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SUMMARY

Cancer develops as a result of somatic mutation and
clonal selection, but quantitative measures of selec-
tion in cancer evolution are lacking. We adapted
methods from molecular evolution and applied
them to 7,664 tumors across 29 cancer types. Unlike
species evolution, positive selection outweighs
negative selection during cancer development. On
average, <1 coding base substitution/tumor is lost
through negative selection, with purifying selection
almost absent outside homozygous loss of essential
genes. This allows exome-wide enumeration of all
driver coding mutations, including outside known
cancer genes. On average, tumors carry �4 coding
substitutions under positive selection, ranging
from <1/tumor in thyroid and testicular cancers
to >10/tumor in endometrial and colorectal cancers.
Half of driver substitutions occur in yet-to-be-discov-
ered cancer genes. With increasingmutation burden,
numbers of driver mutations increase, but not line-
arly. We systematically catalog cancer genes and
show that genes vary extensively in what proportion
of mutations are drivers versus passengers.

INTRODUCTION

Somatic cells accumulate mutations throughout life. These mu-

tations can be classified into those that confer a selective

advantage on the cell, increasing survival or proliferation (so-

called ‘‘driver’’ mutations), those that are selectively neutral,

and those that are disadvantageous to the cell and result in

its death or senescence. Cancer is one end-product of somatic

evolution, in which a single clonal lineage acquires a comple-

ment of driver mutations that enables the cells to evade normal

constraints on cell proliferation, invade tissues, and spread to

other organs.

While the general principles of cancer evolution have beenwell

documented for some decades (Cairns, 1975; Nowell, 1976),
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fundamental questions remain unanswered. We still do not

have accurate estimates of the number of mutations required

to drive a cancer and whether this varies extensively across tu-

mor types or with different mutation rates (Martincorena and

Campbell, 2015). One approach to this question has been to

use age-incidence curves to estimate the number of rate-limiting

steps required for a cancer to develop (Armitage and Doll, 1954;

Tomasetti et al., 2015), with the implicit assumption of a one-to-

one correspondence between rate-limiting steps and driver mu-

tations. However, not all driver mutations need be rate-limiting

(Yates et al., 2015), nor need every rate-limiting event be a driver

mutation (Martincorena and Campbell, 2015). A second

approach to estimating the number of driver mutations has

simply been to count the mutations occurring in known cancer

genes, but this is limited by incomplete lists of cancer driver

genes and by the presence of passenger mutations in cancer

genes. Thus, despite its fundamental importance and the

sequencing of thousands of cancer genomes, the question

of how many somatic mutations drive a cancer remains

unresolved.

A second major gap in our understanding of cancer evolution

is that we have not yet been able to measure the importance of

negative selection in shaping the cancer genome and to what

extent somatic lineages expire due to the effects of deleterious

mutations. Detection of negative selection in cancer genomes

is an important endeavor as it may help identify genes essential

for cancer growth and patterns of synthetic lethality, potentially

yielding new therapeutic targets. With increasing interest in the

role of neoantigens created by somatic mutations shaping the

immune response to cancer (McGranahan et al., 2016; Rajasagi

et al., 2014; Rooney et al., 2015), we might expect that purifying

selection would suppress clones with mutations that elicit a

strong immune reaction.

While we have increasingly detailed lists of cancer genes (Kan-

doth et al., 2013; Lawrence et al., 2014; Vogelstein et al., 2013),

it is not always straightforward to identify which mutations in

those genes are true driver mutations nor how many mutations

in other genes might be drivers. This will become an increasingly

important question as cancer genome sequencing moves into

routine clinical practice—therapeutic decision support for an in-

dividual patient critically depends on accurate identification of
ber 16, 2017 ª 2017 The Authors. Published by Elsevier Inc. 1029
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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which specific mutations drive that person’s cancer (Gerstung

et al., 2017).

In this study, we address these open questions by adapting

methods from molecular evolution to the study of cancer ge-

nomes. The key advance in the models we develop is that we

can directly enumerate the excess or deficit of mutations in a

given gene, a group of genes, or even the whole exome,

compared to the expectation for the backgroundmutational pro-

cesses. This enables us to provide robust estimates of the total

number of coding driver mutations across cancers, how many

coding point mutations are lost through negative selection, and

a detailed dissection of the distribution of driver mutations in in-

dividual cancer genes across different tumor types.

RESULTS

Quantitative Assessment of Positive and Negative
Selection
Detection of selection in traditional comparative genomics typi-

cally requires a measure of the expected density of selectively

neutral mutations in a gene. In the context of cancer, a gene un-

der positive selection will carry an extra complement of driver

mutations in addition to neutral (passenger) mutations—it is

this recurrence of mutations across cancer patients that has

underpinned discoveries of cancer genes from the Philadelphia

chromosome to modern genomic studies (Martincorena and

Campbell, 2015). A gene subject to purifying selection of delete-

rious mutations would have fewer mutations than expected un-

der neutrality (Greenman et al., 2006).

Building on previous work (Greenman et al., 2006; Martincor-

ena et al., 2015; Yang et al., 2003), we use dN/dS, the normalized

ratio of non-synonymous to synonymous mutations, to quantify

selection in cancer genomes. This relies on the assumption

that the vast majority of synonymous mutations are selectively

neutral and hence a good proxy to model the expected mutation

density (we address the accuracy of this assumption later; see

also STARMethods). dN/dS has a long history in the study of se-

lection in species evolution (Goldman and Yang, 1994; Nei and

Gojobori, 1986; Yang andBielawski, 2000), but several modifica-

tions are required for somatic evolution.

The first critical refinement is more comprehensive models for

context-dependent mutational processes (Alexandrov et al.,

2013; Greenman et al., 2006; Yang et al., 2003). Traditional im-

plementations of dN/dS use simplistic mutation models that

lead to systematic bias in dN/dS ratios and can cause incorrect

inference of positive and negative selection (Figure S1)—such

biases have affected previous studies in this area (Ostrow

et al., 2014). Therefore, we use amodel with 192 rate parameters

that accounts for all 6 types of base substitution, all 16 combina-

tions of the bases immediately 50 and 30 to themutated base, and

transcribed versus non-transcribed strands of the gene (Fig-

ure S1A). A second refinement is the addition of other types of

non-synonymous mutations beyond missense mutations,

including nonsense and essential splice site mutations (Green-

man et al., 2006), and amethod for small insertions and deletions

(indels). Third, extreme cautionwas exercised during variant call-

ing to avoid biases emerging from germline variants, because

these have a much lower dN/dS ratio than somatic mutations.
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Misannotation of a germline polymorphism as a somatic muta-

tion will bias somatic dN/dS downward; excessively filtering

true somatic mutations that occur at positions known to be poly-

morphic in the population will bias somatic dN/dS upward (Fig-

ure S1B). For example, we have seen that germline contamina-

tion of the public mutation catalogs from several datasets in

The Cancer Genome Atlas [TCGA], such as colorectal cancer

and chromophobe renal cell carcinoma, generates a false signal

of negative selection (Figure S1C). Fourth, to detect selection at

the level of individual genes reliably, and particularly for driver

gene discovery, we refined dN/dS to consider the variation of

the mutation rate along the human genome. A simple way to

do so is estimating a separate mutation rate for every gene

(Wong et al., 2014), but this approach has low sensitivity with

typical sample sizes. Instead, we developed a statistical model

(dNdScv) that combines the local observed synonymous muta-

tion rate with a regression model using covariates that predict

the variable mutation rate across the genome (Lawrence et al.,

2013; Polak et al., 2015; Schuster-Böckler and Lehner, 2012).

This approach has the advantage of optimizing the balance be-

tween local and global data on estimating background mutation

rates to provide a statistically efficient inference framework for

departures from neutrality (Figure S2).

In order to study the landscape of positive and negative selec-

tion in cancer, we applied these approaches to a collection of

7,664 tumors from 29 cancer types from TCGA (Table S1). So-

matic mutations were re-called with our in-house algorithms

across 24 cancer types to ensure comparability across tumor

types and avoid biases from germline polymorphisms.

A Universal and Distinct Pattern of Selection in Cancer
Comparative genomic studies of related species typically reveal

very low dN/dS ratios, reflecting that the majority of germline

non-synonymous mutations are removed by negative selection

over the course of evolution (Ostrow et al., 2014). For example,

comparison of orthologous genes from Escherichia coli and

Salmonella enterica yields an average dN/dS�0.06 across

genes. This indicates that at least �94% of missense mutations

have been removed by negative selection. The dN/dS ratio for

nonsense mutations in common human germline polymor-

phisms is similarly low (dN/dS�0.08). dN/dS ratios vary across

species but a pattern of overwhelming negative selection invari-

ably characterizes species evolution (Figure 1A).

In stark contrast, cancer evolution shows a pattern in which

dN/dS ratios are close to, but slightly above, 1 (Figure 1B). This

pattern is universally shared across tumor types studied here

and applies to both missense and truncating substitutions

(nonsense and essential splice site mutations). This indicates

that mutations under positive selective pressure are somewhat

more numerous in cancers than mutations under negative selec-

tion, but the overall picture is close to neutrality. Importantly,

similar values of dN/dS around or above 1 are found in somatic

mutations detected in healthy tissues, including blood, skin,

liver, colon, and small intestine (Blokzijl et al., 2016;Martincorena

et al., 2015; Welch et al., 2012) (Figure 1C). Although these data

are still limited, dN/dS�1 appears to characterize somatic evolu-

tion in normal somatic tissues as well as all cancers that we have

studied so far.
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Figure 1. Genome-wide dN/dS Ratios Show a Distinct Pattern of Selection Universally Shared across Cancer Types

(A) Species evolution: median dN/dS ratios across genes for missense mutations (data from Martincorena et al. [2012] and Ensembl). Data on germline human

SNPs are from the 1,000 genomes phase 3 (Auton et al., 2015), restricted to SNPs with minor allele frequency R5%.

(B) Cancer evolution: genome-wide dN/dS values for missense and nonsense mutations across 23 cancer types.

(C) Somatic mutations in normal tissues (data from Blokzijl et al., 2016; Martincorena et al., 2015; Welch et al., 2012). Error bars depict 95% CIs.

See also Figure S1 and Table S1.
Identification of Genes under Positive Selection
By definition, cancer genes are genes under positive selection in

tumorcells. Toshowtheability of dN/dS touncover cancergenes,

we used dNdScv to identify genes for which dN/dS was signifi-

cantly higher than 1, both across all 7,664 cancers and for each

tumor type individually (Figure 2A). This revealed 179 cancer

genes under positive selection at 5% false discovery rate. Of

these, 54% are canonical cancer genes present in the Cancer

Gene Census (Forbes et al., 2015). Using restricted hypothesis

testing (Lawrence et al., 2014) on a priori known cancer genes

identifies an additional 24 driver genes. Evaluation of genes not

present in the Census reveals that most have been previously re-

ported as cancer genes, have been found in other pan-cancer an-

alyses, or have clear links to cancer biology (Kandoth et al., 2013;

Lawrence et al., 2014; Rubio-Perez et al., 2015) (Table S2). Novel

candidate cancer genes include ZFP36L1 and ZFP36L2, which

have recently been shown to promote cellular quiescence and

suppressS-phase transition duringBcell development (Galloway

et al., 2016). We find higher than expected rates of inactivating

mutations in the two genes in several tumor types, suggesting

that they have a tumor suppressor role. Other novel tumor sup-

pressor genes identified here include KANSL1, a scaffold protein

forhistoneacetylationcomplexes (Dias et al., 2014),BMPR2, a re-

ceptor serine/threonine kinase for bonemorphogenetic proteins,

MAP2K7, involved in MAP-kinase signaling, and NIPBL, a mem-

ber of the cohesin complex. Several of these genes were identi-

fied in a previous pan-cancer analysis (Davoli et al., 2013).

As expected, depending on whether nonsense or missense

mutations predominate, genes generally fall into two classes:

oncogenes, with strong selection on missense mutations, or tu-

mor suppressor genes, with stronger selection on truncatingmu-

tations (Figure 2B). Significant dN/dS ratios reach very high

values in frequently mutated driver genes, often higher than 10
or even 100 (Figure 2B). This gives quantitative information about

the proportion of driver mutations. For example, dN/dS = 10 for a

gene evidences that there are ten times more non-synonymous

mutations in the gene than expected under neutral accumulation

of mutations, indicating that at least �90% of the non-synony-

mousmutations in the gene are genuine driver mutations (Green-

man et al., 2006).

Negative Selection Is Largely Absent for Coding
Substitutions
While some somatic mutations can confer a growth advantage,

others may impair cell survival or proliferation. Clones carrying

such mutations would senesce or die, with the result that the

mutation would be lost from the catalog of variants seen in the

eventual cancer. This negative or purifying selection will lead to

dN/dS <1 in a given gene or set of genes if it occurs at appre-

ciable rates. Negative selection on somatic mutations has

been long anticipated (Beckman and Loeb, 2005; McFarland

et al., 2014; Nowell, 1976) but not yet reliably documented in

cancer genomes. This is due to the fact that statistical detection

of lower mutation density than expected by chance requires

large datasets and very careful consideration of mutation biases

and germline SNP contamination.

To determine the potential extent of negative selection, we first

studied thedistributionof observeddN/dSvaluesper gene. There

is considerable spread of these observed values around the

neutral peak at dN/dS = 1.0 (Figure 3A), which at face valuemight

suggest thatmanygenesare under positive or negative selection.

However, the limited numbers of mutations per gene make indi-

vidual dN/dS values noisy, andwe find that the observeddistribu-

tion almost exactly matches that seen in simulations under a

model where all genes are neutral. To formally estimate the frac-

tion of genes under negative selection, we infer the underlying
Cell 171, 1029–1041, November 16, 2017 1031
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Figure 2. Positively Selected Genes (Drivers) in Cancer Genomes
(A) List of genes detected under significant positive selection (dN/dS >1) in each of the 29 cancer types. Y axes show the percentage of patients carrying a non-

synonymous substitution or an indel in each gene. The color of the dot reflects the significance of each gene. RHT, restricted hypothesis testing on known cancer

genes (Table S2).

(B) Pancancer dN/dS values for missense and nonsense mutations for genes with significant positive selection on missense mutations (depicted in red) and/or

truncating substitutions.

