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Abstract

Background: Down syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of
dementia due to Alzheimer’s disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding
relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid
in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid-β
peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response
has been implicated in AD development, and immune dysfunction is common in DS).

Methods: We used ultrasensitive assays to compare plasma concentrations of the amyloid-β peptides Aβ40 and Aβ42,
total tau (t-tau), and the cytokines IL1β, IL10, IL6, and TNFα between adults with DS (n = 31), adults with sAD (n = 27),
and controls age-matched to the group with DS (n = 27), and explored relationships between molecular concentrations
and with age within each group. In the group with DS, we also explored relationships with neurofilament
light (NfL) concentration, due to its potential use as a biomarker for AD in DS.

Results: Aβ40, Aβ42, and IL1β concentrations were higher in DS, with a higher Aβ42/Aβ40 ratio in controls. The
group with DS showed moderate positive associations between concentrations of t-tau and both Aβ42 and IL1β. Only
NfL concentration in the group with DS showed a significant positive association with age.

Conclusions: Concentrations of Aβ40 and Aβ42 were much higher in adults with DS than in other groups, reflecting
APP gene triplication, while no difference in the Aβ42/Aβ40 ratio between those with DS and sAD may indicate similar
processing and deposition of Aβ40 and Aβ42 in these groups. Higher concentrations of IL1β in DS may reflect
an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the
positive association between IL1β and t-tau in DS may indicate IL1β is associated with neurodegeneration.
Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of
such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing
clinical intervention studies.
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Background
Down syndrome (DS) is associated with an ultra-high
risk of developing dementia caused by Alzheimer’s
disease (AD) [1]. The lifetime dementia risk in DS is in
excess of 95%, with a median age of onset of 55 years
[2, 3], and the majority of adults with DS who die after
the age of 36 have a diagnosis of dementia [4]. DS is
caused by chromosome 21 trisomy and is the most com-
mon genetic cause of intellectual disability, with a UK
incidence of approximately 1 in 1000 live births [5]. AD
in DS is driven by the overexpression of genes on
chromosome 21 due to their triplication, with triplica-
tion of the amyloid precursor protein (APP) gene being
of particular importance. The amyloid precursor protein
encoded by the APP gene is cleaved by β and γ secre-
tases to form amyloid-β (Aβ) peptides, with Aβ42 the
main component of the Aβ plaques characteristic of AD
[6]. Such Aβ deposits are found in the brains of adults
with full trisomy 21 by the mid-30s [1, 7]. Further, famil-
ial mutations in, or duplications of, the APP gene cause
early-onset AD independent of DS [1, 8], and individuals
with a partial trisomy of chromosome 21 not including
APP do not develop AD or show Aβ pathology [9, 10].
Triplication of the APP gene and the subsequent over-
production of Aβ peptides are therefore likely to be cen-
tral to the development of AD in people with DS, and
DS may be considered a genetic cause of AD.
The presence of Aβ plaques in both sporadic AD

(sAD) without DS and in people with DS, with the high
risk of dementia in DS, indicates their development is a
key component of the development of AD. Indeed, the
amyloid hypothesis of AD states the presence of Aβ pla-
ques initiates a cascade of events that leads to cell death
and cognitive decline [11, 12]. Other pathophysiological
mechanisms are also important within this cascade.
Firstly, the development of neurofibrillary tangles,

composed of hyperphosphorylated and misfolded tau
protein, is another neuropathological feature of AD.
There is a stronger association between cognitive decline
and tau pathology than with Aβ plaques in both DS [13]
and sAD [14]. Secondly, neuronal damage within the
brain can be measured by the release of neurofilament
light (NfL), a scaffolding cytoskeleton protein, into
plasma in a number of neurodegenerative disorders in-
cluding sAD [15] and AD in DS [16, 17]. Finally, the in-
flammatory response is of interest as a potential
contributory molecular mechanism to the development
of AD. In sAD, the role of the immune system is
supported by epidemiological and genetic studies. The
presence of systemic infections and increased blood
(plasma or serum) concentrations of cytokines including
interleukin 1β (IL1β), interleukin 10 (IL10), interleukin
6 (IL6), and tumour necrosis factor α (TNFα) have been
associated with sAD and predict cognitive decline
[18–22]. Genome-wide association studies of sAD have
implicated several genes involved in immune function
(including variants in CLU, ABCA7, CR1, and CD33)
[23–25], and there is an over-representation of genetic
associations with sAD in pathways involved in the innate
immune response [26].
To fully understand the development of AD in DS, it

