxon rank-sum

test. In Figure S1 the intratumor heterogeneity scores, for cases overlapping with the proportion of tumor sampled dataset, were

taken from (Raynaud et al., 2018) (number of clones score). Purity estimates, again for TCGA cases overlapping with the proportion

of tumor volume sampled analysis, were taken from (Aran et al., 2015) (consensus purity estimates).

Processing of sequencing data
Paired-end reads in FastQ format sequenced by MiSeq and Hiseq were aligned to the reference human genome (build hg19), using

the Burrows-Wheeler Aligner (BWA) v0.7.15. with seed recurrences (-c flag) set to 10000 (Li and Durbin, 2009). Intermediate process-

ing of Sam files was performed using Samtools v1.3.1, deduplication was performed using Picard 1.81 (http://broadinstitute.github.
Cell Reports 31, 107550, May 5, 2020 e4

http://broadinstitute.github.io/picard/


Resource
ll

OPEN ACCESS
io/picard/) and local indel realignment with GATK v3.6. For whole exome and renal driver Panel_v6 sequencing datasets, single

Nucleotide Variant (SNV) calling was performed using Mutect v1.1.7 and small scale insetion/deletions (INDELs) were called running

VarScan v2.4.1 in somatic modewith aminimum variant frequency (–min-var-freq) of 0.005, a tumor purity estimate (–tumor-purity) of

0.75 and then validated using Scalpel v0.5.3 (scalpel-discovery in - -somatic mode) (intersection between two callers taken) (Cibul-

skis et al., 2013, Fang et al., 2016, Koboldt et al., 2009). SNVs called by Mutect were further filtered using the following criteria: i)

variant allele frequency (VAF) % 1% in the corresponding germline sample, ii) variants that falling into mitochondrial chromosome,

haplotype chromosome, HLA genes or any intergenic region were not considered, iii) presence of both forward and reverse strand

reads supporting the variant. For custom RS1 panel sequencing data, sequencing was conducted at high depth using unique mo-

lecular barcode (UMI) indexes, and UMI-tools (Smith et al., 2017) was used to group PCR duplicates and de-duplicate reads to yield

one read per group. SNVs were then called using deepSNV (Gerstung et al., 2012), as Mutect is known to not be calibrated for higher

sequencing depth levels. Varscan and Scalpel were used to call RS1 custom panel INDELs as described above. All variants were

annotated using Annovar (Wang et al., 2010). To estimate somatic copy number alterations, CNVkit v0.7.3 was performed with

default parameter on paired tumor-normal sequencing data (Talevich et al., 2016). Outliers of the derived logR calls from CNVkit

were detected and modified using Median Absolute Deviation Winsorization before case-specific joint segmentation to identify

genomic segments of constant logR (Nilsen et al., 2012). Tumor sample purity, ploidy and absolute copy number per segment

were estimated using ABSOLUTE v1.0.6 (Carter et al., 2012). Neoantigen predictions were derived by first determining the 4-digit

HLA type for each patient, along with mutations in class I HLA genes, using POLYSOLVER (Shukla et al., 2015). Next, all possible

9, 10 and 11-mer mutant peptides were computed, based on the detected somatic non-synonymous SNV and INDEL mutations

in each sample. Binding affinities of mutant and corresponding wild-type peptides, relevant to the corresponding POLYSOLVER-in-

ferred HLA alleles, were predicted using NetMHCpan (v3.0) and NetMHC (v4.0) (Andreatta and Nielsen, 2016). Neoantigen binders

were defined as IC50 < 50 nM or rank < 2.0. Signature analysis was conducted on all non-synonymous mutations using package de-

constructSigs (Rosenthal et al., 2016).We additionally checked for evidence of formalin induced artifact variants in the Rep-Seq data,

given the protocol involves formalin exposed material. Formalin fixed paraffin embedded (FFPE) samples can contain artifacts, typi-

cally arising due to hydrolytic deamination of cytosine to form uracil, or thymine if the cytosine is methylated. Such artifacts are nor-

mally visible as an excess of C > T/G > A mutations at lower variant allele frequency (Wong et al., 2014). Analysis of this in the whole

exome sequencing data from Rep-Seq cases showed no evidence of excess low frequency formalin induced artifact, with the pro-

portion of low frequency (below 5% VAF) C > T mutations being 34.0%, closely comparable to the average across all base changes

(33.3%) (Figure S5).