See also Figures S1 and S2.
distribution of dN/dS values from the observed data using a bino-

mial mixture model (Figures 3B and 3C). We find that the vast

majority of genes are expected to accumulate point mutations

near neutrally, with dN/dS�1. A small fraction of genes (�2.2%;

confidence interval (CI)95% = 1.0%–3.9%) show dN/dS R1.5,

consistentwithcurrent estimatesof thenumbersof cancergenes.

Only a tiny fraction of genes (�0.14%; CI95% = 0.02%–0.51%),

equating to a few tens of genes, are estimated to exhibit negative

selection with dN/dS%0.75 (Figures 3C and S3A–S3D).

These distributions also enable us to obtain approximate esti-

mates of the average number of coding substitutions lost by nega-

tive selection per tumor (Figure 3D). On average, across this

diverse collection of tumors, less than one coding substitution

per tumor (0.55/patient; CI95% = 0.31–1.16) has been lost by nega-

tive selection, accounting for <1% of all coding mutations. We

note the formal possibility that dN/dS = 1 can occur when the

numbers of positively and negatively selectedmutations in a given

gene are exactly balanced. This could lead us to underestimate

the extent of negative selection but only if a large number of genes

showed such an exact balance, which seems unlikely.

Although negative selection in cancers might be weak glob-

ally, it remains possible that negative selection may act in very
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specific scenarios, genes, or gene sets. No single gene had a

dN/dS significantly <1 after multiple hypothesis testing correc-

tion, even if we boost our power by performing restricted hy-

pothesis testing on 1,734 genes identified by in vitro screens

as essential (Blomen et al., 2015). To address the possibility

of making a type II inference error, we evaluated our statistical

power to detect negative selection at the level of individual

genes in this dataset (Figure 3E). We found that there is

enough power to detect negative selection at dN/dS <0.5 on

missense mutations for most genes in the genome, but we

have less power for detecting negative selection acting on

truncating mutations (Figure 3E). Thus, the lack of significant

negative selection in any gene in the current dataset reveals

that negative selection would be weaker than these detection

limits.

We next examined whether specific groups of genes might

be subject to negative selection, after excluding 987 putative

cancer genes to avoid obscuring the signal of negative selec-

tion. Sets of genes that may be expected to be under stronger

negative selection include highly expressed genes or genes in

active chromatin regions. Lower mutation density has been

observed in cancer genomes in highly expressed genes and
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(A) Distributions of dN/dS values per gene for missense mutations in non-LOH regions. The real distribution is shown in gray and the distribution observed in a

neutral simulation is shown in purple.

(B) Underlying distribution of dN/dS values across genes inferred from the observed distribution.

(C) Estimated percentage of genes under different levels of positive and negative selection based on the inferred dN/dS distribution in (B).

(D) Average number of selected mutations per tumor based on the inferred distributions of dN/dS across genes, combining missense and truncating mutations

from all copy number regions. Error bars depict 95% CIs.

(E) Power calculation for the statistical detection of negative selection (dN/dS <1) as a function of the extent of selection (dN/dS) and the neutrally-expected

number of mutations in a gene in a cohort. Shaded areas under the curves reflect power >80%. Vertical lines indicate the range in which themiddle 50% and 95%
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(F) Average mutation burden in genes grouped according to gene expression quintile and chromatin state.

(G) Average dN/dS values for genes grouped according to gene expression quintile, chromatin state, and essentiality.

(H) Average dN/dS values for all mutations in genes found to be haploinsufficient in the human germline, including and excluding putative driver genes. Hap-

loinsufficient genes are defined as those having a pLI score >0.9 in the ExAC database (Lek et al., 2016).

See also Figures S1 and S3.
open chromatin (Figure 3F) (Pleasance et al., 2010b; Schuster-

Böckler and Lehner, 2012) and some have suggested that this

may be a signal of negative selection (Lee et al., 2010). How-

ever, we found that dN/dS values are virtually indistinguishable

from neutrality for both missense and truncating substitutions
across gene expression levels and chromatin states. This

confirms that the lower density of mutations observed in

open chromatin and highly expressed genes is due to lower

mutation rates in these regions and not negative selection.

The lack of detectable negative selection even extends to
Cell 171, 1029–1041, November 16, 2017 1033



nonsense mutations in essential genes (Figure 3G; top panel).

Gene sets grouped by gene ontology and functional annota-

tion similarly revealed no clear evidence of negative selection

(Figure S3E).

One reason for this unexpected weakness of negative selec-

tion in cancer could be that cancer cells typically carry two (or

more) copies of most genes, reducing the impact of mutations

inactivating a single gene copy. We used copy number data for

the samples studied here to identify those coding mutations

occurring in haploid regions of the genome. Strikingly, most

missense and even truncating substitutions affecting the single

remaining copy of a gene seem to accumulate at a near-neutral

rate, suggesting that they are largely tolerated by cancer cells

(Figure 3G; bottom panel). However, for essential genes in re-

gions of copy number 1, nonsense substitutions do exhibit

significantly reduced dN/dS, with approximately one-third of

such variants lost through negative selection (dN/dS = 0.66,

p value = 8.4 3 10�4, Figure 3G). This result is consistent with

the recent observation of weak signals of purifying selection on

hemizygous genomic regions (Van den Eynden et al., 2016).

Finally, analysis of mutations in human genes that are intol-

erant to heterozygous loss-of-function mutations in the germline

also revealed no detectable negative selection in cancer cells.

This applied similarly to both missense and truncating substitu-

tions (Figure 3H).

Overall, these analyses show that negative selection in can-

cer genomes is much weaker than anticipated. With the excep-

tion of driver mutations, nearly all coding substitutions (�99%)

appear to accumulate neutrally during cancer evolution and are

tolerated by cancer cells. Several factors are likely to contribute

to the weakness of negative selection in cancer and somatic

evolution, some highlighted before (McFarland et al., 2013).

These include, among other factors: (1) the buffering effect of

having two or more copies of most genes; (2) the fact that,

for any given somatic lineage, a large number of genes are

likely to be dispensable (Morley, 1995); (3) the frequent hitch-

hiking with driver mutations, which enables weakly deleterious

mutations not yet expunged to be fixed in a cancer population;

(4) moderately high mutation rates per division and asexual

reproduction of cancer cells, which prevent deleterious muta-

tions from being separable from other variants in the genome

and lead to their progressive accumulation (known as Muller’s

ratchet); and (5) differences in population size and structure,

such as stem cell niches, which are likely to exacerbate genetic

drift.

Immune surveillance is believed to be a relevant force shaping

cancer evolution, potentially acting to purge clones carrying neo-

antigens generated by somatic mutations. Genomic studies

have predicted that cancers typically carry tens of coding muta-

tions that generate potential neoantigens (McGranahan et al.,

2016; Rajasagi et al., 2014), with as many as 50% of non-synon-

ymous mutations predicted to create a neoantigen (Rooney

et al., 2015). The observation that�99%of somatic substitutions

are tolerated and accumulate neutrally in cancer cells confirms

that the vast majority of predicted neoantigens do not elicit an

immune response capable of eradicating the clone in normal

conditions, even if they could be exploited therapeutically (Strø-

nen et al., 2016).
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Number of Driver Mutations per Tumor
The number of driver mutations required to generate a tumor has

been a long-standing question in cancer (Armitage and Doll,

1954; Martincorena and Campbell, 2015; Nordling, 1953; Toma-

setti et al., 2015). The sequencing of thousands of cancer ge-

nomes has not clarified this question further because it remains

unclear what fraction of non-synonymous mutations observed in

known cancer genes are genuine driver mutations and how

many driver mutations occur in cancer genes that are yet to be

discovered. Given the weakness of negative selection, we can

use dN/dS to estimate the average number of driver mutations

per tumor. To obtain reliable estimates that are representative

of the vast majority of tumors, we first restrict the analyses

to non-hypermutator samples (defined here as samples

with <500 coding mutations, accounting for 92% of all TCGA

samples) (this section, Figures 4A–4C). We then describe addi-

tional analyses on hypermutator samples in a subsequent sec-

tion (Figure 5).

From an observed dN/dS ratio, we can estimate the number of

extra non-synonymous mutations over what would have been

expected under neutrality (Greenman et al., 2006). For example,

combining all coding mutations observed in 369 cancer genes

across 689 breast cancer samples yields dN/dS = 1.95 (CI95%:

1.72–2.21). This implies that there are 1.953 more non-synony-

mous mutations than expected neutrally, or, equivalently, 49%

(CI95%: 42%–55%) of the observed non-synonymous mutations

are positively selected driver mutations (Figure 4A). Although this

calculation does not inform which of these mutations are drivers,

it provides a statistical framework for inferring the fraction and

the absolute number of drivers in a catalog of mutations. Inter-

estingly, manual annotation of breast cancer genomes has

led to very similar estimates of the number of driver mutations

in known cancer genes per tumor (Figure S4A) (Nik-Zainal

et al., 2016).

Estimation of the number of driver mutations per tumor using

this approach requires an accurate calculation of dN/dS ratios,

so we took additional cautionary steps. Small inaccuracies in

the mutation model can lead to systematic biases in the

estimated numbers of drivers, especially in patients with high

mutation burden.We found that this was particularly problematic

in melanoma where the mutation signature is known to

have sequence context biases beyond the immediate 50 and
30 neighbors of themutated base (Pleasance et al., 2010a). Amu-

tation model based on the pentanucleotide sequence context

considerably outperformed the trinucleotide model in mela-

noma. Reassuringly, for all other tumor types, estimates of the

number of driver substitutions per tumor obtained under the

trinucleotide and pentanucleotide models were strongly concor-

dant (Figure S1E), indicating that any remaining, uncorrected

substitution biases are unlikely to impact our results.

Estimated dN/dS values on 369 known cancer genes

(Table S3) varied extensively across cancer types (Figure 4A).

Using these ratios, we estimate that �75% of the non-synony-

mous mutations occurring in known cancer genes in low-grade

glioma are driver mutations; this fraction is only �25% in mela-

noma, with other tumor types spanning this range. Combining

these estimates with total mutation burden, we infer that the

average number of coding substitutions in known cancer genes
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Figure 4. Average Number of Driver Mutations in Tumors with <500 Coding Mutations

(A) Top: Global dN/dS values obtained for 369 known cancer genes (Table S3). This analysis uses a single dN/dS ratio for all non-synonymous substitutions

(missense, nonsense, and essential splice site). Middle: Percentage of non-synonymous mutations that are drivers assuming negligible negative selection.

Bottom: Average number of driver coding substitutions per tumor. Pancancer refers to the 24 cancer types with in-house mutation calls.

(legend continued on next page)
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that are driver mutations ranges from <1/patient in sarcomas,

thyroid, and testicular cancers and mesotheliomas to 3–4/pa-

tient in bladder, endometrial, and colorectal cancers (Figure 4A).

We can extend this analysis to all genes in the genome to pro-

vide the first comprehensive estimates of the total number of

driver coding substitutions per tumor. Unlike simply counting

the number of non-synonymousmutations seen in known cancer

genes, this estimate is not constrained to known cancer genes

and comprehensively measures the number of all coding driver

substitutions per tumor. We find that the fraction of all coding

mutations estimated to be drivers is low in most cancer types

(Figure 4B). For example, only 5.0% (CI95%: 3.0%–6.9%) of

non-synonymous coding point mutations in head and neck can-

cers are predicted to be drivers. Interestingly, the average num-

ber of coding substitutions per tumor that are driver mutations is

consistently modest, typically around 4/tumor and ranging from

1–10/tumor across tumor types (Figure 4B). We note that this is

an estimate of the average number of coding driver substitutions

per tumor for each tumor type; the actual number for individual

patients might vary extensively around this average. Estimates

of the number of driver mutations per tumor based on all genes

are approximately twice those from the 369 cancer genes, sug-

gesting that about half of driver mutations occur in cancer genes

yet to be discovered (Figures 4B and S4B).

The preceding estimates are limited to coding non-synony-

mous base substitutions. To estimate the numbers of small in-

dels and synonymous substitutions that could be drivers, we

measured the overall excess of these changes in known cancer

genes by using putative passenger genes to estimate back-

ground mutation rates (Supek et al., 2014). Although these

values are likely to be slight underestimates due to the small

number of driver mutations hidden in undiscovered cancer

genes, this will have minimal quantitative impact. Reassuringly,

this more extensive model yielded very similar estimates for

non-synonymous coding substitutions to these obtained above

from dN/dS (Figure 4C). We find that indels appear to contribute

a similar number of driver mutations as truncating substitutions

(nonsense and essential splice site mutations), with an average

of �0.7 coding indel drivers per tumor in the 369 known cancer

genes. Furthermore, synonymous driver mutations are rare but

not negligible (�0.09 per tumor in known cancer genes), in

agreement with previous studies (Supek et al., 2014). See

STAR Methods for a more detailed evaluation of the distribution

of synonymous mutations across known cancer genes.

To evaluate whether the number of driver mutations signifi-

cantly increases in more advanced cancers, we generated inde-

pendent estimates for stage I and stage IV tumors (Lee et al.,

2015). Interestingly, no significant differences in the number of

estimated drivers or in the overall number of nonsynonymous
(B) Same panels as (A) but including all genes in the genome. (A) and (B) were ge

(C) Percentage (top) and mean absolute number (bottom) of driver mutations per

and (2) fitting a Poisson regressionmodel with covariates on putative passenger ge

This allows estimating the driver contribution of indels and synonymous mutation

(D) Left y axis: dN/dS values formissense and truncating substitutions for a series o

of the fraction of driver mutations. Grey bars depict dN/dS ratios not significantly d

<3,000 coding mutations, as Figure 2.

See also Figures S1 and S4.
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mutations per tumor in known cancer genes were observed

between early and metastatic tumors (Figure S4C).

Gene-by-Gene, Histology-by-Histology Driver Mutations
Ultimately, if we are to use genomics to underpin precision med-

icine, an important step will be to infer whichmutations in a given

patient are drivers. As we have seen, not all somatic mutations in

a given cancer gene are drivers, but dN/dS offers a framework to

estimate these probabilities. We find that across tumor suppres-

sor genes, whethermissense substitutions are likely to be drivers

or not varies considerably. For example, the tumor suppressors

ARID1A, RB1, and APC show dN/dS values for missense

mutations close to one suggesting that the vast majority of

missense mutations seen in these genes across all cancers are

genuinely passengers, even though >95% of observed trun-

cating mutations are estimated to be drivers (Figure 4D). In

contrast, the dN/dS value for missense mutations in TP53 indi-

cates that >95% of the missense mutations observed in this

gene are drivers.

