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Parenting is essential for survival and wellbeing in many species.

Since it can be performed with little prior experience and entails

considerable sacrifices without immediate benefits for the

caregiver, this behavior is likely orchestrated by evolutionarily

shaped, hard-wired neural circuits. At the same time, experience,

environmental factors and internal state also make parenting

highly malleable. These characteristics have made parenting an

attractive paradigm for linking complex, naturalistic behavior to

its underlying neural mechanisms. Recent work — based on the

identification of critical neuronal populations and improved tools

for dissecting neural circuits — has uncovered novel functional

principles and challenged simplistic models of parenting control.

A better understanding of the neural basis of parenting will

provide crucial clues to how complex behaviors are organized at

the level of cells, circuits and computations. Here I review recent

progress, discuss emerging functional principles of parental

circuits, and outline future opportunities and challenges.
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Introduction
Building on many decades of research in mammalian

model systems, major progress has recently been made

in understanding the circuit basis of parental behavior in

laboratory mice (Mus musculus). Mice are ideally suited to

this purpose since they exhibit robust parental care and

are genetically tractable. Moreover, powerful tools for

circuit mapping and interrogation are available for

this species. Neuronal populations crucial for parenting

have now been identified and a functional circuit diagram
underlying parental behavior is taking shape. While these

advances have refined previous models and revealed

novel principles, they have also uncovered a considerable

complexity. Key questions — such as whether parenting

relies on dedicated circuits or, rather, generic circuits for
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social behavior — remain unaddressed. Here I review

recent progress, present an emerging circuit logic of

parental behavior and outline future challenges. I will

first focus on neuronal populations critical for parental

behavior before describing an updated functional circuit

diagram for parenting. Next, I will discuss the negative

regulation of parenting, with novel evidence suggesting

that infant-directed aggression is an active process

governed by dedicated circuits. Finally, I will outline

potential avenues towards a systems-level interrogation

of parental behavior.

Neuronal populations critical for parenting

Although strongly modified by experience and physiolog-

ical state, parenting is an instinctive behavior that can be

displayed without any prior experience [1]. For instance,

a strain-dependent proportion of virgin female laboratory

mice for instance will display spontaneous parental

behavior upon first encountering pups, comprising

essentially all components of female parental behavior

(grooming, licking, crouching, nest building), with the

exception of nursing [1]. Similarly, virgin males, in which

vomeronasal sensing is abolished, show paternal behavior

instead of pup-directed aggression [2,3]. These observa-

tions suggest that functional parental circuits are present

in adults of both sexes, and that genetic programs strongly

contribute to the formation of such circuits. As a

consequence, nodes in these circuits are likely composed

of defined neuronal populations.

The use of cell type-specific manipulations has consider-

ably advanced our understanding of how parenting as a

complex social behavior is organized at the neural level.

Most investigations have focussed on brain areas previously

identified as critical for parenting by classic lesion studies,

such as the medial preoptic area (MPOA) or the poster-

odorsal medial amygdala (MeApd) [4,5]. Within these

areas, neuropeptides, neurotransmitters and receptors have

typically been chosen as cellular markers — especially in

the hypothalamus, which is composed of a rich set of

distinct neuronal cell types [6,7,8�]. In addition, immediate

early genes (IEGs, e.g. c-fos) are frequently used as indirect

molecular readouts of neural activity to determine which

neurons within such target areas are activated by a given

behavior. These approaches have identified parenting-

relevant neuronal populations and paved the way for

dissecting the circuits within which these neurons function

[9��,10��,11�,12��]. An initial study from Wu et al. reported

that MPOA neurons expressing the neuropeptide Galanin

(MPOAGal neurons), which comprise �20% of MPOA
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neurons, are crucial for parental behavior in both sexes

(Figure 1) [2]. Two further studies found estrogen receptor

a — expressing MPOA neurons (MPOAEsr1) to be critical

for pup retrieval in females (Figure 1) [10��,12��].
Intriguingly, MPOAEsr1 neurons also strongly affect sexual

behavior in males and females [12��].

These observations illustrate several important consider-

ations when using genetic markers for circuit-level

studies of behavior: (1) Genetic markers are necessarily

imperfect, that is, not all neurons activated by, or involved

in controlling, a given behavior, express a single marker.

Conversely, not all marker-expressing neurons are

involved in a given behavior. Neuropeptide expression

can be associated with functional specialization

(e.g. somatostatin-positive or parvalbumin-positive inter-

neurons, oxytocinergic and vasopressinergic secretory
Figure 1
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Two parenting-relevant neuronal populations in the MPOA. Distribution

of, and overlap between, MPOAGal and MPOAEsr1 neurons are shown,

as well as the behavioral consequences of manipulating each

population. Note that about 90% of MPOAGal neurons, and more than

80% of MPOAEsr1 neurons, are GABAergic [2,12��]. For further details

see text. Data from refs. [2,10��,12��] and JK (unpublished). Unless

specified, manipulations affect behavior in both sexes.
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neurons), but such populations are typically involved in

narrowly described physiological functions. In contrast,

circuits for complex behaviors are unlikely to be defined

by single markers. Pragmatic considerations, for example,

the availability of Cre mouse lines with restricted

expression patterns, seem to underlie marker choice in

some cases. (2) In cases where a marker is expressed by

the majority of neurons within a brain area (e.g. >50% of

MPOA neurons are Esr1-positive (Figure 1) [11�]
and �70% of MeApd neurons are GABAergic [13]), the

fact that the neurons in question express a marker might

be largely irrelevant. Since individual brain areas partici-

pate in many behaviors and physiological functions,

manipulation of a large fraction of neurons in an area

would be expected to result in context-specific effects.

