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ABSTRACT Mutations in the genes of the F420 signaling pathway of Mycobacterium
tuberculosis complex, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, can lead to dela-
manid resistance. We searched for such mutations among 129 M. tuberculosis strains
from Asia, South America, and Africa using whole-genome sequencing; 70 (54%)
strains had at least one mutation in one of the genes. For 10 strains with mutations,
we determined the MIC of delamanid. We found one strain from a delamanid-naive
patient carrying the natural polymorphism Tyr29del (ddn) that was associated with a
critical delamanid MIC.

KEYWORDS Mycobacterium tuberculosis, delamanid, resistance, mutations, drug
resistance, natural polymorphism

In 2014, the new antituberculosis (anti-TB) drug delamanid (also known as OPC-
67683, or Deltyba) was introduced (1). The World Health Organization (WHO)

recommends the administration of delamanid if a standard effective drug regimen
cannot be prescribed due to drug toxicity or resistance (2, 3). Thus, the European
Medicines Agency (EMA) conditionally approved delamanid for the treatment of
multidrug-resistant (MDR) TB (1, 3, 4). Of note, 6 years after its market launch, robust
and widely accepted breakpoints that define susceptibility and resistance to dela-
manid still do not exist (5). The few available studies suggest a critical MIC between
0.125 mg/liter and 0.2 mg/liter, and an epidemiological cutoff value (ECOFF) of
0.04 mg/liter (6–9). This ECOFF is in line with the WHO technical report (10).

Delamanid is a drug of the bicyclic nitroimidazole class with potent anti-TB activity
(1, 11). It is a prodrug that is activated by the deazaflavin (F420)-dependent nitroreduc-
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tase (ddn) through hydride transfer, forming unstable intermediates, which in turn lead
to the formation of reactive nitrogen species (nitric oxide, nitrous acid) (12, 13).
Activated delamanid thus has a dual bactericidal mode of action: the primary decom-
position product prevents mycolic acid synthesis, while the reactive nitrogen species
cause respiratory poisoning (12–15). Loss-of-function mutations in ddn or one of the
genes encoding the five coenzymes (fgd1, fbiA, fbiB, fbiC, and fbiD) have been proposed
as a mechanism of resistance to delamanid (12, 13, 16, 17). In vitro, the frequencies of
delamanid resistance-conferring mutations in the Mycobacterium tuberculosis labora-
tory strain H37Rv and in Mycobacterium bovis range from 2.51 � 10�5 to 6.44 � 10�6

(13). Previous studies have found several resistance-conferring mutations, including
Leu107Pro (ddn), 51–101del (ddn), Trp88STOP (ddn), Gly81Asp (ddn), Gly81Ser (ddn),
Gly53Asp (ddn), c.146_147insC (fgd1), Gln88Glu (fgd1), Lys250STOP (fbiA), Arg175His
(fbiA), and Val318Ile (fibC) (6–8, 18–22).

This multicenter study has been described in detail elsewhere and is part of the work
of the International epidemiology Databases to Evaluate AIDS (IeDEA) (23). We identi-
fied putative delamanid resistance-conferring mutations in M. tuberculosis strains from
TB patients living with HIV (PLWH) and delamanid-naive, HIV-negative TB patients by
whole-genome sequencing (WGS) and MIC determination. We collected information on
the demographic and clinical characteristics of patients who were recruited between
2013 and 2016 in Peru, Thailand, Côte d’Ivoire, the Democratic Republic of the Congo
(DRC), Kenya, and South Africa (24, 25). The Cantonal Ethics Committee in Bern,
Switzerland, and local institutional review boards approved the study. Written informed
consent was obtained at all locations, except in South Africa, where consent was not
required for archived samples.

The sequencing pipeline has been described previously (25). In brief, M. tuberculosis
DNA was extracted and sequenced using the Illumina HiSeq 2500 system (Illumina, San
Diego, CA, USA). For the analysis, we used the well-established pipeline TBprofiler
(https://github.com/jodyphelan/TBProfiler) (26, 27). It aligns short reads to the M.
tuberculosis reference strain H37Rv (GenBank accession no. NC_000962.3) with bowtie2
(v2.3.5), BWA (v0.7.17), or minimap2 (v2.16) and then calls variants with SAMtools (v1.9)
(28–31). To identify putative delamanid resistance-conferring mutations, we analyzed
F420 genes (ddn, fgd1, fbiA, fbiB, fbiC, and fbiD) with variant frequencies of �75%. A
subset of M. tuberculosis strains with at least one mutation in the F420 genes was
recultured in liquid medium and subjected to delamanid MIC determination (see Fig. S1
in the supplemental material). We assumed that 0.04 mg/liter indicates a critical MIC (9).