Such analyses highlight important differences across tumor

types in the distribution of driver mutations. For example, in

breast cancer, virtually all nonsense substitutions and �90% of

missense substitutions in PTEN are driver mutations. However,

in clear cell kidney cancer, only nonsense mutations in PTEN

are significantly enriched, with no significant excess of missense

substitutions above expectation. In lung adenocarcinoma,

neither missense nor nonsense substitutions in PTEN were

significantly more recurrent than expected, despite this cohort

having good statistical power. Similarly, for oncogenes, we

estimate that >10% of missense substitutions in PIK3CA in

lung adenocarcinomas are passenger mutations, whereas only

1%–2% of such events in breast cancer are (Figure 4D).

Hypermutator Tumors
The analyses above (Figures 4A–4C) were restricted to

tumors with fewer than 500 coding mutations/tumor (<17 muta-

tions/Mb), comprising 92% of samples in the cohort. A minority

of tumors display a hypermutator phenotype, and their selection

landscape remains poorly understood. In particular, it is unclear

whether hypermutation leads to a higher number of driver muta-

tions in a tumor or simply allows a clone to acquire a fixed com-

plement of drivers faster than competing clones. All methods for

detecting selection rely on models of the background mutation

process, and even very small inaccuracies in these models can

lead to considerable biases in samples with large numbers of

mutations.

We first evaluated how the number of driver mutations

changes with increasing mutation rates in tumors with burdens

up to 1,000 coding substitutions. We find that as mutation
nerated under the pentanucleotide substitution model for maximum accuracy.

tumor in 369 known cancer genes, using two different approaches: (1) dN/dS,

nes and using this tomeasure the excess of mutations in known cancer genes.

s.

f driver genes and for different datasets. Right y axis: Corresponding estimates

ifferent from one. Error bars depict 95%CIs. Generated using all samples with
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Figure 5. Selection in Hypermutator Tumors

(A) dN/dS and estimated number of driver mutations per tumor grouping samples in 20 equal-sized bins according to mutation burden. This analysis excludes

melanoma samples and uses a pentanucleotide substitution model to minimize mutational biases.

(B) Heatmap depicting the fraction of mutations in 288 hypermutator samples (>1,000mutations/exome) attributed to different mutational signatures (Alexandrov

et al., 2013).

(C) Left: dN/dS ratios (trinucleotide model) for each class of hypermutators. Right: dN/dS ratios from a neutral simulated dataset of POLEmutations. This neutral

dataset was generated by randomizing all non-coding substitutions from five POLE hypermutator whole-genomes to a different site with an identical 9-nucleotide

context, within 1-megabase of its original position.

(D) Stacked bar plot showing the frequency of each base around C > A and C > T substitutions in POLE hypermutator tumors.

(E–G) Conservative estimation of the fraction (F) and absolute number (G) of driver coding substitutions in known cancer genes. To obtain these estimates, dN/dS

ratios for known cancer genes were normalized by those from putative passenger genes, to conservatively remove mutational biases from dN/dS. Application of

this approach to our tissue-specific estimates in Figure 4A yields analogous results (E).
burden increases, the dN/dS ratio converges toward 1 (Fig-

ure 5A). When this is used to estimate the number of coding

substitutions that are drivers, we find that there is a sublinear

relationship—as mutation burden increases, so too does the

number of drivers, but with ever decreasing rates. This implies

that the overall number of driver mutations per tumor does in-

crease with total mutation burden, even though they represent

an ever-smaller proportion.
Hypermutator tumors can be classified according to their

dominant mutation process, which manifests as specific muta-

tional signatures (Alexandrov et al., 2013). Using signature

decomposition, we classified tumors with >1,000 coding muta-

tions into five classes (Figure 5B). In tumors characterized by

APOBEC mutagenesis, tobacco exposure, or mismatch repair

deficiency, dN/dS ratios were very close to 1, confirming that

the vast majority of coding mutations in these tumors are
Cell 171, 1029–1041, November 16, 2017 1037



passengers (Figure 5C). However, there were significant biases

in dN/dS away from 1 in POLE hypermutators (signature 10)

and in tumors dominated by UV-induced mutations (signa-

ture 7). For UV-induced mutations, using a pentanucleotide

dN/dS model eliminates the bias, consistent with this mutational

signature extending beyond the base immediately up- and

downstream of the variant.

POLE hypermutator tumors harbor germline or somatic muta-

tions in the exonuclease domain of DNA polymerase-ε, affecting

its proofreading ability leading to vastly increased mutation rates

(Church et al., 2013; Rayner et al., 2016). Mutations mostly

occur at three specific trinucleotides, generating a dramatically

increased proportion of nonsense mutations as well as enriching

for particular amino acid substitutions (Rayner et al., 2016). We

found that the local sequence context for mutations in POLE tu-

mors was biased considerably beyond the trinucleotide context,

extending at least 4 bases either side of the mutated base (Fig-

ure 5D). This extended sequence context would not be fully

captured by the trinucleotide or even the pentanucleotide

dN/dS model. To explore this further, we simulated a set of

random, neutral, POLE mutations using the observed 9-base

sequence context. The dN/dS ratios from this simulation closely

approximate those observed in POLE tumors (Figure 5C), sug-

gesting that the high frequency of missense and nonsensemuta-

tions reported in POLE hypermutators (Castro-Giner et al., 2015)

is broadly what would be expected under neutrality.

The combination of these biases and the high numbers of mu-

tations prevent accurate estimation of the number of driver mu-

tations in hypermutators across the whole exome. However,

approximate estimates for the number of driver substitutions in

known cancer genes can be derived by correcting dN/dS esti-

mates in cancer genes by those seen in likely passenger genes.

Reassuringly, this correction has little impact on our estimates in

non-hypermutators (Figure 5E), suggesting that this approach is

not overly conservative. In hypermutators, the analysis suggests

that only a small fraction of missense substitutions in known can-

cer genes are drivers (Figure 5F) and that the absolute number of

driver mutations per tumor in these genes is modest (Figure 5G).

Interestingly, even after correction, POLE tumors show a consid-

erable excess of nonsense mutations in known cancer genes

when compared to likely passenger genes, with �20% of them

predicted to be drivers, equating to �4–8 per tumor. Consistent

with this prediction, a fifth of the nonsensemutations observed in

the 369 cancer genes occurred in just 8 tumor suppressor genes

(APC, ATM, PTEN,MGA, PIK3R1, ARID1A, NF1, and FAT1)—all

target genes expected for the tumor types where POLE muta-

tions arise, namely colorectal and endometrial cancers.

Taken together, these data suggest that hypermutator tumors

usually acquire more driver mutations than those with lower mu-

tation burdens, although the increase is proportionally much

smaller than the increase in mutation rate.

DISCUSSION

By adapting methods from evolutionary genomics and applying

them to thousands of cancer genomes and to five healthy tis-

sues, we have observed a universal pattern of selection in so-

matic evolution, characterized by a dominance of positive over
1038 Cell 171, 1029–1041, November 16, 2017
negative selection. We have found that negative selection is a

surprisingly weak force during cancer development, which in

turn has allowed us to obtain the first exome-wide genetic esti-

mates of the number of driver coding substitutions across a

range of tumor types. The numbers of driver mutations we esti-

mate here accord with previous estimates, generated using

different statistical methodology (Davoli et al., 2013).

The absence of negative selection on coding point mutations

in cancer is remarkable, especially because it is the predominant

evolutionary pressure in the germline. Clearly, the vast majority

of genes are dispensable for any given somatic lineage, presum-

ably reflecting the buffering effect of diploidy and the inherent re-

silience and redundancy built into most cellular pathways. This

helps explain why cancers can tolerate extreme levels of hyper-

mutation, evidenced by tumors that acquire many hundreds of

mutations with every cell division (Shlien et al., 2015). Our results

also suggest that negative selection on point mutations is largely

absent during normal somatic tissue maintenance as well. This

has important implications for the somatic mutation theory of ag-

ing (Morley, 1995), because it would argue that point mutations

deleterious to the carrying cell do not drive cellular senescence,

exhaustion, and death. Rather, if point mutations do play a role in

aging of somatic tissues, it will be through the functional conse-

quences to the organism of mutations that are selectively neutral

or advantageous to the clone.

The conceptual framework we have developed for directly

enumerating the excess or deficit of mutations with respect to

the neutral expectation could be adapted to explore the role of

driver mutations in non-coding regions of the genome. Further-

more, with increasing numbers of tumors being sequenced, we

will be able to deploy such reasoning at ever higher resolution

to estimate probabilities that variants in particular exons or

domains of a gene in a particular tumor type are driver muta-

tions. Such approaches could ultimately underpin statistically

rigorous, personalized annotation of driver mutations, a crucial

step in successfully implementing precision oncology.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Algorithm and software for measuring

dN/dS in cancer genomes

Cancer Genome Project, Wellcome Trust

Sanger Institute

https://github.com/im3sanger/dndscv

Algorithms for calling somatic mutations –

ASCAT (copy number)

Cancer Genome Project, Wellcome Trust

Sanger Institute

Raine et al., 2016

Algorithms for calling somatic mutations –

CaVEMan (substitutions)

Cancer Genome Project, Wellcome Trust

Sanger Institute

http://cancerit.github.io/CaVEMan/

Algorithms for calling somatic mutations –

Pindel (indels)

Cancer Genome Project, Wellcome Trust

Sanger Institute

http://cancerit.github.io/cgpPindel/

Other
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Iñigo

Martincorena (im3@sanger.ac.uk).

The BAM files used in these analyses were generated by and downloaded from TCGA. Due to restrictions on their use, we are not

allowed to redistribute the files, but they can be accessed from source by researchers who have obtained the appropriate approvals.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Paired tumor and normal exome sequencing files from 9,699 cancer patients were downloaded fromCGHub betweenNovember and

December 2015. The samples, sequenced by TCGA (https://cancergenome.nih.gov/), correspond to 29 different tumor types. Colon

and rectal cancer were grouped together as colorectal cancer. Table S1 shows the list of cancer types used in this study, their TCGA

4-letter code names, the longer abbreviations used in this study and the number of samples eventually selected for analysis (7,664

across all cancer types).

METHOD DETAILS

Calling of point mutations and indels
The data were uniformly reprocessed using the Wellcome Trust Sanger Institute’s variant calling algorithms to ensure uniformity

across cancer types and to have control over the filtering of mutations at polymorphic sites. Owing to negative selection during hu-

man evolution, germline polymorphisms are heavily enriched in synonymous substitutions (Figure 1A). As a consequence, incom-

plete removal of germline polymorphisms from the collections of somatic mutations can lead to an underestimation of dN/dS ratios,

while removal of genuine somatic mutations at polymorphic sites can lead to an overestimation of dN/dS ratios (see STAR Methods

and Figures S1B and S1C for analyses on the impact of germline SNPs in catalogs of somatic mutations).

Paired-end reads were aligned to the reference human genome (GRCh37, hs37d5 build) using BWA-MEM. Substitutions were

called using CaVEMan (Cancer Variants Through Expectation Maximization: http://cancerit.github.io/CaVEMan/) (Jones et al.,

2016). Indels were called using cgpPindel v2.0 (http://cancerit.github.io/cgpPindel/) (Raine et al., 2015). A panel of unmatched normal

samples (sequenced at the Wellcome Trust Sanger Institute) was used to remove common sequencing and mapping artifacts.

Quality controls and use of TCGA calls in five cancer types
Only pairs of samples with the same TCGA barcode ID to those used by TCGA in their public somatic mutation calls were considered

for further study. To minimize the risk of germline polymorphisms in the collections of somatic mutations, somatic calls at sites with

less than 10 reads of sequencing coverage in the matched normal sample were excluded. To ensure that somatic calls from our

pipeline were not excessively different from those released by TCGA, samples in which our algorithms called < 50% of the coding

mutations publicly released by TCGA were excluded. Samples with > 3,000 coding mutations (i.e. �100 mutations/Mb), including

substitutions and indels, were excluded from all of the analyses in this study. After applying these filters, a total of 7,664 samples

were used for the analyses in this paper.

BAM files for TCGA exomes TCGA https://cancergenome.nih.gov/
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Comparison of the mutation calls obtained from our pipeline to those released by TCGA for the same samples suggested low

sensitivity of our pipeline in five of the 29 cancer types analyzed: acute myeloid leukemia (LAML), kidney chromophobe (KICH), pheo-

chromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD) and pancreatic adenocarcinoma (PAAD). For these

five cancer types, public TCGA mutation calls were used in this study instead of those from our pipeline. These five cancer types

were used in the driver discovery analyses, since these analyses are largely robust to minor germline contamination or over-filtering

at polymorphic sites. However, these cancer types were excluded from the analyses of negative selection (Figure 3) and the estima-

tion of number of driver substitutions per tumor (Figure 4), wheremoderate biases to dN/dS can affect the interpretation of the results.

Calling of copy number changes
We used the ASCAT algorithm (Van Loo et al., 2010) to identify copy number changes across 13,241 TCGA samples using Affymetrix

SNP6 arrays. CEL files provided by TCGA were processed using PennCNV libraries (Wang et al., 2007) to obtain logR and BAF

values. The logR values were subsequently corrected for GC content to decrease wave artifacts, which often affect samples profiled

by SNP arrays. Copy number profiles for all tumor samples were then inferred from the corrected data using ASCAT version 2.4.2

(Van Loo et al., 2010).