Analysis of pooled cocktail sequencing data
The final set of cocktail samples included 79 tumors with matched processed reference datasets frommulti-region sequencing. The

number of biopsies per cocktail sample ranged from 2 to 75with amedian number of 8 biopsies per tumor and a total number of 1,184

individual biopsies. As a reference dataset of true variants, we used previously published multi-region sequencing variant calls from

the same cases, which represented the sum of all variants detected in each tumor (Turajlic et al., 2018). In our analysis we compared

the overall performance of single-region and cocktail sequencing, in detecting somaticmutations from the known truth set. The single

region sample was selected as one random single-region biopsy per tumor, from the overall multi-region dataset. We first evaluated

the performance of the cocktail sequencing approach compared to multi-region and single region sequencing, by comparing the

number of somatic variants detected per tumor with each approach. To reflect the average performance of single region biopsies,

we calculated the mean number of variants detected through single-region sequencing per tumor. We next determined the detection

rates of true variants in the cocktail and the single-region samples using themulti-region sequencing data as a reference. Significance

was assessed with a paired Wilcoxon Test. Finally, in order to establish the accuracy of the cocktail sequencing approach, we next

determined the correlation between the variant allele frequencies (VAF) of all somatic mutations detected through multi-region

sequencing and the VAFs from the cocktail samples as well as a randomly selected single-region biopsy per tumor. The multi-region

VAFs were calculated as the mean VAFs across all regions included in the cocktails. The correlations were calculated with a Spear-

man’s rank-order correlation test.

Analysis of in-silico pooled cocktail sequencing data
For the analysis presented in Figures 1E and 1F, wemade use of two additional multi-region sequencing datasets: i) the TRACERx100

non-small cell lung cancer dataset (Jamal-Hanjani et al., 2017) and ii) a cohort of urothelial carcinomas (Lamy et al., 2016, Thomsen

et al., 2016). Each multi-region sample had undergone whole exome sequencing, as described previously described (Lamy et al.,

2016, Thomsen et al., 2016, Jamal-Hanjani et al., 2017). Sequencing reads were reverted back to fastq format using bam2fastq,

and alignment/variant calling was conducted as described above. The in-silico cocktail samples were created for each case by

down-sampling the reads in each biopsy sample using picard-tools ‘‘DownsampleSam,’’ and then remerging the down-sampled

BAM files to make a merged in-silico cocktail sample. The down-sampling proportion was selected to ensure the merged in-silico

cocktail sample had equivalent coverage to a single biopsy samples for that tumor (e.g., if a tumor had five different biopsy samples

sequenced, a proportion of 0.2 of each BAMwas taken to create a merged file of equivalent depth to a single biopsy). For each data-

set, TMB was measured as the number of missense variants per tumor, with a high TMB threshold of 200 missense mutations used,

which prior analysis has shown is equivalent to the 10 mutations/Mb threshold (synonymous and non-synonymous) derived from
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higher coverage panel datasets (Budczies et al., 2019). The TMB values were calculated using three different methods: A) Single bi-

opsy-TMB, based on the number ofmutations in each individual biopsy sample. B) clonal-TMB, based on the full multi-region data for

each tumor, with mutations being judged as clonal by simple ubiquity across all tumor regions. C) Cocktail-TMB, based on the num-

ber of predicted clonal mutations within the in-silico cocktail, with clonality determined by clustering variant allele frequency values

using R function daisy, with the distance matrix computed using Gower’s formula, and the number of clusters set to two (such that

mutations were grouped into either clonal/subclonal groups).