is therefore important to understand relevant molecular
differences between those with DS, those with sAD, and
controls. Similarities and group differences in plasma
concentrations of molecules associated with AD and re-
lationships between these possible biomarkers, in
particular Aβ peptides and tau, may help to identify
markers of AD progression. Previous studies comparing
plasma concentrations of Aβ peptides and tau in individ-
uals with DS to age-matched controls have reported in-
creased concentrations of Aβ40 and Aβ42 [17, 27–37]
and total tau (t-tau) [28, 38] in DS. Results regarding the
Aβ42/Aβ40 ratio are less consistent; while several studies
have reported this to be lower in those with DS [28, 30,
31], others have reported this to be higher [33] or to
show no difference [29] relative to controls. To date, few
studies have compared plasma concentrations of Aβ
peptides and tau in adults with DS to those with sAD.
Two studies have reported increased Aβ40 and Aβ42 in
those with DS [29, 36], while another study reported
lower concentrations of both Aβ42 and t-tau in adults
with DS [28] compared to individuals with sAD.
In addition, a potential involvement of the immune

system in the development of AD is of particular interest
in DS due to immune dysfunction being common in DS,
with an increased vulnerability to some types of infec-
tions throughout life [39] and higher rates of auto-
immune disorders [40] in DS. Further, in DS, there is an
overexpression of immune genes found on chromosome
21 (such as IFNAR1, IFNAR2, and IFNGR2, which all
encode interferon-γ (IFN-γ) receptor proteins) [41]. In
adults and children with DS, higher blood (plasma or
serum) concentrations of IL10 [31, 42], IL6 [31, 43, 44],
and TNFα [31, 43, 45] have been reported compared to
age-matched controls, although lower concentrations of
IL10 [45], IL6 [42], and TNFα [42] in DS have also been
reported. A recent meta-analysis of 19 cytokine studies
in adults and children with DS suggested that IL1β,
TNFα, and IFN-γ (but not IL6 or IL10) concentrations
are raised by trisomy 21 [46].
Further studies using newly developed ultrasensitive

assays are therefore needed to better understand differ-
ences in concentrations of Aβ peptides, tau, and cyto-
kines in individuals with DS, sAD, and controls. We
therefore compared plasma concentrations of Aβ40,
Aβ42, t-tau, IL1β, IL10, IL6, and TNFα between adults
with DS, adults with sAD, and controls age-matched to
the group with DS (to determine the effect of triplication
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of chromosome 21), and explored relationships between
molecular concentrations within each group. Given the
universal development of AD pathology in those with
DS and increased risk of dementia with increased age
[2], we also explored relationships between molecular
concentrations and age. In addition, in the group with
DS, we explored relationships with concentrations of
NfL. Our group and others have previously shown NfL
to be a potential biomarker for AD in DS, with higher
NfL concentration associated with increased age and de-
mentia development [16, 17], and so molecular concen-
trations that correlate with NfL may be particularly
informative.

Methods
Participants
Adults in the group with DS (n = 31, including 7 with a
clinical diagnosis of dementia) were recruited as a part
of the LonDownS Consortium’s studies in adults with
DS [47]. Clinical diagnoses of dementia were made by
each individual’s clinician after a comprehensive clinical
assessment. Participants were included in the present
study if they lived within travelling distance of London
to allow processing time for the blood sample, and they
agreed to have a blood test. The presence of an add-
itional chromosome 21 was confirmed genetically using
saliva or blood samples; following DNA extraction,
genome-wide single nucleotide polymorphism genotyp-
ing was performed using an Illumina OmniExpressEx-
ome array (San Diego, CA, USA) at UCL Genomics,
then assembled and visually inspected in GenomeStudio.
All adults were observed to have trisomy 21, with clin-
ical notes from two individuals confirming this was due
to a translocation.
For adults with DS, ethical approval was obtained from