List of 369 known cancer genes
To quantify the fraction of non-synonymous substitutions observed in known driver genes that are genuine driver mutations, we used

a list of 369 high-confidence driver genes (Figure 4A). This list was compiled by merging the list of 174 COSMIC classic genes from

version 73 of the COSMIC database (Forbes et al., 2015), the list of 219 significantly mutated genes reported by Lawrence et al. (2014)

and the list of 204 genes identified as significantly mutated by the present study. The full list of 369 known cancer genes is available in

Table S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

A dN/dS model for cancer genomics
dN/dS (also called Ka/Ks) is the ratio between the rate of non-synonymous substitutions per non-synonymous site and the rate

of synonymous substitutions per synonymous site. First developed in the 1980s (Miyata and Yasunaga, 1980; Nei and Gojo-

bori, 1986), it has a long history in the detection of negative and positive selection from sequencing data (Yang and Bielaw-

ski, 2000).

dN/dS is particularly suitable for the analysis of codingmutations in cancer genomes, for several reasons. First, unlike evolutionary

comparisons of distant species, in which a change between two sequences may be the result of multiple changes to the site over the

course of evolution, the density of substitutions per site in cancer is extremely low (typically < 10�5 mutations per site) (Martincorena

and Campbell, 2015). This greatly simplifies the estimation of rate parameters and facilitates the development of more complex mu-

tation and selection models (Greenman et al., 2006). Second, while some concerns exist regarding the use of dN/dS within a highly-

recombining population (Kryazhimskiy and Plotkin, 2008), these considerations do not apply to somatic mutations accumulated in a

cancer sample. That is both because cancer cells evolve asexually and because collections of somatic mutations are identified by

comparing a cancer sample to the ancestral genome, rather than comparing two individuals or cells from a population. Finally, dN/dS

offers a measure of selection largely free of assumptions, in contrast to population genetic tests of selection, in which apparent viola-

tion of neutrality can result from demographic changes rather than selection.

Poisson framework

In this study we adopt and expand upon the Poisson framework developed by Greenman et al. (2006). Mutations are classified ac-

cording to their substitution type (i) (depending on the substitution model) and functional impact (synonymous –s-, missense –m-,

nonsense –n- and essential splice sites –e-). Note that, throughout the paper, the term ‘‘truncating substitutions’’ refers to nonsense

and essential splice site substitutions together. For example, the number of C > T synonymous mutations (nC > T,s) in a collection of

samples is modeled as a Poisson process:

nC>T;s � Poissonðl= t rC>TLC>T ;sÞ
Where t is the density of substitutions per site, rC > T is the relative
 rate of C > T substitutions per site, and LC > T,s is the number of C

sites in which a C > T change is synonymous. In this parameterization, one rate parameter of the substitution matrix is arbitrarily set

to 1 (e.g. rG > T = 1, so that all other rates are relative rates with respect to it). For non-synonymous sites, an extra parameter reflects

the effect of selection on the accumulation of mutations:

ni;m � Poissonðl= t riLi;mumÞ
ni;n � Poissonðl= t riLi;nunÞ
ni;e � Poissonðl= t riLi;eueÞ
Cell 171, 1029–1041.e1–e15, November 16, 2017 e2



The u parameters are the dN/dS ratios inferred by the model afte
r correcting for the rates of different substitution classes (ri) and for

sequence composition (L). Maximum-likelihood estimates for all parameters in the model can be efficiently obtained by Poisson

regression.

Although a Poisson implementation of dN/dS is particularly suitable for cancer genomic data, it can similarly be used in other

resequencing studies, especially as long as the density of mutations per site is low. This includes, for example, studies of human

evolution and bacterial populations.

Substitution models

The simplest dN/dS implementations, such as the Nei-Gojobori model (Nei andGojobori, 1986), treat all substitutions as a single sub-

stitution class. More sophisticated likelihood-implementations, widely used nowadays, instead use a substitution model with two

substitution classes: transitions (C < > T, A < > G) and transversions (C < > A, C < > G, T < > A, T < > G) (i.e. they use a transi-

tion/transversion ratio as a single rate parameter) (Goldman and Yang, 1994). More complex mutation models include the GTR (Gen-

eral Time Reversible) model with 6 mutation classes, one for each of the 6 possible reversible base changes.

Somatic mutations in cancer have been shown to display strong context-dependence, particularly from one base upstream and

downstream of the mutant base (Alexandrov et al., 2013). As we show in STAR Methods and Figure S1A, the use of simplistic

substitution models can lead to severe systematic under- or over-estimation of dN/dS ratios and erroneous inference of selection.

Previous studies of selection in cancer genomics have accounted for only some of this context-dependence, especially the high rate

of C > T at CpG dinucleotides (Greenman et al., 2006; Lawrence et al., 2013; Yang et al., 2003).

In this study, to comprehensively avoid biases emerging from context-dependent effects from one base upstream and down-

stream of the mutant base, we use a full trinucleotide model with 192 rate parameters, one for each of the possible trinucleotide sub-

stitution rates. By using a model with 192 rates, as opposed to 96 rates, we accommodate the possibility of strand asymmetry

emerging from transcription coupled repair in coding regions (Pleasance et al., 2010b). More complex models, including a full pen-

tanucleotide substitution model, were also evaluated for specific applications (see STAR Methods and Figures S1D and S1E).

The adequacy of different substitution models in molecular evolution is often evaluated using Likelihood-Ratio Tests, Akaike Infor-

mation Criterion (AIC) or Bayesian Information Criterion (BIC). In all 29 cancer types studied here, using AIC the fit of the substitution

model with 192 parameters was vastly superior to a model of 12 parameters without context-dependence. For example, AIC values

for the breast cancer dataset used in this study were 3,689.6 and 39,750.3 under the models with 192 and 12 parameters,

respectively.

Modeling variable mutation rates across genes: dNdScv

In early exome studies with small numbers of samples, methods to detect significant mutation recurrence at gene level often

assumed that the substitution rate was uniform across genes (Bolli et al., 2014; Greenman et al., 2007; Lawrence et al., 2013). In

the Poisson framework described above, this is achieved by having a single t parameter shared across all genes (model called

dNdSunif). Maximum-likelihood estimates for the parameters across genes (t, ri,um,un andue) are obtained by Poisson regression.

However, mutation rates are known to vary substantially across genes andmodels assuming uniformmutation rates across genes

lead to the identification of large numbers of false positives when applied to relatively large numbers of samples (Lawrence et al.,

2013). A simple way to avoid this problem is to have a separate t parameter for each gene (model called dNdSloc). This is similar

tomost dN/dS implementations used in comparative genomics, in which the backgroundmutation rate in a gene is directly estimated

from the number of synonymous mutations observed in the gene. Although we have used this model successfully in cancer genomic

datasets containing thousands of samples (Wong et al., 2014), it lacks statistical power to detect positively selected genes in smaller

datasets.

The mutation rate is known to vary across genes depending on their expression level, replication time and chromatin state (Law-

rence et al., 2013; Pleasance et al., 2010a; Polak et al., 2015; Schuster-Böckler and Lehner, 2012). Somemethods designed to iden-

tify recurrently mutated genes in cancer genomes, exploit this knowledge to improve their background mutation rate models. For

example, MutSigCV uses three covariates to estimate the mutation rate of each gene, by using information from other genes with

similar covariate values (Lawrence et al., 2014; Lawrence et al., 2013). Inspired by this work, we developed dNdScv, a method

that combines dN/dS with a negative binomial regression on a large number of covariates.

Wemodel the variation of the normalized mutation rate per base pair (t) across genes as following a Gamma distribution. In a given

dataset, the observed number of synonymousmutations per gene –j- (ns,j) can then bemodeled as a Poisson process whosemean is

drawn from a Gamma distribution reflecting the variation of the mutation rate across genes.

ns;j � PoissonðlÞ
l � Gammaða;bÞ
Since the negative binomial distribution is a Gamma-Poisson com
pound distribution, the number of synonymousmutations per gene

ismodeled as following a negative binomial distribution. This enables the use of a negative binomial regression framework to estimate

the background mutation model across genes for each dataset. Gene size, gene sequence and the impact of the substitution model

are all accounted for as an offset in the model (reflecting the exposure of the gene). The normalized mutation rate per site, t, is

modeled as Gamma-distributed across genes, reflecting the uncertainty in the variation of the mutation rate across genes remaining
e3 Cell 171, 1029–1041.e1–e15, November 16, 2017



after accounting for the exposure of the gene. Covariates can then be used in this framework, to improve the estimated background

rate for a gene and reduce the unexplained variation of the mutation rate, and so reduce the dispersion of the underlying Gamma

distribution. A reduction in the unexplained variation of the mutation rate leads to more sensitivity for the detection of selection, while

the use of overdispersion in the form of the Gamma distribution, reflecting the uncertainty in mutation rates across genes, ensures

good specificity.

In R code, the regression is performed using:

model =glm:nbðn_syn � offsetðlogðexpected_synÞÞ+ covariate_matrixÞ
where:
n_syn for gene j is: ns,j =
P

ini;s;j
expected_syn for gene j is: Es,j = t

P
iriLi;s (with t being constant across genes).

This framework allows to use a large number of covariates and variable selection approaches to improve the backgroundmutation

rate model. In this study, we have used as the covariate matrix the first 20 principal components of 169 chromatin marks from the

RoadMap Epigenomics Project (Kundaje et al., 2015). This included data from 63 cell lines and 10 different epigenetic marks

(H3K9me3, H3K36me3, H3K27me3, H3K4me1, H3K4me3, H3K9ac, H3K23ac, H3K14ac, H2AK9ac and DNase). Since it has been

shown that epigenomic landscapes derived from cell lines more closely related to a cancer type are better predictors of its local mu-

tation density (Polak et al., 2015), there is added value in using a wide set of epigenomic covariates. The use of a regression frame-

work hence allows to build complex and fully data-driven background mutation models for each dataset.

The negative binomial regression estimates a Gamma distribution for the uncertainty on tj after considering the gene size, the gene

sequence, the substitution model and the covariates. Hence, the likelihood for tj can now be constrained both by the global knowl-

edge of how the mutation rate varies across genes and the local number of synonymous mutations in the gene.

LðtjÞ=LPoissonðtj
�� ns;jÞLGammaðtj

��a; bÞ

By using this joint likelihood, dNdScvweighs the amount of inform
ation on the mutation rate of the gene (Figures S2D–S2G). In small

datasets, in whichmost genes have zero or a few synonymousmutations, the Gamma function dominates the likelihood (Figures S2E

and S2G). In large datasets with sufficient numbers of synonymous mutations per gene, the Poisson function dominates and the

dNdScv model converges to the dNdSloc model (see Figures S2E and S2G for examples).

Derivation of the expression for LðtjÞ, ðdL=dtjÞ= 0, gives a simple analytical solution for the maximum likelihood estimate of tj under

both the Poisson and Gamma constraints. The maximum likelihood estimate for the expected number of synonymous mutations in a

gene under the dNdScv model (E’s,j) is: dE0
s;j =

btjPi riLi;s = ðns;j +a� 1=1+ bjÞ. Where a and bj are the shape and rate (inverse of scale)

parameters of the Gamma distribution respectively, defined as: a = q and bj = q/mj (mj is the predicted number of synonymousmutations

for gene j according to the negative binomial regression model and q is the overdispersion parameter of the regression model).

CIs for u parameters under the dNdScv model (as used in Figure 4D) were obtained by profile likelihood integrating out tj.

Likelihood ratio tests for the inference of selection

In all three dN/dSmodels (dNdSunif, dNdSloc and dNdScv), inference of selection is performed using LikelihoodRatio Tests, similarly

to traditional likelihood dN/dS models used in phylogenetics (Goldman and Yang, 1994; Yang and Bielawski, 2000). Examples of null

and alternative hypotheses for different tests are shown below.

Global test for selection with free u parameters (3 degrees of freedom):

H0 : um = 1;un = 1;ue = 1
H1 : ums1;uns1;ues1
Global test for selection with a single u parameter for truncating
 substitutions (nonsense and essential splice site mutations) (2 de-

grees of freedom). This is the test used in the screen for positively selected genes in this study as it tends to bemore sensitive than the

fully unconstrained model above.

H0 : um = 1;un = 1;ue = 1
H1 : ums1;un =ues1
Test for selection on missense mutations (1 degree of freedom).
H0 : um = 1;uns1;ues1
H1 : ums1;uns1;ues1
Multiple testing correction is performed using Benjamini and Hoc
hberg’s false discovery rate for all genes tested. To boost the sta-

tistical power to detect selection on known cancer genes, we use restricted hypothesis testing on an a priori list of known cancer

genes, as described before (Lawrence et al., 2014). In this study, we use the list of 174 COSMIC classic genes from version 73 of

the COSMIC database (Forbes et al., 2015) for RHT in the positive selection screen, and a list of essential genes for RHT in the nega-

tive selection screen.
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Recurrence of insertions and deletions

dN/dS can be used to detect and quantify selection on coding substitutions, but not on small insertions or deletions (indels). To iden-

tify genes recurrently affected by indels or by other mutation types, such as dinucleotide substitutions or complex substitutions, we

use a different model.

Briefly, a simple negative binomial regressionmodel is used to estimate the expected rate of indels per gene. The length of the CDS

of each gene is used as an offset and the 20 epigenomic covariates used in dNdScv are also used as covariates here. Tominimize the

risk of driver indels inflating the background model, known cancer genes are excluded when fitting the negative binomial model (in

this study we used the list of 558 cancer genes in the Cancer Gene Census version 73 (Forbes et al., 2015). Applying this regression

model to all genes in the genome provides an estimate of the mean indel rate expected in each gene and of the overdispersion of the

model (q). A P-value for the observed number of indels in each gene (ni,j) can be obtained using the cumulative negative binomial

distribution. For each gene, we used Fisher’s method to combine the P-value from the indel model with the P-value obtained

from dNdScv (with 2 degrees of freedom) for selection on coding substitutions. The resulting global P-value was used to identify

genes under positive selection in Figure 2 and Table S2.

In this study, we tested two different implementations of the indel model: (1) considering the total number of indels per gene, or (2)

considering the number of unique indel sites per gene (unique-sites model). The latter was designed to protect against recurrent indel

artifacts and indel hotspots, such as microsatellites. This was motivated by the observation that genuine cancer genes most often

show indels scattered throughout their sequence while some passenger genes occasionally show a high rate of indels at a single site,

either due to artifacts or mutational hotspots. The performance of the two models was compared by running dNdScv on the pan-

cancer dataset with both models. The unique-sites model was clearly superior, leading to much lower overdispersion across genes

and a very high enrichment of Cancer Gene Census genes (64% of significant genes using the unique-sitesmodel were CGC genes

versus merely 8% when using the total number of indels per gene). The high overlap with the CGC also emphasizes the good per-

formance of the indel model despite its simplicity.