Custom panel design
To conduct in-depth validation of the representative sequencing method high coverage profiling was conducted in case RS1, using a

custom panel. The panel design was based on whole exome sequencing results from: i) 7 biopsies taken from the RS1 primary tumor

(before homogenization) and ii) an aliquot of the RS1 homogenized solution. SNV and INDELmutations were called across the 8 sam-

ples as described above, and a total of 76 non-synonymous mutations were detected (Table S6). These 76 mutations were success-

fully captured in a targeted custom panel, and sequenced to high depth (median > 10,000x) in the 64 primary biopsies, 11 biopsies

taken from 2 lymph node metastases, 4 biological primary Rep-Seq replicates, 6 circulating tumor (ct) DNA samples collected at

different time points, and 3 homogenized lymph node Rep-Seq samples. As an additional validation, all 76 RS1 variants were

also validated using Ion Torrent sequencing, as orthogonal confirmation.

Jaccard reproducibility analysis
The reproducibility of variant discovery between RS1 tumor biopsies, Rep-Seq biological replicates and ctDNA samples was as-

sessed using the Jaccard similarity coefficient. Each pairwise combination between samples (within each group) was considered,

e.g., Biopsy1 (A) versus Biopsy2 (B), Biopsy1 (A) versus Biopsy3 (B), etc. Jaccard similarity coefficient was calculated using the stan-

dard formula (J):

J = M11=ðM01 + M10 + M11Þ
where M11 represents the total number of variants present in both samples A and B, M10 represents the total number of variants pre-

sent in A but not B and M01 represents the total number of variants present in B but not A.

Clustering and phylogenetic analysis
Clustering analysis was performed on cases RS1 (custom panel data) and RS2 (whole exome data) using PyClone Dirichlet pro-

cess clustering (Roth et al., 2014). For each mutation, the observed alternative allele count, reference count and total local tu-

mor copy number was used as input, together with the purity for each sample. PyClone was run with 10,000 iterations and a

burn-in of 1000, and default parameters, with–var_prior total_copy_number. For RS1, two separate PyClone runs were conduct-

ed, the first for the primary multi-region biopsies dataset. Of the total n = 64 primary biopsies sequenced, n = 52 passed quality

control for clustering analysis, with n = 12 biopsies excluded due to lower purity (measured based on purity being too low to call

the known clonal 3p copy number loss event correctly). The second RS1 PyClone clustering run was conducted just for Rep-

Seq homogenate sample alone (n = 1), using the same parameters. Similarly, three separate PyClone runs were conducted for

case RS2, for single biopsy LN sample (alone), Rep-Seq LN sample (alone) and then all biopy samples (from LN and eight other

sites of metastases).

Illusion of clonality simulation
To assess the risk of illusion of clonality, a biopsy sampling approach was simulated, for 1 up to 20 biopsies taken, using the

RS1 datatset. For each biopsy number (n = 1-20), a random sample of biopsies of size n was drawn from the total set of 64

primary biopsies profiled for RS1. Within the random sampled set, the number of mutations which appeared to be clonal (based

on being ubiquitously present in all biopsies in the sampled set) was calculated. This list was then compared to the known list of

truly clonal mutations (from the full 64 set), and percentage of variants which were incorrectly classified as clonal was recorded.

This process was repeated for 100 iterations for each n, to give a distribution, from which mean and standard deviation values

were calculated.

Analysis of purity enriched data
For RS12, whole exome sequencing case conducted using the standard Rep-Seq protocol, and then repeated with the additional

step of flow sorted purity enrichment. Variant calling was completed, and purity estimates calculated in both samples in the same

way, as detailed above. The number of variants discovered in each sample, and then those in common across samples were calcu-

lated and plotted in Figure 5.

Statistical methods
Statistical package R v3.3.2 or higher was used for all analysis. All statistical tests were two-sided. The tests used for each analysis

are listed above in the relevant methods section.
Cell Reports 31, 107550, May 5, 2020 e6



Resource
ll

OPEN ACCESS
DATA AND CODE AVAILABILITY

Sequencing data that supports this study has been deposited at the European Genome-phenome Archive (EGA), which is hosted by

the European Bioinformatics Institute (EBI); under accession number EGAS00001004246. The TRACERx lung exome sequence data

used during the study is available through the Cancer Research UK & University College London Cancer Trials Centre (ctc.tracerx@

ucl.ac.uk) for non-commercial research purposes, and access will be granted upon review of a project proposal that will be evaluated

by a TRACERx data access committee and entering into an appropriate data access agreement subject to any applicable ethical

approvals.
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