We included 129 M. tuberculosis isolates, among them 51 isolates (39.5%) from Peru,
13 (10.1%) from Thailand, 49 (38%) from Côte d’Ivoire, 14 (10.9%) from the DRC, and 1
(0.8%) each from Kenya and South Africa. We identified 70 (54.3%) isolates with
polymorphisms in at least one of the six F420 genes compared to the reference genome
(Table S1). All patients infected with either of these strains were naive to delamanid. We
selected strains fulfilling the following criteria: (i) mutations in a part of the gene
encoding regions of catalytic or structural importance predicted by ARIBA and then
the PhyResSE pipeline (32, 33), (ii) availability of a culture of the strain, and (iii)
bacterial growth amenable to microdilution (25). MICs were determined for 10
isolates with mutations in the F420 genes. Four isolates showed MICs of �0.015 mg/
liter: specifically, MICs of 0.5 (patient 1), 0.03 (patients 6 and 10), and �8 (patient
9) mg/liter (Table 1; Fig. S1). The isolate from patient 1 had a polymorphism in fgd1
(Lys270Met) and was susceptible to the six drugs tested (isoniazid, rifampin,
ethambutol, pyrazinamide, moxifloxacin, and amikacin). The patient was cured. The
isolate from patient 9 had two alterations: a deletion in ddn (Tyr29del) and a
nucleotide change in fgd1 (T960C). The strain showed an elevated delamanid MIC
and was phenotypically susceptible to six other drugs tested. The patient died. The
MIC for the isolates of patients 10 and 6 was above 0.015 but below 0.04 mg/liter
(Table 1). This suggests low-level resistance to delamanid (22), which could be due
to the combination of various mutations: Ala416Val (fbiC), Trp678Gly (fbiC),
Arg64Ser (fgd1), and T960C (fgd1).
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In summary, in the subset of 10 isolates with polymorphisms in the six targeted
genes, six had no elevated MIC in the microdilution, while four isolates had elevated
MICs (Table 1). In line with previous studies, we found that Lys270Met in fgd1 is a
natural polymorphism characteristic of M. tuberculosis lineage 4.1.2.1, which may
(patients 1 and 6) or may not (patient 7) lead to an increased delamanid MIC (19, 34,
35). All 16 strains of lineage 4.1.2.1 showed this lineage-specific marker (Table S1).
Furthermore, T960C (fgd1) is a synonymous substitution and was found in three other
patient isolates which, as expected, did not have a critical MIC. The increase in the
delamanid MIC for the isolate of patient 9 was due to the deletion in ddn (7). Our results
thus suggest that Tyr29del is a natural polymorphism leading to an increased dela-
manid MIC. Our study was too small to estimate the prevalence of strains that are
naturally resistant to delamanid. In 2020, Lee et al. screened 14,876 M. tuberculosis
strains and found 2 strains with Tyr29del, for a prevalence of 0.013% (36). However, in
their study, only the ddn gene was screened, and the prevalence of natural resistance
could, therefore, be higher.

In conclusion, we confirm that mutations in F420 genes can confer an elevated
delamanid MIC (13, 19). Whether our findings also apply to the related drug pretomanid
should be investigated in future studies. The occurrence of clinical M. tuberculosis
isolates from previously untreated patients for which delamanid MICs are naturally
elevated calls for careful drug susceptibility testing (DST) prior to delamanid treatment
(5, 36). However, access to DST is limited in high-burden countries. This dilemma
highlights the conflict between making new drugs available in high-burden countries
and avoiding the spread of drug-resistant strains.

Data availability. WGS data from patients’ M. tuberculosis strains shown in Table 1
have been submitted to the NCBI (BioProject accession no. PRJNA300846) (Table S1).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS
We thank those at all sites who participated, the patients whose data were used in

this study, and Marie Ballif for contributing to the data collection and for critical reading
of the manuscript. Calculations were performed on UBELIX (http://www.id.unibe.ch/
hpc), the HPC cluster at the University of Bern.

This research was supported by the Swiss National Foundation (project grants
153442, 310030_166687, 310030_188888, IZRJZ3_164171, IZLSZ3_170834, and CRSII5_

TABLE 1 Observed polymorphisms in F420 genes and MIC values of delamanida

Patient no.
or reference Lineage Country HIV status

Age (yr)
at TB
diagnosis Gender

Mutation(s)
in the F420

genes
Treatment
outcome

MIC (mg/liter)
in the
microdilution

Reference H37Rv
(ATCC 27294)

Control (wt) �0.015

1 L4.1.2.1 Côte d’Ivoire Negative 29 Female fgd1 Lys270Met Cured 0.5
2 L4.6.2.2 Côte d’Ivoire Negative 51 Male ddn C168T Died �0.015
3 L2.2.1 Kenya Positive 40 Male fgd1 T960C Died �0.015
4 L2.2.1 Peru Positive 28 Male fgd1 T960C Unknown �0.015
5 L4.3.2 Peru Negative 21 Male fbiC C1161T Cured �0.015
6 L4.1.2.1 Peru Positive 45 Male fgd1 Lys270Met Unknown 0.03
7 L4.1.2.1 Peru Positive 36 Male fbiC G-11A, fgd1 Lys270Met Unknown �0.015
8 L4.1.2 South Africa Negative 57 Female fbiA Ile208Val Cured �0.015
9 L2.2.1 Thailand Unknown 76 Male fgd1 T960C, ddn 85-87del

(Tyr29del)
Died >8

10 L1.1.1 Thailand Negative 42 Male fbiC Ala416Val Trp678Gly,
fgd1 Arg64Ser T960C

Unknown 0.03

aAll patients were treated with 2 months of daily isoniazid, rifampin, pyrazinamide, and ethambutol, followed by 4 months of daily rifampin and isoniazid. Data for
isolates for which the MIC was �0.015 are shown in boldface. wt, wild type; L, lineage.
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