We also tested the performance of the indel model in the presence of tumors displaying microsatellite instability (MSI). MSI tumors

characteristically have a very high rate of indels at microsatellites due to DNA polymerase slippage that is left unrepaired in mismatch

repair (MMR)-deficient tumors. To directly quantify the impact of MSI tumors, we repeated the search of driver genes in the pan-

cancer dataset excluding MSI samples. To do so, we classified samples as microsatellite-stable (MSS) or MSI using the annotation

provided in (Hause et al., 2016). 4,536 samples had an MSI/MSS status annotation, of which 127 were annotated as MSI. Although

MSI tumors comprised less than 3% of the pancancer samples, they contributed 16% of all substitutions and 41% of all indels in the

cohort. Despite their large contribution to the total number of indels, excluding MSI tumors from the analysis yielded nearly identical

lists of driver genes, with differences only on genes close to the limit of significance, as expected (Figure S2C). Remarkably, this is the

case even for the list of significant genes obtained when using only indels (Figure S2C), which might be expected to be much more

severely affected by the removal of MSI samples contributing 41% of all indels in the dataset. This shows that the unique-sites indel

model is robust toMSI tumors despite its simplicity and suggests that the vastmajority of indels inMSI samples are likely passengers,

consistently with our results on other forms of hypermutation (Figure 5).

Screen for positive selection at gene level (driver gene discovery)
To identify genes under significant positive selection we ran dNdScv on every cancer type separately and on all 7,664 samples

together. P-values were calculated and adjusted formultiple testing using Benjamini andHochberg’s false discovery rate. On inspec-

tion of the results, a small number of significant genes were found to be false positives resulting from recurrent sequencing or map-

ping artifacts in the collections of somatic mutations. To systematically remove false positives due to recurrent artifacts, all mutations

found in significant genes were subject to an in-silico validation (see below), false calls were removed and dNdScv rerun on the

cleaned dataset.

Genes found as significant (q-value < 0.05) in each cancer type are depicted in Figure 2 and in Table S2. Since combining results

from multiple tumor types can inflate the global false discovery rate in the final list of significant genes, we then performed a global

multiple testing correction on the entire matrix of P-values (20090 genes by 30 datasets) (as in Lawrence et al., 2014). This resulted in

a list of 180 putatively positively-selected (driver) genes. Using restricted hypothesis testing led to the additional identification of

24 driver genes (Lawrence et al., 2014).

In-silico identification and removal of sequencing artifacts

Evaluation of significant hits revealed a small number of false positives due to recurrent artifacts that escaped our filters and our un-

matched normal panel. To systematically identify recurrent artifacts leading to false positives in the screens for positive and negative

selection, we used ShearwaterML (Gerstung et al., 2014; Martincorena et al., 2015).

ShearwaterML is a variant calling algorithm that relies on building a base-specific error model by using a large collection of un-

matched normal samples. Sequencing artifacts caused by Illumina sequencing errors, PCR errors, DNA damage in a library,

misalignment of reads or other causes, are expected to appear at similar frequencies in sequencing libraries of tumor or healthy

(normal) tissue. Thus, all mutations identified in genes detected as significant by dNdScv were re-evaluated by ShearwaterML,

comparing the number of reads supporting the mutation in the mutant sample to the frequency of errors seen across a large panel

of TCGA normal samples from the same cancer type using a beta-binomial likelihood model (Martincorena et al., 2015).
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To build a reliable panel of normal samples for each TCGA dataset and avoid filtering out genuine driver mutations, we excluded

from the panels any normal sample with suggestive evidence of amutation (> = 3 supporting reads) in a list of 344 recurrently mutated

sites in known cancer genes. This reduces the risk of including samples in the normal panel with significant tumor contamination or

hematopoietic clonal expansions (Xie et al., 2014).

P-values resulting fromShearwaterMLwere adjusted formultiple testing using Benjamini andHochberg’s false discovery rate, cor-

recting for n =N*S tests to avoid a discovery bias (whereN is the number of sites tested andS is the number of samples in each cancer

type). Mutationswith q-value > 0.20were removed and dNdScvwas re-run on the cleaned dataset. 49 geneswere found to be heavily

affected by artifacts, withmore than 50%of themutations found in them being considered artifactual by ShearwaterML. These genes

were conservatively excluded from any significant hits in the positive selection screen.

The 49 genes heavily-affected by artifacts are: AGAP10, AL445989.1, ANAPC1, ANKRD36C, AQP7, BMI1, C16orf3, CD209,

CDC27, CDC7, CRIPAK, DTD2, EP400, FAM104B, FRG1, FRG1B, GNAQ, HLA-DRB5, HSPD1, IGBP1, KBTBD6, KRT14, KRT5,

KRT6A, KRTAP1-5, KRTAP4-11, KRTAP4-3, KRTAP4-8, KRTAP4-9, KRTAP5-5, KRTAP9-9, MLLT3, MUC4, MUC8, NCOA6,

PABPC1, PCDHB12, POTEC, POTEM, PPFIBP1, PRKRIR, PTH2, RGPD3, RGPD8, RP11-176H8.1, SLC35G6, TMEM219, TPT1

and UBBP4.

Negative selection analyses
Samples selected for negative selection analyses

As we have described, simplistic mutation models, germline contamination of the catalogs of somatic mutations and over-filtering of

genuine somatic mutations at polymorphic sites can lead to biased dN/dS ratios. When analyzing dN/dS ratios close to 1, these

biases can lead to wrong inferences about selection, as shown in Figures S1A–S1E and in STAR Methodss.

In order to avoid these biases, the analyses of negative selection shown in Figure 3 were carried out on a subset of all sam-

ples, encompassing 5,763 samples from 23 cancer types. First, the five cancer types with TCGA mutation calls were excluded

from the analyses to have control over the filtering of germline mutations used during variant calling. Second, melanoma sam-

ples were excluded from these analyses since the mutation spectrum in melanoma causes a downward bias to dN/dS under

the trinucleotide model (STAR Methods). Third, only samples with copy number information were included in the analyses,

since this information was required for several of the analyses. Finally, only samples with fewer than 500 coding mutations

per exome were included in the analyses to avoid hypermutator samples dominating the analyses and ensure representative

results.

dN/dS distributions across genes

Observed dN/dS values at gene level are subject to considerable uncertainty due to the limited number of substitutions per gene.

Hence, the variation in dN/dS values observed across genes (Figure 3A) is a composite of the true variation of selection across genes

and Poisson noise in the counts of non-synonymous and synonymous mutations. Using mixture models, this technical variation can

be eliminated to infer the underlying dN/dS distribution across genes.

For any gene, given a extent of selection (um,j) and a substitution model, the expected fraction of synonymous and missense sub-

stitutions in the gene can be calculated as follows: rs;j = ðPi riLi;s;j=
P

i riðLi;s;j + Li;m;jum;jÞÞ, rm;j = ðPi riLi;m;jum;j=
P

i riðLi;s;j + Li;m;jum;jÞÞ,
respectively. The analysis of truncating substitutions (nonsense and essential splice site mutations) was done analogously.

Neutral simulations

To study howmuch variation in observed dN/dS values across genes is expected by simple noise under perfect neutral evolution, we

first carried out a simple simulation. Using the expected fraction of synonymous and missense mutations per gene under neutrality

(rs,j,neutral and rm,j,neutral given um,j = 1 for all genes), and the total number of mutations observed per gene (ns,j+nm,j), we performed a

random binomial simulation of the number of missense mutations per gene: nm;j;random � Bðn= ns;j + nm;j; p= rm;j;neutralÞ. This yields a
maximum-likelihood point estimate for dN/dS per gene of: ðnm;j;randomrs;j;neutralÞ=ðns;j;randomrm;j;neutralÞ. This simulation revealed that

most of the apparent variation observed in dN/dS across genes was technical, caused by the limited number of mutations per

gene (Figure 3A).

Binomial mixture model

We can go beyond neutral simulations and infer the extent of the biological variation of u across genes. Given rs,j and rm,j (as a func-

tion ofum,j) and the total number of mutations seen in the gene (ns,j+nm,j), the probability of observing nm,j mutations in a gene follows

a binomial distribution. The advantage of using a binomial distribution contingent on the total number of observed mutations is that it

makes the approach unaffected by the uncertainty in the background mutation rate of the gene.

Pðns; j;nm; j

��um; jÞ=
�
ns; j + nm; j

nm; j

�
r
nm; j

m; j r
ns; j
s; j
Wecan extend this tomodelu as a distribution across genes, for e
xample using a discretemixturemodel or integrating over a contin-

uous distribution foru. This is similar to existing approaches for modeling the distribution of u across codons of a protein in compar-

ative genomics (Nielsen and Yang, 1998). In this study, to avoid imposing a restrictive parameterization of the distribution ofu (dN/dS)

across genes, we used a flexible discrete distribution with a fine grid. For the results shown in the main text, we used a discrete dis-

tribution defined as u∈ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5, 10, 15, 20), with
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a free probability mass function defined at these values (
PK

k =1pk = 1, where K is the number of points used in the discrete distribution

and pk the fraction of genes with u = uk). The global likelihood of the distribution of u across genes can then be expressed as:

LðuÞ=
YJ
j = 1

XK
k = 1

pkPðns; j; nm; j

��uk;m; jÞ
Where J is the total number of genes considered. Maximum likelih
ood estimates for the probability mass function ðcpk Þwere obtained

using an Expectation Maximization (EM) algorithm, initialized with uniform probabilities (pk,0 = 1/K). CIs were obtained by bootstrap-

ping (sampling genes with replacement). Using distributions with more points yielded analogous results.

Estimation of the average number of mutations under positive and negative selection per tumor

Once the underlying u distribution has been estimated ðcpk Þ, the probability that a gene has a particular value of u can be calcu-

lated using the equation below. This equation corresponds to the posterior probability of a gene belonging to a u class in the EM

algorithm and it is identical to the empirical Bayes equation used for a similar purpose in the dN/dS literature (Nielsen and

Yang, 1998).

Pðuk;m; j

�� ns; j;nm; jÞ=
cpkPðns; j; nm; j

��uk;m; jÞPK
i = 1

cpkPðns; j;nm; j

��ui;m; jÞ
If a gene is evolving under a given value ofuk,m,j, the maximum like
lihood estimate for the expected number of missense mutations in

the gene, given themutations observed, is: ððnm;j=uk;m;jÞ+ ns;jÞrm;j. If we assume that genes under positive selection (uk,m,j > 1) do not

contain a significant number of sites under negative selection, or vice versa, we can use the value of uk,m,j to estimate the number of

missense mutations fixed by positive selection or depleted by negative selection. Summing over all genes, we can obtain global es-

timates for the average number of missense mutations fixed by positive selection (dpos) or depleted by negative selection (dneg),

per tumor.

dneg =
1

N

XJ

j = 1

X
uk <1

Pðuk;m; j

�� ns; j;nm; jÞð1� uk;m; jÞ
�

nm; j

uk;m; j

+ ns; j

�
rm; j
J

dpos =
1

N

X
j = 1

X
uk >1

Pðuk;m; j

�� ns; j;nm; jÞðuk;m; j � 1Þ
�

nm; j

uk;m; j

+ ns; j

�
rm; j
WhereN is the number of samples used in the analysis. CIs for the
se estimates were obtained by bootstrapping (sampling genes with

replacement). It should be noted that, in the presence of both positive and negative selection acting on the same gene at different

sites or in different samples, these estimates will underestimate the extent of positive and negative selection. However, in order

to explain the observation that the vast majority of genes are estimated to have an average u�1 (Figure 3B), the combination of pos-

itive and negative selection should be nearly perfectly balanced across most genes in the genome, which is unlikely. This suggests

that most genes seem to accumulate missense mutations largely neutrally and so that dpos and dneg are probably decent

approximations.

In this study, we inferred cpk , dpos and dneg for missense and truncating (nonsense and essential splice site) substitutions separately,

as well as for three classes of mutations according to the copy number state of the region where the mutations occurred: haploid

regions (1:0), loss of heterozygosity (LOH) regions with higher ploidy (n:0, with n > 1), and all others (i.e. regions without LOH). Esti-

mates shown in Figure 3D include the sum of all of these mutation types. Figures 3A–3C show estimates for missense mutations in

regions without LOH.

Gene-level analyses of negative selection

To identify whether any gene has a dN/dS value significantly lower than 1 we used a one-sided test on missense mutations alone:

H0 : um = 1;uns1;ues1
H1 : um%1;uns1;ues1
This test has 1 degree of freedom and the resultingP-value from th
eChi-square distribution is divided by two, as the test is one-sided.

Since tissue-specific datasets lack statistical power to detect negative selection at gene level, we used the entire pancancer dataset

(n = 7,664 samples) for this analysis. We used both the dNdScvmodel and dNdSloc. These tests did not find any gene under signif-

icant negative selection at false discovery rate < 10%.

To boost the statistical power on genes that may be suspected to be under stronger negative selection, we performed restricted

hypothesis testing on an a priori chosen list of 1,734 essential genes. All genes yielded q-values higher than 0.10.

Power calculations

The power to detect negative selection in a gene (or a group of genes) under the dNdSlocmodel is determined by twomain factors: (1)

the effect size (the dN/dS ratio), and (2) the number of mutations in the gene (which is largely determined by the number of samples in
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the dataset, their mutation burden and the length of the gene). Under the dNdScvmodel, a third factor affecting the power is the un-

certainty of the background model (i.e. the overdispersion of the negative binomial regression -q-).

In order to study the power to detect negative selection under both models, we performed random simulations. Let m be the ex-

pected (average) number of coding mutations in a gene in a dataset, rs, rm and rt the fraction of synonymous, missense and trun-

cating (nonsense and essential splice site) substitutions expected under neutrality, um and ut the corresponding values of dN/dS,

and a the shape parameter of the underlying Gamma distribution. Then we can simulate the number of synonymous, missense

and truncating substitutions in the gene using:

mj � Gammaða= q; b= q=mÞ
ns � Poissonðl=mjrsÞ
nm � Poissonðl=mjrmumÞ
nt � Poissonðl=mjrtutÞ
P-values for two-sided tests under both dNdSloc and dNdScv can
 be calculated from these numbers (H0:um = 1; H1:ums1, df = 1).

For each combination of m and u tested, we performed 5,000 simulations. The fraction of P-values below 0.05 reflect the power to

detect a gene as significantly under selection. The values used for rs, rm, rt and q are the average values for these parameters

observed in the pancancer dataset (rs = 0.287, rm = 0.649, rt = 0.064, q = 6.03).