the North West Wales Research Ethics Committee (13/
WA/0194). Where individuals had the capacity to con-
sent for themselves, we obtained written informed con-
sent. Where individuals did not have the capacity to
consent, a consultee was asked to approve the individ-
ual’s inclusion based on their knowledge of the individ-
ual and his/her wishes, in accordance with the UK
Mental Capacity Act 2005.
Adults in the sAD and control groups (n = 27 per

group) were recruited from the multi-centre consortium
European Medical Informatics Framework (EMIF) [48].
All plasma samples used in this study were from two
sites (Clinica Neurologica, Universita di Perugia, and
Hospital de la Santa Creu i Sant Pau, Barcelona). All
participants in the sAD group had an AD diagnosis ac-
cording to standard criteria [49], and biological AD was
also confirmed using concentrations of cerebrospinal
fluid (CSF) Aβ42 with a cutoff value indicating AD
(< 800 pg/ml and < 550 pg/ml for Perugia and Barcelona,
respectively) [50, 51]. All individuals in the sAD and
control groups had Mini-Mental State Examination
(MMSE) scores available. Where possible participants in
the sAD and control groups were matched in age and
gender to participants with DS; age matching was not
fully possible for the group with sAD due to the older
age of this group (see Table 1).
For adults with sAD and controls, ethical approval was

obtained from the regional ethics committee. Plasma
and CSF samples were routinely collected in all subjects
undergoing a diagnostic work-up for suspected neurode-
generative diseases, with informed written consent ob-
tained for their use in research from patients or their
representatives.

APOE genotyping
APOE genotype was determined using a Thermo Fisher
Scientific TaqMan assay for SNPs rs7412 and rs429358
(Waltham, MA, USA).

Sample processing and assays
Blood samples from individuals with DS were collected
in EDTA tubes after participants had undergone a cogni-
tive assessment [47] and processed as quickly as feasible
(within approximately 3 h). Plasma was prepared by cen-
trifuging samples for 10 min at 2200 g, then the super-
natant was aliquoted and stored at − 80 °C. Samples
were only thawed immediately prior to analysis. Due to
difficulties in obtaining blood samples from this popula-
tion, we had to be pragmatic about the practicalities of
collecting these samples. Blood samples were collected
at a range of times throughout the day, with samples
collected between 9.30 am and 5.40 pm and the majority
of samples collected after midday (mean time of collec-
tion = 2.33 pm, standard deviation = 1.99 h). It was not
possible to take fasting blood samples for research pur-
poses, though blood samples were typically taken at the
end of a cognitive assessment that had lasted several
hours, and participants did not eat during this time. In
addition, the amount of time samples were in the freezer
before analysis varied as it took a number of months to
collect enough blood samples for our analysis. During
this time, samples remained frozen at − 80 °C. To assess
potential relationships between the number of months
samples were frozen before analysis and the concentra-
tions of each molecule, we performed correlational ana-
lyses; there were no significant relationships observed
(results not shown).
Blood sample collection and processing methods for

adults in the sAD and control groups from the EMIF co-
hort have been previously described [48].
For all three groups, plasma concentrations of Aβ40,

Aβ42, and t-tau (Human Neurology 3-Plex A assay
(N3PA)), IL1β (Human IL-1β 2.0), and IL10, IL6, and



Table 1 Group demographics

DS sAD Controls Group comparison

n 31 27 27 N/A

Age (years) 46.77 ± 10.99 (23–67) 59.33 ± 4.04 (51–67) 49.26 ± 10.40 (24–64) F(2,82) = 14.84, p < 0.001a

Sex 9 (29.0%) females, 22 (71.0%)
males

9 (33.3%) females, 18 (66.7%)
males

11 (40.7%) females, 16 (59.3%)
males

Χ(2) = 0.89, p = 0.641

Intellectual disability severityb 17 (54.8%) mild, 11 (35.5%)
moderate, 3 (9.7%) severe