Group-level analyses of negative selection

Given the limited statistical power to detect negative selection at the level of individual genes, we searched for evidence of negative

selection in groups of related genes. To do so, we first excluded a long list of 987 putative cancer genes, by combining gene lists from

multiple sources. We then used the dNdSlocmodel to study selection on groups of genes, as defined by expression level, local chro-

matin state, essentiality and gene ontology functional annotation.

Expression

As ameasure of the typical expression level of a gene across tumors, we calculated themean of the log RSEM-normalized expression

level of each gene across a collection of 6,190 TCGA samples (.rsem.genes.normalized_results TCGA files).

Chromatin state

As ameasure of the typical chromatin state of a gene, we defined as heterochromatin and euchromatin those regions in which the six

main ENCODE cell lines shared the same annotation.

Essentiality

As a list of genes essential for cell survival and growth, we used a collection of 1,734 core essential genes reported by a recent muta-

genesis screen in haploid human cell lines (Blomen et al., 2015). This list of genes is heavily enriched in proteins participating in key

cellular components and pathways, such as the ribosome, the spliceosome, the aminoacyl-tRNA biosynthesis pathway, the protea-

some, RNA degradation, DNA replication, RNA polymerases and the cell cycle (Blomen et al., 2015).

Gene ontology

To search for evidence of negative selection at the level of functionally related genes, we used Ensembl BioMart to extract Gene

Ontology (GO) annotations for all genes. To ensure adequate statistical power and reduce multiple testing correction, we only

tested groups composed of at least 30 genes. We considered GO annotations of Biological Processes, Cellular Components

and Molecular Functions. Overall we tested 1,242 functional groups of genes and performed Bonferroni multiple-testing correction

(we used Bonferroni to account for the extensive overlaps between gene groups). Including all genes in the analysis yielded a large

number of GO groups with evidence of positive selection on missense and/or nonsense substitutions (n = 428), but no group with

evidence of negative selection. Excluding the long list of 987 putative driver genes dramatically reduced the number of functional

gene groups with evidence of positive selection (n = 27), but still no GO group showed evidence of significant negative selection

(Figure S3E). Repeating this analysis on mutations occurring in haploid regions did not identify any group of genes under clear

negative selection.

Simplistic substitution models lead to biased dN/dS ratios and false inference of selection
Traditional implementations of dN/dS have typically used simplistic substitution models. The classic implementation of dN/dS by Nei

and Gojobori (1986), for example, uses a substitution model in which all substitutions are equally likely (F81 substitution model).

More sophisticated likelihood implementations of dN/dS, such as the widely used implementation in the PAML software package, typi-

cally use a simple substitution model with a different rate for all transitions (C < > T and G < > A changes) and all transversions (C < > A,

C < >G,G < >C andG<> T changes) (HKY85 substitutionmodel) (Goldman and Yang, 1994; Yang, 2007). Amore complex substitution

model, frequently used inmolecular evolution butmore rarely in dN/dS analyses, is the GTR (General TimeReversible) model, which has

6 mutation classes, one for each of the 6-possible reversible base changes (A < > C, A < > G, A < > T, C < > G, C < > T, G < > T).

In reality, the substitution rate often varies markedly depending on the exact nucleotide change and on the bases upstream and

downstreamof a base. This is particularly well understood in cancer, from the study ofmutational signatures (Alexandrov et al., 2013).
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The use of simplistic mutation models is known to lead to biases in dN/dS estimates (Yang and Nielsen, 2000). While these biases

may be of lesser importance in the presence of overwhelming negative or positive selection, they can have important implications

when dN/dS ratios are close to 1, as is often the case in somatic evolution.

Figure S1A reveals how simplistic substitution models lead to systematic under or overestimation of dN/dS ratios and to wrong

inference of selection. To generate this figure, the average trinucleotide substitution rates (192 parameters) were estimated in three

different cohorts of samples, which are dominated by different mutational processes: pancancer (dominated by C > T mutations at

CpG sites), melanoma (dominated by the UV-signature of C > T mutations at cytosines with a pyrimidine upstream) and lung adeno-

carcinoma (dominated by G > T mutations generated by tobacco smoking) (Alexandrov et al., 2013). Using the trinucleotide rates

observed in each of these datasets, and the trinucleotide frequencies of the human exome, we simulated 100 datasets with

10,000 random coding substitutions per dataset. The correct dN/dS ratio in these simulations is 1, since the mutations were simu-

lated entirely randomly, without selection. Figure S1A shows how estimated dN/dS ratios under different simplistic substitution

models systematically deviate from the correct value of 1. In fact, these biases are large enough to suggest considerable negative

and positive selection when using simplistic models.

These biases have important implications. For example, a study applying dN/dS to somaticmutations frombreast cancer genomes

used a Nei-Gojobori implementation of dN/dS (F81 substitution model), obtaining a global dN/dS�0.82 (Ostrow et al., 2014). This led

the authors to conclude that weak negative selection operates in cancer somatic mutations, when in reality this dN/dS ratio is a

consequence of the downward bias in dN/dS under the Nei-Gojobori model (Figure S1A).

Impact of germline SNP contamination or SNP over-filtering
As shown in Figure 1A, coding germline SNPs are heavily enriched in synonymous mutations as a result of purifying selection on

germline mutations during human evolution (dN/dS ratios for missense and truncating substitutions are 0.38 and 0.08, respectively).

Identification of somatic mutations in cancer genomes requires careful removal of germline polymorphisms by sequencing a

matched normal sample in addition to a tumor sample from each patient. Given the action of negative selection on germline

SNPs, incomplete removal of SNPs from catalogs of somatic mutations can introduce a false signal of negative selection. To protect

against germline SNP contamination, some pipelines systematically remove putative somatic mutation overlapping polymorphic

sites in humans in addition to using a matched normal sample. However, since polymorphic sites are enriched in synonymous sites,

such filtering strategy can lead to over-filtering of genuine somatic mutations, with a bias against synonymous sites.

Figures S1B and S1C show how both germline SNP contamination and over-filtering of SNP sites can have a considerable impact

on global dN/dS ratios, resulting in signals of negative and positive selection, respectively. To generate this figure, we first simulated

ten neutral datasets of somatic mutations by randomization of existing cancer genomic datasets. To these neutral datasets, we

added 5% or 10% of randomly selected germline SNPs (Figure 1) or we subtracted any mutation overlapping known polymorphic

sites using the dbSNP database.

Interestingly, this analysis confirms that global dN/dS ratios detect a very clear signal of negative selection evenwhen only 5%of all

mutations are germline SNPs. This further emphasizes the remarkable lack of negative selection reported in Figure 3, and in particular

in Figure 3G after comprehensively removing known cancer driver genes.

SNP contamination and SNP over-filtering are likely to affect TCGA public somatic mutation calls from different datasets to

different extents. This was apparent when we calculated global dN/dS ratios using the somatic mutation calls publicly released

by TCGA. For example, the COAD, READ and KICH datasets showed significantly lower dN/dS ratios than expected: COAD =

0.92 (CI95%: 0.91, 0.94), READ = 0.91 (CI95%: 0.87, 0.95) and KICH = 0.94 (CI95%: 0.89, 1.00), suggesting the presence of

SNP contamination in these datasets. To determine whether these low dN/dS ratios are truly caused by SNP contamination of

the public catalogs of somatic mutations, we calculated the fraction of mutation calls overlapping common germline SNP sites

(dbSNP database build 146). This revealed that these three datasets have a much higher fraction of somatic calls overlapping

common dbSNP sites than other datasets, with 11.0%, 15.6% and 12.2% of all somatic mutation calls from TCGA overlapping

known SNP sites (Figure S1C). In contrast, the median percentage of overlapping calls in all other cancer types from TCGA is

1.7% (range: 0.66%–3.3%).

Studies searching for evidence of negative selection based on public mutation calls from TCGA are likely to be affected by the

confounding effects of SNP contamination and potentially SNP over-filtering. Having control over the strategy for SNP filtering was

the main motivation for uniformly re-calling somatic mutations across TCGA datasets in the present study. In order to minimize the

risk of germline SNP contamination, we required a minimum coverage of 10x in the matched normal sample of a putatively

mutated site. To entirely avoid any risk of over-filtering of SNP sites that may introduce an upward systematic bias to dN/dS,

we did not perform dbSNP filtering and all sites masked out by our unmatched normal panel were excluded from the calculation

of available sites (L) in dN/dS. Reassuringly, CaVEMan somatic mutation calls for all TCGA datasets showed the expected low

overlap with common dbSNP sites, with a median of 1.8% (range: 1.1%–3.2%), a figure consistent with the expectation from

neutral simulations.

Cohort estimation of dN/dS without patient-specific substitution models
The dN/dS models described in this manuscript quantify mutation and selection at the level of a cohort of samples, not at the level

of each individual tumor within a cohort. A single global substitution model is fitted to the mutations observed in a gene across
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multiple samples. Mutations in each sample could be modeled as individual Poisson processes, but since the sum of Poisson

variables is also Poisson distributed, we can also model mutation and selection at a cohort level. As we show below, this has

the advantage of enabling the use of more complex substitution models, avoiding the systematic biases associated with simplistic

models. Fitting 192 trinucleotide rate parameters on a per-patient basis is clearly not possible from exome data, where most pa-

tients have fewer than 100 mutations, and so modeling mutations on a per-patient basis would normally require a compromise in

terms of accuracy.

As we show below, the dN/dS estimates resulting from cohort-level estimation accurately reflect the mean selection pressure

acting on the mutations in a gene and are unbiased by the presence of large heterogeneity in mutational signatures, burden and se-

lection across the samples in a cohort. Before demonstrating this, it is important to clarify what dN/dS means at a cohort level. For

example, in a gene subject only to negative selection, a dN/dS value of 0.8 in a cohort of samples means that 20% of all non-syn-

onymous mutations in the gene observed across samples were lost by negative selection. This does not inform about whether nega-

tive selection mainly occurred in a subset of samples or in a subset of sites in the gene, but this information is not required for the

claims of this study. When selection on a gene varies across samples, dN/dS is an unbiased estimate of the fraction of negatively

selected mutations in a gene (or group of genes) across samples. Mathematically, dN/dS represents the weighted mean of selection

across samples, weighted by the mutation rate of each sample (see below).

The validity of cohort-wide substitution models to estimate dN/dS accurately can be shown by simulation of mixtures of patients,

even in the presence of wide heterogeneity in mutation rates, signatures and selection across patients. For example, we can simulate

an extreme scenario of 100 samples, in which COSMIC’s signature 1 contributes all of themutations in 50 patients and signature 5 all

of the mutations in the other 50 patients (Alexandrov et al., 2013). Independently of whether all negative selection in a gene is spread

out across samples or is concentrated on a subset of patients with a specific signature, cohort-based estimation of dN/dS without

patient-specificmodeling ofmutational processes yields exact estimates of the fraction of all mutations that were negatively selected

in each simulation. Figure S1F shows three extreme simulations:

1. Simulation 1: 100 patients, 50 dominated by signature 1 and 50 by signature 5, all with equal neutral mutation rate. dN/dS = 0.5

in all patients (i.e., randomly, 50% of all nonsynonymous mutations are removed from each patient).

2. Simulation 2: 100 patients, 50 dominated by signature 1 and 50 by signature 5, all with equal neutral mutation rate. dN/dS = 0 in

20 patients dominated by signature 1 and dN/dS = 1 in all other patients.

3. Simulation 3: 100 patients, 50 dominated by signature 7 and 50 by signature 3. All signature 7 patients have dN/dS = 0.1 and a

burden of 100 coding mutations (before the action of selection). All signature 3 patients have dN/dS = 1 and a burden of 500

coding mutations.

In all cases, the global dN/dS estimated using a single substitution model for the entire cohort of samples accurately reflects the

fraction of all nonsynonymousmutations in a gene removed by negative selection, which follows the equation: fglobal = ðPjbjuj=
P

jbjÞ,
with bj being the mutation burden before selection in sample j and uj being dN/dS or the fraction of nonsynonymous mutations

removed by negative selection in sample j.

Estimation of the number of driver mutations
Samples selected for the estimation of the number of driver mutations

All samples withCaVEManmutation calls and less than 500 codingmutations per sample were included in this analysis, including the

melanoma dataset. Overall, a total of 6,108 samples from 24 cancer types were included in the pancancer estimates of the number of

driver mutations per tumor shown in Figure 4.

Estimating the number of substitutions fixed by positive selection from dN/dS

In the absence of negative selection and mutation biases, we can accurately estimate the number of mutations expected to have

accumulated neutrally in a gene or group of genes. As described by Greenman et al. (2006), this can be used to estimate the num-

ber of mutations in excess that have been fixed by positive selection. Assuming a negligible role for negative selection, we can

calculate the fraction (fm) and the absolute number (dm) of mutations in a gene or group of genes that are genuine driver muta-

tions as:

fm =
um � 1

um

; dm = fmnm; c um > 1
In the presence of significant negative selection, these equations
would provide lower bound estimates of the density and number of

genuine driver mutations. However, our analyses suggest that negative selection has a small quantitative effect on the accumulation

of passenger mutations in cancer. The same equations apply for nonsense and essential splice site substitutions.

Naively, onemight expect that all non-synonymousmutations observed in a driver gene could have been positively selected and so

that they could all be drivers. However, in the absence of negative selection, we should still expect passenger mutations to accumu-

late in driver genes at approximately the background rate predicted under neutrally and so the equations above are required to es-

timate the number of genuine driver substitutions. This is true even if a driver gene was under positive selection in every patient, as

long as the extent of negative selection is negligible.
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Pentanucleotide model and removal of polymorphic sites

We have shown that using an inadequate substitution model can lead to substantial biases in the estimation of dN/dS (Figure S1A;

STAR Methods). Many applications of dN/dS do not require a very high accuracy, since true biological deviations from neutrality are

often far larger than the biases caused by the substitutionmodel. For example, identification of genes under positive selection in small

datasets is often unaffected by the substitution model since dN/dS ratios of genuine driver genes can take very high values (see, for

example, Figure 4D).

The estimation of the number of driver substitutions per tumor, however, requires accurate quantification of dN/dS ratios, since

these ratios are often very close to 1. For example, the genome-wide dN/dS value for all non-synonymous substitutions in the pan-

cancer dataset used in Figure 4B is 1.059 (CI95%: 1.052, 1.065). Given the proximity to 1, misestimating this value by a few percent

would have a considerable impact on the estimates of the number of driver substitutions per tumor.

To minimize the risk of systematic biases in the estimation of genome-wide dN/dS values and the average number of driver sub-

stitutions per tumor shown in Figure 4, we took two additional precautions. First, we used a pentanucleotide context-dependent sub-

stitution model (3,072 rate parameters) instead of the trinucleotide model (192 rate parameters). Second, since somatic mutations

called by our pipeline were filtered against an unmatched normal panel, common polymorphic sites in the human population (which

are enriched in synonymousmutations) will be depleted of somatic mutations, which could lead to a very small upward bias in dN/dS.

To entirely avoid this possible bias, all sites in the unmatched normal panel were excluded from the calculation of the numbers of

synonymous and non-synonymous sites (Li) per gene.

Pentanucleotide model

The use of a full trinucleotide model comprehensively accounts for the majority of known context-dependent mutational biases. Pre-

vious studies suggest that context dependent effects beyond three nucleotides are relatively small (Alexandrov et al., 2013).

To evaluate the impact on dN/dS of context-dependent effects extending beyond one base up- and downstream, we compared

whole-genome estimates of dN/dS across cancer types under the full trinucleotide (192 rate parameters) and a full pentanucleotide

model (3,072 rate parameters). Figures S1D and S1E reveals that the addition of context-dependent effects beyond three nucleotides

does not have a significant impact on genome-wide dN/dS ratios in any of the cancer types studied, with the exception of melanoma.

This is due to UV-induced C > T mutations showing context-dependent effects extending beyond the trinucleotide level (Pleasance

et al., 2010a).

With the exception of melanoma, in which the dominant mutation processes lead to a slight downward bias in dN/dS under the

trinucleotide model, Figures S1D and S1E evidence that the trinucleotide model captures most of the relevant context-dependent

effects required for a very accurate estimation of dN/dS in the cohorts studied here. POLE hypermutator tumors are another excep-

tion, as described in the main text (Figures 5C and 5D). Application of a pentanucleotide model to POLE-induced mutations, which

show a wider context-dependence (Figure 5D), reduces the bias to dN/dS but does not solve it.

To avoid these biases, all analyses in Figures 4A and 4B, which require accurate dN/dS values, were carried out using the penta-

nucleotide substitution model.

Other mutation types: estimating the density of driver indels and synonymous mutations

Our estimates of the number of driver mutations per tumor using dN/dS are restricted to non-synonymous coding substitutions,

including missense, nonsense and essential splice site substitutions. To obtain approximate estimates of the relative contribution

of indels and synonymous substitutions to the number of driver mutations, we used a different approach not based on dN/dS. Briefly,

the expected neutral rate of indels and synonymous substitutions on a collection of driver genes was estimated from their frequency

on putative passenger genes, and this number was used to estimate the excess of these mutations observed in driver genes. This

approach is conceptually analogous to the one used in (Supek et al., 2014) to estimate the frequency of synonymous driver mutations

in cancer.

To estimate a background model for the neutral frequency of synonymous substitutions and indels we first excluded the long list of

987 putative cancer genes. We then used two separate negative binomial regression models for synonymous substitutions and in-

dels. For synonymous mutations, we used as an offset the expected rate of synonymous substitutions per gene under the full trinu-

cleotide model. Unlike the approach used in (Supek et al., 2014), this entirely avoids the confounding effect of variable sequence

composition across genes and trinucleotide context-dependent mutational biases. For indels, we used the gene length as an offset.

For both synonymous substitutions and indels, we used the 20 covariates described above to account for the regional variation of

mutation rates across the genome. These models were then applied to the list of 369 high-confidence cancer genes to estimate the

number of passenger indels and synonymous mutations expected to accumulate neutrally in these genes. This enables the calcu-

lation of observed/expected ratios for synonymous substitutions and indels in known cancer genes, and, analogously to using dN/dS

ratios, the estimation of the fraction of thesemutations that are genuine drivers and their absolute contribution to the number of driver

mutations per tumor. CIs for these estimates were obtained by bootstrapping the number of mutations observed per gene.

To evaluate the reliability of this approach, we also applied it to missense, nonsense and essential splice site substitutions and

compared the estimated number of driver mutations per tumor in known cancer genes to those obtained using dN/dS. As shown

in Figure 4C, the estimates obtained from these two very different approaches are very consistent.
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Identification of cancer genes with a higher frequency of synonymous mutations than expected

Although the vast majority of synonymous mutations observed in cancer genomes are passenger mutations and accumulate largely

neutrally, our analysis and a previous study (Supek et al., 2014) suggest that a small number of them can act as driver mutations. We

can use the negative binomial backgroundmodel for synonymous substitutions described above to identify genes with an unexpect-

edly high density of synonymous mutations, in a similar way in which we identify genes recurrently mutated by indel drivers.

Running this analysis on the list of 369 cancer genes reveals that only TP53 (q-value = 6.0e-6) and CDKN2A (q-value = 0.00058)

have a convincing and statistically-significant higher than expected number of synonymous substitutions (q-value < 0.01). Close in-

spection of the mutations in CDKN2A revealed that the recurrent synonymous mutations observed are indeed truncating mutations

affecting a different transcript of the gene, with a different reading frame, and so CDKN2A is not genuinely recurrently affected by

synonymous driver mutations.

TP53 has been previously reported to be the target of synonymous driver mutations (Supek et al., 2014), which affect the correct

splicing of the transcript, and our analysis entirely supports this conclusion. The observed/expected ratio of synonymous substitu-

tions in TP53 is very high (�6.8), which suggests that a majority of the synonymous mutations observed in TP53 in our cohort of

24 cancer types are likely genuine driver mutations. In fact, in our cohort, over half of the synonymous substitutions observed in

TP53 affect the same site T125T (21 out of 39 synonymous substitutions in TP53), a recurrent synonymous hotspot known to lead

to aberrant splicing (Supek et al., 2014). Hence, this single synonymous hotspot accounts for the majority of synonymous driver sub-

stitutions in TP53, although other synonymous mutations in TP53 are also likely drivers.

A previous study identified a number of oncogeneswith a higher density of synonymousmutations than expected by chance (Supek

et al., 2014) and argued that these could be driver mutations affecting splicing. Among these genes, the study highlighted 11 onco-

genes with a particularly high density of synonymous substitutions: PDGFRA, EGFR, KDR, NTRK1, IL7R, TSHR, ELN, JAK3, ITK,

GATA1 and RUNX1T1. This contrasts with our analysis, which only identified TP53 as having a statistically-significant higher rate of

synonymousmutations despite using a dataset with nearly twice asmany samples as the dataset used in the previous study. An impor-

tant difference between our analysis and that in the previous report is that our negative binomial model uses overdispersion to quantify

the uncertainty in the estimated mutation rate for a gene. This makes our model more conservative, but also more robust against false

positives causedby the neutral variation of themutation rate across genes.We also control for trinucleotide sequence composition and

trinucleotide mutation rates as well as 20 epigenomic covariates in the estimation of the background mutation rate per gene. Interest-

ingly, even though both studies are based on TCGA samples and, in fact, share a large number of samples, only 4 of the 11 oncogenes

highlighted in the previous study as having a high rate of synonymous mutations have observed/expected ratios of synonymous sub-

stitutions > 1.5x according to our model and none are considered significant under the negative binomial model (q-value > 0.5).

Overall, consistently with previous reports, our analyses suggest that certain synonymous mutations can indeed act as cancer

driver mutations, of which the T125T hotspot mutation in TP53 is probably themost striking example. However, there is little evidence

that this is a general and frequent mechanism. Our analyses suggest that synonymousmutations contribute a small fraction (< 5%) of

all driver mutations seen in cancer genomes (Figure 4C).

Correlation of number of drivers with tumor stage

Using the information on tumor stage for the TCGA cohort, we examined whether the estimated number of driver mutations was

higher in more advanced or larger tumors. To do this, we fitted a linear mixed effects model with estimated number of drivers for

each tumor type – stage combination as the dependent variable. The fixed effect was tumor stage, on a 1-4 scale, and we fitted a

random effect for the intercept across tumor types. To allow for the variable precision in the estimate of the number of drivers for

each tumor type – stage combination, we used inverse variance weighting from the CIs for each estimate of the number of drivers.

Maximum likelihood estimation was used, and the hypothesis of whether stage correlated with number of drivers was evaluated us-

ing a likelihood ratio test. The R package nlme was used, and the line of code was:

drivers:by:stage:rand:intercept < � lmeðnum:drivers � Stage; random= � 1 jTumour type;weights= varFixed

ð� Variance:num:driv:estimatesÞ;data= num:drivers:df;method= “ML”Þ

Replication strand bias
The full dN/dS trinucleotidemodel uses 192 parameters to describe all possible trinucleotide changes on either the transcribed or the

untranscribed DNA strand. This accounts for transcriptional-strand asymmetry, often seen in somatic evolution because of pro-

cesses like transcription-coupled repair (Pleasance et al., 2010a; Pleasance et al., 2010b).

A different form of strand asymmetry is replication-strand asymmetry, in which mutation rates differ in both strands depending

on whether a strand is preferentially replicated by the leading or lagging strand of the replication fork. Such processes are very prev-

alent in certain mutational processes, such as microsatellite instability, APOBEC-induced mutations or POLE-induced mutations

(Haradhvala et al., 2016). Accounting for this in our implementation of dN/dS is straightforward by using different rate parameters

for the leading and lagging strands. Unfortunately, however, information on the preferential direction of replication is only available

for a minority of genes in the genome (�31% of genes) (Haradhvala et al., 2016). This complicates the use of replication strand in dN/

dS in a systematic way.
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Nevertheless, we can explore the impact of accounting for replication strand bias using those genes with available annotation. To

do so, we classified genes into two classes according to whether the coding strand was preferentially replicated by the leading or

lagging strands. Calculating dN/dS (using the 192-parameter trinucleotide model) separately on each class of genes accounts for

replication and transcription strand biases simultaneously. These results can be combined for FDR adjustment and compared to

the results obtained analyzing both sets of genes together. We did this systematically for all 29 cancer types, and found that account-

ing for replication strand bias has a negligible impact on both the identification of driver genes and the exome-wide dN/dS estimates.

This may have been expected since replication strand asymmetry could only lead to noticeable biases in dN/dS if there were large

systematic differences in sequence composition between genes on the leading strand and genes on the lagging strand. For example,

bladder cancer has been highlighted as having one of the highest levels of replication strand asymmetry across TCGA datasets (Har-

adhvala et al., 2016). Calculating dN/dS separating genes according to replication strand or using all genes together (as done in our

study) has no impact on the list of significant genes (the same six genes are found as significant) and has no detectable impact on the

global dN/dS estimates. Global dN/dS values for missense mutations of 1.046 (CI95%: 1.009, 1.084) and 1.048 (CI95%: 1.022,

1.075), respectively, and for nonsense mutations of 1.191 (CI95%: 1.11, 1.278) and 1.191 (CI95%: 1.133, 1.252), respectively. Anal-

ogous results were obtained for POLE tumors, which display a high level of replication strand asymmetry.

Performance of different dN/dS models for driver discovery
Previous studies have highlighted the importance of adequately modeling the variation of mutation rates along the genome to identify

driver (positively selected) genes with good specificity and sensitivity. Particularly, Lawrence et al. (2013) showed howmodels that do

not account for the regional variation of the mutation rate along the genome can yield very long lists of false positives.

To evaluate the specificity of different methods in the presence of realistic levels of mutation rate variation along the genome, we

can use realistic neutral simulations of somatic mutations. In line with ongoing international benchmarking efforts of driver discovery

methods, we generated simulated neutral datasets by local randomization of somaticmutations from real whole-genome sequencing

studies. Using data from 107 melanoma whole-genomes from ICGC, we first filtered out coding mutations from a panel of known

driver genes, to minimize the presence of driver mutations, and then reassigned each mutation to a randomly selected position

with an identical trinucleotide context within 50kb of its original position. This randomization procedure results on a neutral dataset

that retains the same variation of mutation rates and mutational signatures across patients and across regions of the genome.

In a neutral dataset, robust methods for driver discovery with good specificity should not yield any significant hit. This can be

formally evaluated by performing false discovery rate correction and by plotting the vector of P-values under the null model (neutral

simulation) in a QQ-plot. The QQ-plot in Figure S2A reveals that the dNdSunif model yields a large number of false positives in the

neutral simulation described above, as expected in the presence of large neutral variation of the mutation rate along the genome

(Lawrence et al., 2013). In contrast, both dNdSloc (which estimates the local mutation rate from the synonymous substitutions in

each gene) and dNdScv (which uses the regression framework in addition to local synonymous substitutions) have perfect specificity

under the challenging conditions of the simulation above (Figure S2A). This result is representative of simulations performed under a

variety of assumptions and starting datasets, even using simulated datasets with thousands of samples. The specificity of dNdScv

has also been demonstrated by an international benchmarking exercise as part of the Pancancer Analysis of Whole-Genomes Con-

sortium (PCAWG-ICGC) [manuscript in preparation].

Although both dNdSloc (which we used inWong et al. [2014]) and dNdScv have good specificity under challenging conditions, they

differ dramatically in terms of their sensitivity. This is shown in Figure S2B, which depicts the number of significant genes identified by

both methods across the TCGA datasets analyzed in this study. While the dNdSloc model can detect a substantial number of posi-

tively selected genes in large datasets (Wong et al., 2014), dNdScv has higher sensitivity across datasets of any size, both when

analyzing substitutions alone or when combining substitutions and indels. This is because dNdScv uses a joint likelihood function

combining local information (synonymous mutations in a gene) and global information (negative binomial regression across genes)

to model the background mutation rate of a gene, which leads to more confident (narrower) estimates. This is shown in Figures

S2D–S2G with a series of examples of likelihood surfaces under dNdSloc and dNdScv for three different genes (two canonical driver

genes, PTEN andCDKN2A, and one long passenger gene,MUC16) in two datasets of very different size (Lung-SCC and pancancer).