N/A N/A N/A

APOE ε4 carrier 8 (25.8%) carriers, 23 (74.2%)
non-carriers

10 (37.0%) carriers, 17 (63.0%)
non-carriers

5 (18.5%) carriers, 22 (81.5%)
non-carriers

Χ(2) = 2.38, p = 0.304

Mini-Mental State
Examination (MMSE) score

N/A 19.19 ± 4.42 (7–26) 28.89 ± 1.12 (27–30) t(52) = −11.06, p < 0.001c

Values for age and MMSE score given as mean ± standard deviation (range)
asAD group older than DS and control groups (both p < 0.001), no difference between DS and control groups (p = 0.915)
bPre-dementia level, assessed via informant report based on everyday functional descriptions
csAD compared to controls only
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TNFα (Human Cytokine 3-Plex A) were measured in
duplicate using ultrasensitive Simoa immunoassays
(Quanterix, Lexington, MA, USA) according to the man-
ufacturer’s instructions at the Institute of Psychiatry,
Psychology and Neuroscience, King’s College London.
Samples from the three groups were blinded and rando-
mised across two analytical plates for each assay. All du-
plicate measures for all targets had an average
coefficient of variation (CV) of between 4 and 8%.
For the group with DS, concentrations of NfL were

previously obtained from samples taken at the same time
[16]. Blood samples collected in lithium heparin tubes
were first layered over a similar amount of Ficoll (GE
Healthcare, Little Chalfont, UK), centrifuged for 40 min
at 400 g, then the supernatant was aliquoted and stored
at − 80 °C until analysis. Plasma NfL concentration was
measured using the Simoa immunoassay (Human
NF-light) (Quanterix, Lexington, MA, USA) according
to the manufacturer’s instructions at the Institute of
Neurology, University College London. Values used in
the present study had a median value of 27.09 pg/ml
(range 10.97–112.60, n = 26).

Statistical analysis
SPSS version 22 was used for analyses. Age and demo-
graphic factors were compared between groups using
ANOVAs, two-sample t tests, or chi-squared tests as ap-
propriate. To compare concentrations of molecules be-
tween groups of adults with DS, sAD, and controls, we
performed ANCOVAs for log-transformed concentrations
(due to concentrations not being normally distributed)
with age, sex, and the presence of an APOE ε4 allele in-
cluded as covariates to adjust for their potentially con-
founding effects, with η2 values determining the overall
effect size of group and post hoc pairwise comparisons
with Bonferroni corrections applied where appropriate.
Due to concentrations not being normally distributed,
non-parametric Spearman’s rank correlational analysis
was performed for each group separately to determine as-
sociations between concentrations of molecules and with
age, in addition to associations with NfL concentration for
the group with DS. Due to the number of correlations per-
formed, correlation coefficients were used to determine
relationships rather than p values, with only strong and
moderate correlations considered; these were defined as
absolute values of correlation coefficients of 0.70 and
above, and between 0.50 and 0.69, respectively.

Results
Demographic information for individuals in the three
groups can be seen in Table 1, with median values and
ranges for molecule concentrations in Table 2 and Fig. 1.
As expected, the group with sAD was significantly older
than the group with DS and the control group. One
plate for IL1β failed (containing 14 DS, 11 sAD, and 13
control samples), resulting in fewer samples measured
for IL1β. Demographic information and median values
and ranges for molecule concentrations for adults with
DS split into subgroups with and without clinical de-
mentia can be found in Table 3 and Fig. 2. Statistical
analysis was not performed to compare these subgroups
due to small sample sizes.
Concentrations of Aβ40, Aβ42, and IL1β were higher

for individuals with DS compared to both those with
sAD and controls, with median concentrations of Aβ40
and Aβ42 increased approximately two-fold and median
concentration of IL1β increased over ten-fold in the
group with DS. The Aβ42/Aβ40 ratio was higher for con-
trols compared to both individuals with DS and those
with sAD (Table 2).
All three groups showed strong positive associations

between Aβ40 and Aβ42 concentrations (see Table 4).
Both the groups with DS and with sAD showed a mod-
erate positive association between IL10 and TNFα con-
centrations. In addition, the control group showed a
moderate negative association between the Aβ42/Aβ40



Table 2 Concentrations of biomarkers for each group and group comparisons

DS sAD Controls ANCOVA Post hoc

Aβ40 312.00 (150.24–555.00) 160.80 (43.60–420.00) 144.40 (26.88–355.60) F(2,79) = 24.28, p < 0.001, η2 = 0.38 DS vs sAD p < 0.001
DS vs controls p < 0.001
sAD vs controls p = 0.506

Aβ42 24.48 (14.92–50.40) 13.32 (4.28–18.84) 14.76 (2.00–45.62) F(2,79) = 20.36, p < 0.001, η2 = 0.34 DS vs sAD p < 0.001
DS vs controls p < 0.001
sAD vs controls p = 0.710

Aβ42/Aβ40 0.09 (0.05–0.13) 0.08 (0.04–0.11) 0.10 (0.07–0.17) F(2,79) = 15.43, p < 0.001, η2 = 0.28 DS vs sAD p = 1.000
DS vs controls p < 0.001
sAD vs controls p < 0.001

Aβ42/t-tau 20.60 (1.17–93.33) 10.23 (0.77–52.00) 10.59 (1.14–82.25) F(2,79) = 2.30, p = 0.107, η2 = 0.06 N/A

T-tau 1.45 (0.18–12.72) 1.00 (0.33–24.48) 1.49 (0.16–10.24) F(2,79) = 0.64, p = 0.529, η2 = 0.02 N/A

IL1βa 2.35 (0.27–47.20) 0.18 (0.02–5.45) 0.09 (0.00–1.25) F(2,41) = 13.84, p < 0.001, η2 = 0.40 DS vs sAD p = 0.002
DS vs controls p < 0.001
sAD vs controls p = 1.000

IL10b 1.34 (0.36–93.20) 0.75 (0.27–8.76) 0.87 (0.27–4.48) F(2,76) = 2.38, p = 0.100, η2 = 0.06 N/A

IL6b 2.12 (0.36–1024.00) 1.45 (0.50–9.56) 1.54 (0.07–8.70) F(2,76) = 2.54, p = 0.086, η2 = 0.06 N/A

TNFαb 2.76 (1.25–328.80) 2.37 (1.36–20.44) 1.97 (0.56–10.50) F(2,76) = 2.42, p = 0.096, η2 = 0.06 N/A

Concentrations (pg/ml) given are median (range). ANCOVA performed on log-transformed values and including age, sex, and the presence of an APOE ε4 allele
as covariates
aOne plate failed (14 DS, 11 sAD, 13 controls)
bThree samples failed (2 DS and 1 sAD)
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ratio and IL10 concentration. Adults with DS showed sev-
eral additional associations between concentrations of
molecules (Table 4 and Fig. 3). Firstly, within this group,
there was a moderate positive association between Aβ42
and t-tau concentrations. Secondly, within the cytokines
investigated, there was a strong positive association be-
tween IL1β and IL10, and a moderate positive association
between IL6 and TNFα. Finally, IL1β concentration
showed a moderate positive association with t-tau concen-
tration and a moderate negative association with the
Aβ42/t-tau ratio. In addition, in the group with DS, only
NfL concentration showed a moderate positive association
with age, as previously published [16]. There were no
other moderate or strong associations for molecular con-
centrations or with age across any group.

Discussion
We used ultrasensitive assays to compare plasma con-
centrations of Aβ peptides, tau, and selected cytokines
between adults with DS, adults with sAD, and controls
who were age-matched to the group with DS. We found
significantly higher concentrations of Aβ40, Aβ42, and
IL1β in those with DS compared to those with sAD and
controls. The Aβ42/Aβ40 ratio was higher in controls
compared to those with DS or sAD, indicating higher
plasma concentrations of Aβ42 relative to concentrations
of Aβ40 in controls. These group differences were ob-
served when we accounted for age, sex, and the presence
of an APOE ε4 allele.
Several positive associations were found between con-

centrations of different cytokines, in particular for the
group with DS, possibly reflecting a more activated im-
mune system in DS which may be associated with higher
rates of infection and/or autoimmune disorders [39, 40].
The group with DS also showed positive associations be-
tween concentrations of t-tau and both Aβ42 and IL1β,
and a negative association between IL1β and the Aβ42/
t-tau ratio, while the control group showed a negative
association between concentration of IL10 and the Aβ42/
Aβ40 ratio.
Results relating to concentrations of Aβ peptides and