MUC16 is shown as an example of a challenging long passenger gene that has been reported as a common false positive in Lung-

SCC and other datasets under simplistic models (Lawrence et al., 2013).

dNdScv has also been found to have similar or higher sensitivity than other driver discovery methods benchmarked in the Pan-

cancer Analysis of Whole-Genomes Consortium (PCAWG-ICGC) [manuscript in preparation], including MutSigCV (Lawrence

et al., 2014) and oncodriveFML (Mularoni et al., 2016).

Analyses of hypermutator tumors
Classification of hypermutator tumors by signature decomposition

Different analyses in this study excluded hypermutator tumors to ensure more accurate and representative results for the majority of

tumor samples. For example, tumors with more than 500 substitutions/exome (comprising less than 8%of all samples in TCGA) were
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conservatively excluded for the analyses in Figures 3 and 4, and tumors withmore than 3,000 coding substitutions (less than 1%of all

samples in TCGA) were excluded for Figure 2.

To study in more depth the patterns of selection in hypermutator tumors (Figure 5), samples with more than 1,000 coding substi-

tutions/exome (�33 substitutions/Mb) were classified according to their dominant mutational process using mutational signature

decomposition (Alexandrov et al., 2013). An expectation-maximization (EM) algorithm assuming a Poisson mixture model was

used to calculate the relative contribution of 30 reference mutational signatures to each hypermutator sample (see below for details).

Data of the 96-trinucleotide mutation probability for each signature was downloaded from the COSMIC database. Samples were

classified according to their dominant mutational process when more than 50% of all of their mutations were attributed to a single

mutational signature. For this classification, the two current mutational signatures attributed toAPOBEC activity (signatures 2 and 13)

were considered together. This conservatively classified 85% (246/288) of all hypermutator samples into five classes: APOBEC

(COSMIC’s signatures 2 and/or 13), smoking (signature 4), mismatch-repair (MMR; signature 6), ultraviolet (UV; signature 7) and

POLE (signature 10) (Figure 5B).

Expectation-Maximization algorithm for signature decomposition

Let mi,j be the 30x96 matrix of mutational signatures. For each sample, let c = (c1,c2,.,c30) be a vector representing the fraction

of mutations in the sample attributed to each signature (with Si ci = 1). An EM algorithm is used to find themaximum-likelihood values

of c iteratively. Step 1: the vector c is initialised with identical values for all elements (ci = 1/30) or with random values. Step 2: given

ci and mi,j the relative probability of a mutation (h) being caused by a particular signature in the sample is:

ph;i = ci mij

�
Sk = ð1;.;30Þðck mk; jÞ
where j denotes the trinucleotide substitution type to which the m
utation belongs. Step 3: summing ph,j across all mutations gives an

updated estimate of the contribution of each signature in the sample given the mutations observed in the sample.

c0
i =Shph;i
To obtain maximum likelihood estimates of ci, steps two and three
 are repeated iteratively until convergence of the ci values (in partic-

ular, the iterative procedure was run until the sum of the absolute difference of the elements of cwas < 10�5 between two successive

iterations).

Neutral randomization with a 9-nt sequence context

In order to study the impact on dN/dS of the extended sequence-context dependence of POLE mutations, we generated a

neutral dataset of mutations with an identical 9-nucleotide sequence-context (Figures 5C and 5D) by local randomization

of observed mutations. Using TCGA whole-genome data from 505 tumors (Fredriksson et al., 2014) and signature decompo-

sition, we identified five POLE hypermutator tumors. To avoid selection on coding sequences to have an impact on the neutral

simulation, we first excluded all coding substitutions. We then randomly reallocated each non-coding mutation to a different

position with an identical 9-nucleotide sequence context and within 1Mb of the original mutation. This generates a neutral da-

taset of random mutations that retains key original features of POLE mutations, including the 9-nucleotide mutational signa-

ture, the variation of mutation rates at megabase scale and the local strand biases. Running the trinucleotide dN/dS model on

this simulated dataset yielded nearly identical dN/dS values to those observed in real POLE tumors from TCGA exomes (Fig-

ure 5C). This confirms that the relative excess of missense and particularly nonsense substitutions in POLE hypermutator tu-

mors is not the result of selection for a large number of driver mutations but a consequence of the extended POLE mutational

signature.

Conservative estimation of the density of driver mutations in known cancer genes

The analyses described in Figure 5, as well as those in Figure S1D,E, showed that mutational signatures extending beyond the trinu-

cleotide context can lead to biases to dN/dS. Those biases appear negligible in most cohorts, as suggested by exome-wide dN/dS

estimates very close and typically indistinguishable from 1 in likely-passenger genes or in hypermutator tumors (e.g., Figures 3G, 3H,

and 5C). However, UV-induced mutations and, particularly, POLEmutations lead to significant biases to dN/dS under a trinucleotide

substitution model (Figures 5C, 5D, S1D, and S1E).

In datasets significantly affected by mutational biases that are not captured by a trinucleotide model, the dN/dS ratios

observed in likely-passenger genes can significantly deviate from 1 under neutrality (Figure 5C). Since selection in known cancer

genes is typically much stronger than in likely-passenger genes, an approximate and slightly conservative way of removing

mutational biases from dN/dS estimates in known cancer genes is to correct them by the dN/dS ratios observed in likely-pas-

senger genes.

Original estimates of dN/dS in cancer genes, as shown in Figure 4A, were obtained using different u parameters for the list of 369

cancer genes (Table S3) and for all other genes. This uses all genes to estimate the parameters of the substitution model (ri) more

reliably. Using the notation described in STAR Methods:

ni;m;driver genes � Poisson
�
l= t riLi;mum;driver genes

�

ni;m;other genes � Poisson

�
l= t riLi;num;other genes

�
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In this framework, if we assume that u parameters in likely-pas
senger genes are largely neutral and reflect mutational biases to

dN/dS, we can obtain corrected estimates of dN/dS for known cancer genes (u’) using:

ni;m;driver genes � Poisson
�
l= t riLi;mu

0
m;driver genesum;likely passengers

	

ni;m;likely passengers � Poisson
�
l= t riLi;num;likely passengers

�

DATA AND SOFTWARE AVAILABILITY

An R package with the code to run dNdScv has been made publicly available with this manuscript (https://github.com/im3sanger/

dndscv).
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Supplemental Figures

Figure S1. Impact of Different Confounding Factors on Analyses of Selection, Related to Figures 1–5

This includes simplistic substitution models, SNP contamination, SNP filtering and inadequate background models of the variation of the mutation rate.

(A) Impact of simplistic mutation models on the accuracy of dN/dS in different scenarios. Each boxplot represents the dN/dS ratios estimated from 100 neutral

simulations of 10,000 random coding substitutions. To exemplify the impact on dN/dS of different mutational spectra, we simulated neutral datasets using the

trinucleotide spectra observed in the three different cohorts of samples (pancancer, melanoma and lung adenocarcinoma). Different panels depict dN/dS ratios

for missense (umis) or nonsense (unon) mutations.

(B) Simulations of the impact on dN/dS of germline SNP contamination and SNP over-filtering in catalogs of somatic mutations. 10 neutral datasets were

generated by local randomization of 607 cancer whole-genomes (Alexandrov et al., 2013). Datasets with varying degrees of germline SNP contamination were

simulated by adding 5% or 10% of germline common SNPs (minor allele frequency > = 5%) from 1000 genomes phase 3 (Auton et al., 2015) to the neutral

simulations. Datasets with varying levels of SNP over-filtering were simulated by removing any mutation from the neutral datasets that overlapped a polymorphic

site in dbSNP build 146 (either using common sites or all sites) (Sherry et al., 2001).

(C) Percentage of mutations from the public TCGA catalogs of somatic calls that overlap a common dbSNP site. Based on simulations, an overlap of 1%–3%

might be expected depending on the dominant mutational signatures present in a dataset, but several public TCGA catalogs show a much higher overlap

suggesting extensive germline SNP contamination. As predicted from (B), this leads to an artifactual signal of negative selection in these datasets (STAR

Methods).

(legend continued on next page)



(D) Consistency between genome-wide dN/dS estimates using the trinucleotide and pentanucleotide substitution models across cancer types. Green dots

represent genome-wide dN/dS estimates for each cancer type separately, and the orange dot depicts the pancancer estimates (using the 24 cancer types with

CaVEMan mutation calls).

(E) Corresponding estimates of the average number of driver coding substitutions per tumor. For the purpose of estimating the excess of mutations from dN/dS

ratios, dN/dS values below 1 are set to 1. Error bars depict 95% CIs.

(F) Simulations demonstrating the validity of estimating dN/dS at a cohort level, in heterogeneous cohorts of samples without patient-specific substitution

models. The three scenarios simulated include extreme examples of heterogeneous mixtures of samples with variable signatures, numbers of mutations and

selection. In each scenario, the correct fraction of mutations removed by negative selection across samples is shown as a blue horizontal line (right y axis).

Estimated dN/dS values from five simulations of each scenario are shown as dots with CIs (left y axis).



Figure S2. Evaluation of the Relative Performance of the Three Different dN/dSModels for the Detection of Positive Selection at Gene Level,

Related to Figure 2

(A) QQ-plots for the different dN/dS models on a neutral dataset obtained by randomization of 107 melanoma whole-genomes from ICGC (STAR Methods). The

dNdSunif model shows a great inflation of low P-values, leading to a large number of false positives after multiple testing correction (368 genes with q-value <

0.05), and should be generally avoided. In contrast, both dNdSloc and dNdScv behave as expected for a neutral dataset, yielding no significant hits after multiple

testing correction.

(B) Sensitivity of dNdScv and dNdSloc. The bar plot depicts the number of significant genes (q-value < 0.05) identified by both methods in the 29 TCGA datasets.

Bars colored in a lighter shade show the number of significant genes that are present in the Cancer Gene Census version 73 (Forbes et al., 2015). dNdScv shows

good specificity and sensitivity under all tested conditions (STAR Methods).

(C) Comparison of the number of significant genes found by dNdScv (top) and the indel model (bottom) in their default configuration (unique-sitesmodel for indels)

when including and excluding MSI samples.

(D–G) Gamma distributions and log-likelihood surfaces of dNdScv on a number of genes and datasets. (D,F) Density functions of the Gamma distributions for

substitutions and indels inferred by the negative binomial regression in dNdScv for two datasets (Lung-SCC and Pancancer). The Gamma distributions shown

have amean = 1, showing the spread around themean observed across genes in each dataset. This reflects the extent of the variation of the mutation rate across

genes that remains unexplained by sequence composition, signatures and covariates. (E,G) Log-likelihood ratio values for the number of missense mutations in

three genes (PTEN,CDKN2A andMUC16) in the Lung-SCC (n = 167 samples) and Pancancer datasets (n = 7,664) under dNdSloc and dNdScv. The real observed

number of missensemutations in each gene and dataset is shown as a vertical green line. The figures show how in small genes and/or small datasets, dNdScv has

much narrower curves and much more significant P-values for cancer genes thanks to the Gamma constraint, while dNdScv and dNdSloc converge when the

local number of synonymous mutations is sufficiently high. This adaptive behavior of dNdScv results from the joint likelihood equation.
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Figure S3. Supplementary Analyses on Negative Selection, Related to Figure 3

(A–D) dN/dS distributions inferred for different mutation types and copy number states. These distributions, obtained as described for Figure 3C, represent the

percentage of genes estimated to be under a certain selection regime. The four distributions correspond to: missense (A) and truncating (B) substitutions in

regions without loss of heterozygosity, and missense and truncating substitutions in haploid regions (C and D, respectively). Note that (A) is an extension of

Figure 3C, with an added middle bar for genes with dN/dS very close to 1 (0.9-1.1), which can be considered to evolve largely neutrally. Only samples with

CaVEManmutation calls, excluding melanoma samples, were considered for this analysis for the reasons explained in theMethods. For each figure, all mutations

with the appropriate ploidy were included in the analysis and only genes with at least one mutation (either synonymous or non-synonymous) participate in the

(legend continued on next page)



fitting of dN/dS distributions. Hence, the percentages of genes shown in the y-axes are relative to the total number of genes with at least one mutation in regions

with the ploidy considered in each figure. Error bars depict 95% CIs.

(E) Gene ontology groups deviating significantly from neutrality after removing known cancer genes. 27 gene ontology classes are found to be under significant

positive selection after comprehensively removing 987 known putative cancer genes. This suggests the presence of undiscovered cancer genes in these

functional groups. No gene ontology class was found to be under significant negative selection. Error bars depict 95% CIs.
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Figure S4. Supplementary Analyses on the Number of Coding Driver Substitutions per Tumor, Related to Figure 4

(A) Comparison of the number of coding driver substitutions estimated by dN/dS and the number estimated bymanual annotation of driver mutations across 560

breast cancers. The figure depicts the total number of coding substitutions (gray bar) and the estimated number of driver substitutions in a list of 723 putative

cancer genes across 560 breast cancer whole-genomes. A total of 2,786 coding substitutions are found in these genes across the 560 patients (data from Nik-

Zainal et al., 2016). Of these, 579 were annotated as likely driver mutations by a careful and conservative manual curation in the original publication (Nik-Zainal

et al., 2016) (blue bar). Using the trinucleotide dN/dS model on this dataset, restricted to these 723 genes, yielded a global dN/dS for all non-synonymous

substitutions of 1.42 (CI95%: 1.29, 1.58). Reassuringly, this led to an estimated number of drivers consistent with the manual annotation: 668.9 (CI95%: 507.5,

815.3). Error bars depict 95% CIs.

(B) Scatterplot of the estimated average number of coding driver substitutions per tumor in 369 known cancer genes and in all genes of the genome. This is a

scatterplot representation of the bottom panels of Figures 4A and 4B, to emphasize the extent of coding driver substitutions occurring outside of the list of

369 cancer genes. Error bars depict 95%CIs. Note that the two cancer typeswhose estimates appear under the diagonal (mesothelioma –MESO- and thymoma –

THYM-) have CIs extending above the diagonal, as expected.

(C) Number of driver coding substitutions per tumor by clinical stage (see STAR Methods for details and interpretation). The panels compare stage I and stage IV

tumors for the datasets with available clinical annotation, using either dN/dS-based estimates of the numbers of drivers per tumor (top panel) or raw counts of

non-synonymous mutations in known cancer genes (bottom panel). Briefly, no consistent and statistically significant differences were observed.
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