their ratio indicate both likely differences and similarities
in the development of AD between those with DS and
those with sAD. Similar to the results of previous stud-
ies, we observed higher concentrations of Aβ40 and Aβ42
in those with DS compared to those with sAD and con-
trols [17, 27–37]. This observation is likely due to tripli-
cation of the APP gene in adults with DS leading to
elevated production of Aβ peptides. Concentrations of
Aβ40 and Aβ42 in adults with DS were approximately
double those in the other groups, rather than 1.5 times
higher as may be expected based on the presence of an
additional APP gene alone, suggesting that factor(s)
other than APP triplication may contribute to increased
Aβ concentrations [52], such as a positive feedback loop
or an overloaded perivascular drainage system. Although
concentrations of Aβ40 and Aβ42 were higher in those
with DS compared to those with sAD, there was no dif-
ference in the Aβ42/Aβ40 ratio between these two
groups. This may suggest the relative processing and de-
position of Aβ40 and Aβ42 in the brain is similar between
the two groups. The higher concentrations of Aβ40 and



Fig. 1 Concentrations of biomarkers for each group. a Aβ40, b Aβ42, c Aβ42/Aβ40, d Aβ42/t-tau, e t-tau, f IL1β, g IL10, h IL6, and i TNFα. Lines
indicate median value (pg/ml)
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Aβ42 in adults with DS as compared to those with sAD,
and no difference in the Aβ42/Aβ40 ratio between the
two groups, is despite the younger age of the group with
DS compared to those with sAD. In contrast, the Aβ42/
Aβ40 ratio was higher in controls, indicating this group
has a higher relative plasma Aβ42 concentration and/
or a lower relative plasma Aβ40 concentration com-
pared to the other two groups. This may be due to
the build-up of Aβ plaques in the brains of those
with DS and those with sAD, with Aβ42 a main com-
ponent, resulting in a relative decrease of free Aβ42
and a lower Aβ42/Aβ40 ratio. Similarly, previous stud-
ies have associated a lower Aβ42/Aβ40 ratio with a
higher risk of developing dementia [53] and with in-
creased Aβ accumulation in the brain as measured
using Aβ positron emission tomography [54–57].
Adults with DS also showed significantly higher con-
centrations of IL1β compared to adults with sAD and
controls [46], and in the group with DS, IL1β concentra-
tion was positively correlated with t-tau concentration
and negatively correlated with the Aβ42/t-tau ratio.
Given the lack of an association between concentrations
of IL1β and Aβ42 in this group, it is likely the latter asso-
ciation is driven by the association with t-tau. IL1β is a
pro-inflammatory cytokine produced by activated mac-
rophages, and previous studies have indicated increased
concentrations of IL1β are associated with AD [20]
and precede cognitive decline [19]. The increase in
IL1β concentration in DS may reflect increased vul-
nerability to peripheral infections [39] and/or in-
creased prevalence of autoimmune disorders in those
with DS [40]. Plasma t-tau concentration is associated



Table 3 Demographic information and concentrations of biomarkers for adults with DS with and without clinical dementia

Dementia No dementia

n 7 24

Age (years) 52.00 ± 10.36 (40–67) 45.25 ± 10.90 (23–65)

Sex 2 (28.6%) females, 5 (71.4%) males 7 (29.2%) females, 17 (70.8%) males

Intellectual disability severitya 5 (71.4%) mild, 1 (14.3%) moderate, 1 (14.3%) severe 12 (50.0%) mild, 10 (41.7%) moderate, 2 (8.3%) severe

APOE ε4 carrier 4 (57.1%) carriers, 3 (42.9%) non-carriers 4 (16.7%) carriers, 20 (83.3%) non-carriers

Aβ40 320.80 (268.20–555.00) 304.80 (150.24–528.00)

Aβ42 26.36 (15.16–42.40) 24.14 (14.92–50.40)

Aβ42/Aβ40 0.08 (0.05–0.09) 0.09 (0.05–0.13)

Aβ42/t-tau 14.76 (2.73–29.18) 20.86 (1.17–93.33)

T-tau 1.88 (0.99–8.96) 1.27 (0.18–12.72)

IL1βb 3.79 (1.65–5.10) 1.44 (0.27–47.20)

IL10c 1.78 (0.62–6.33) 1.26 (0.36–93.20)

IL6c 2.12 (0.44–58.40) 2.12 (0.36–1024.00)

TNFαc 2.58 (1.25–29.84) 3.08 (1.30–328.80)

NfLd 59.84 (16.36–112.60) 25.10 (10.97–55.45)

Values for age given as mean ± standard deviation (range), and concentrations (pg/ml) given are median (range)
aPre-dementia level, assessed via informant report based on everyday functional descriptions
bOne plate failed (3 with dementia, 11 without dementia)
cTwo samples failed (both without dementia)
dFive samples missing (1 with dementia, 4 without dementia)

Fig. 2 Concentrations of biomarkers for adults with DS with and without clinical dementia. a Aβ40, b Aβ42, c Aβ42/Aβ40, d Aβ42/t-tau, e t-tau, f
IL1β, g IL10, h IL6, i TNFα, and j NfL. Lines indicate median value (pg/ml)
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Table 4 Relationships between concentrations of biomarkers for each group
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with severity of neurodegeneration, thought to be due
to neuronal damage causing tau release from the
brain [58]. The association between IL1β and plasma
t-tau in DS may therefore indicate that raised levels of
pro-inflammatory cytokines may contribute to neuro-
degeneration in this group, or increased concentration
Fig. 3 Relationships between biomarkers for adults with DS. a Log Aβ42 an
of pro-inflammatory cytokines may be a protective
response to neuronal damage. Raised IL1β concentra-
tion in adults with DS may also have implications for
the development of microbleeds or strokes in re-
sponse to cerebral amyloid angiopathy, as discussed
in Buss et al. [59].
d log t-tau, b log t-tau and log IL1β, and c log IL1β and log IL10
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We did not find any associations with age and concen-
trations of Aβ peptides, tau, or cytokines in any group.
Previous studies have reported contrasting results regard-
ing the association between Aβ42 and age in DS, with
some studies also finding no association [29, 32, 33, 60–
62], some finding a positive association [34, 63, 64], and
some finding a negative association [27, 30]. Previous
studies have also suggested age shows a positive correl-
ation with concentrations of Aβ40 [33, 34] and t-tau [38]
in DS. It has further been suggested Aβ42 and Aβ40 con-
centrations may not show a linear relationship with age in
DS, being stable until age 50 and then decreasing [65]. As
reported previously, we found a positive association be-
tween age and NfL concentration in adults with DS [16].
Due to the strong association between age and the devel-
opment of dementia in adults with DS, this may indicate
NfL is a more suitable biomarker for dementia progres-
sion than Aβ or tau in this group. Further supporting the
use of NfL as a potential biomarker for dementia progres-
sion in DS, our group and others have previously shown
that NfL concentration is significantly higher in adults
with DS and dementia compared to those with DS with-
out dementia [16, 17].
Identifying a biomarker for dementia in DS is import-

ant for early detection and for monitoring disease pro-
gression and is required for clinical intervention studies
in combination with cognitive tests sensitive to detecting
cognitive decline [66]. In addition to NfL, several other
potential plasma or urinary biomarkers have been
proposed, including neopterin (a marker for activated
cellular immunity and inflammation) [67, 68],
3-methoxy-4-hydroxyphenylglycol (MHPG, a noradren-
ergic metabolite) [69], dehydroepiandrosterone (DHEA,
a steroid hormone) [70], or molecules associated with
oxidative stress, specifically superoxide dismutase en-
zymes (SOD) [71] and iPF2alpha [72]. It has also been
suggested that a combination of baseline concentrations
and changes in Aβ peptides and inflammatory molecules
may be predictive of cognitive decline in adults with DS
[31]. Further longitudinal studies assessing multiple po-
tential biomarkers with large samples and multiple time
points starting prior to the onset of any cognitive decline
are needed to clarify the ideal biomarker for dementia in
DS. Blood samples are less invasive, easier, quicker, and
cheaper to obtain than CSF samples, with additional prac-
tical considerations in those with DS often limiting the
feasibility of obtaining CSF. The identification of a plasma
biomarker for dementia progression in DS is therefore es-
sential. Such a biomarker will be of particular use in the
population with DS due to the pre-morbid variability in
intellectual disability severity posing an additional chal-
lenge for the clinical diagnosis of dementia.
However, aside from plasma Aβ42 (and the Aβ42/Aβ40

ratio), where a reasonably robust association with
cerebral β-amyloidosis has emerged [73], it is unknown
how well plasma concentrations of molecules reflect
changes within the brain, and the relative contribution
of different sources (including the brain and platelets) to
plasma concentrations is unknown. To better under-
stand concentrations of Aβ42 and tau in the brain of
adults with DS using blood samples, Hamlett et al. [74]
measured concentrations from neuronal exosomes
within the blood, finding higher concentrations of Aβ42
and phosphorylated tau in DS compared to controls.
These results indicate an alternative to measuring
plasma concentrations. Future studies are needed to fur-
ther explore the relationships between plasma concen-
trations of molecules and changes within the brain.
Studies assessing blood biomarkers in DS typically

consist of relatively small sample sizes [31, 38], in large
part due to difficulties in obtaining blood samples from
these individuals. Although our sample size is large
enough to demonstrate group differences in plasma con-
centrations of some molecules, it is possible a larger
sample would reveal additional group differences. It
should also be noted we included individuals with vary-
ing stages of dementia progression in the group with DS,
which may have contributed to the presence of some re-
lationships in this group and not in the other groups,
such as the positive associations between concentrations
of t-tau and both Aβ42 and IL1β. Despite this, all adults
with DS are thought to have Aβ neuropathology by their
mid-30s [1, 7], and so the group with DS is likely similar
in terms of the presence of Aβ neuropathology. Al-
though some studies have suggested stage of dementia
progression in DS may be associated with varying con-
centrations of Aβ40 and Aβ42 [28, 31, 32, 63, 75], other
studies have reported no differences in Aβ40 or Aβ42
concentrations in those with DS with and without de-
mentia [29, 31, 60–62, 76]. A recent study has further
suggested that plasma Aβ40 and Aβ42 concentrations
show poor diagnostic performance for dementia in DS
[17]. Given these differences in results, which may be
due to differences in study populations (including differ-
ences in age, dementia stage, or dementia duration) and
assay sensitivity or sampling procedures, further larger,
longitudinal studies with multiple time points starting
prior to the onset of any cognitive decline and using ul-
trasensitive assays such as those used in the present
study are needed to clarify whether changes in Aβ40 or
Aβ42 concentrations are associated with the develop-
ment and progression of dementia in DS.
Finally, considering the amyloid hypothesis of AD and

associated changes in people with DS, our results support
the triplication of APP leading to the overproduction of
Aβ peptides and resulting in elevated concentrations of
Aβ40 and Aβ42 in people with DS compared to the sAD
and control groups. Within the group with DS, the
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positive relationship between NfL concentration and age
(and also the previously published association between
higher NfL concentration and dementia development [16,
17]) indicates plasma NfL concentration reflects neuronal
damage in the brain. We did not find group differences in
concentrations of t-tau or cytokines that may indicate al-
tered concentrations with the development of dementia. It
is possible our relatively small sample size limited our
power to detect these differences. Alternatively, it is pos-
sible that the stage of dementia progression is relevant to
detect group differences, and changes may occur in the
earlier prodromal stage only. Again, larger, longitudinal
studies with multiple time points starting prior to the
onset of any cognitive decline would be required to
determine associations between plasma molecular
concentrations and the development of dementia.

Conclusions
We compared plasma concentrations of Aβ peptides,
tau, and selected cytokines between adults with DS,
adults with sAD, and controls age-matched to the group
with DS to investigate molecular mechanisms relevant
to the development of AD in DS using ultrasensitive as-
says. Our results indicated the likely similar processing
and deposition of Aβ40 and Aβ42 in those with DS and
sAD, though those with DS showed much higher con-
centrations of these molecules, despite their younger
age. In addition, IL1β concentration is far higher in
those with DS compared to those with sAD and con-
trols, and a positive association between IL1β and t-tau
in those with DS may indicate IL1β is associated with
neurodegeneration in this group. Our results also indi-
cated that NfL concentration may be the most suitable
biomarker for dementia progression in DS. Future longi-
tudinal studies to identify biomarker changes over time
associated with pathological and clinical progression are
needed to confirm these findings.
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