This might explain why optogenetic activation of

MPOAEsr1 neurons elicits context-dependent sexual-

behavior or parental-behavior (Figure 1) [12��]. Another

prediction is that manipulating variable fractions of a

broad population (e.g. by tuning illumination levels in

optogenetic experiments) would result in different

phenotypes. In cases where the large majority of neurons

within an area is manipulated, the conceptual advance

over classic, non-cell type specific approaches is question-

able. Screening for markers with high enrichment ratios,
that is, controlling for relative frequency of marker-

positive neurons within an area can address this limitation

(see [2]). (3) Immediate early genes such as c-fos are slow

(minutes-hours) and only provide an indirect readout of

neural activity. Also, it remains incompletely understood

which neuronal activity patterns result in their activation

in vivo [14]. IEG-positive and marker-positive neurons

thus only partially reflect parenting-relevant neural popu-

lations. These limitations also apply to other systems,

such as Esr1-expressing neurons in the ventrolateral

ventromedial nucleus of the hypothalamus (VMHvlEsr1),

which have prominent roles in aggression [15] but also

food intake, physical activity and thermogenesis [16,17].

Single-cell and spatial transcriptomics approaches now

offer the opportunity to further define neuronal popula-

tions based on location, anatomical connectivity and gene

expression profile [8�,18–22]. Several recent studies have

used such approaches on hypothalamic populations [6,8�].
For instance, Moffitt et al. recently assembled a spatially

resolved molecular atlas of the MPOA, identifying

distinct MPOAGal subpopulations [8�]. In order to func-

tionally exploit such refined molecular identities, better

genetic access to such neuronal populations is required. At

present, neurons characterized by expressing single

marker genes are typically targeted using recombinase-

expressing mouse lines. Only a handful of orthogonal

recombinases (Cre, Flp, Dre, FC31, Vika) are currently

available [23–26]. Of those, Cre accounts for the vast

majority and the generation of new lines is slow and

expensive. Genetic intersections therefore remain

challenging and impractical. Alternatively, conditional
Current Opinion in Neurobiology 2020, 60:84–91
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viral tools, especially adeno-associated viruses (AAVs),

can be used. While their limited packaging capacity

(�4.7 kb) often precludes the incorporation of promoter

fragments large enough to drive cell-type specific

transgene expression (but see e.g. [27,28]), enhancer

sequences have been shown to be suitable for this pur-

pose [27,29]. Such approaches have the potential to give

access to more specific, behaviorally relevant neuronal

populations in the future.

Circuit logic of parenting

Behaviors are encoded by dynamic activity patterns in

brain-wide circuits. Although specific neuronal popula-

tions can neither be necessary nor sufficient for any given

behavior [30], the identification of parenting-relevant

neuronal populations has recently precipitated rapid

advances in our understanding of how parenting is orches-

trated at the circuit level [9��,12��,31,32�]. Lesion studies

and pharmacological manipulations, primarily in female

rats, have found many brain areas to be involved in

parenting [1,9��,33,34]. Importantly, each of these areas

is also critical for other social and non-social behaviors.

Based on these seminal studies, a circuit model for

parenting was proposed in which two opposing pathways

mediate the activation and inhibition of parenting,

respectively [1]. Chemosensory pup stimuli are

integrated by the MeA, which exerts a negative effect

on parenting by directly inhibiting the MPOA and by

activating a ‘central aversion network’, encompassing the

(ventral) lateral septum (LS), anterior hypothalamic

nucleus (AH), VMH, dorsal premammillary nucleus

(PMd) and periaqueductal gray (PAG). In contrast, the

MPOA and adjacent ventral bed nucleus of the stria

terminalis (vBNST) promote parenting, controlling

its distinct components via dedicated downstream

projections [1].

Recent work in mice has begun to develop this region-

level wiring diagram (lacking cellular identity and signs of

synaptic connections) into a functional circuit diagram
(Figure 2), starting from genetically defined populations

such as MPOAGal neurons. Conditional retrograde trans-

synaptic and anterograde viral tracers have been used to

anatomically delineate elements of the circuit in which

MPOAGal neurons are embedded [9��]. These neurons

project to, and receive inputs from, more than 20 brain

areas in a circuit exhibiting extensive reciprocity [9��].
Importantly, MPOAGal neurons form projection-defined

subpopulations, each receiving inputs from essentially all

input areas (Figure 2) [9��]. The parallel organization of

MPOAGal projections is similar to what has been

described for agouti-related peptide-expressing neurons

in the arcuate nucleus (ArcAgrp neurons) [35], but

contrasts with, for example, VMHEsr1 or PeFAUcn3

neurons (see ‘Negative regulation of parenting’), which

predominantly send out branched projections [36,37].

Corresponding with this segregated organization,
Current Opinion in Neurobiology 2020, 60:84–91 
different MPOAGal pools are active during different epi-

sodes of parenting, and control distinct motor, motiva-

tional and hormonal aspects of parenting (Figure 2) [9��].
For instance, projections to the periaqueductal gray

(PAG) are critical for pup grooming, which recapitulates

the effect of optogenetically activating the entire MPOA-
Gal population [2]. In contrast, MPOAGal projections to

the ventral tegmental area (VTA) seem to control the

motivation to interact with pups [9��]. In a separate study,

Fang et al. reported that stimulating VTA-projecting

MPOAEsr1 neurons elicits pup retrieval to the nest

[10��], identical to what is observed when all Esr1-

expressing or GABA-expressing MPOA neurons are

activated [11�,12��]. VTA-mediated pup retrieval might

be a consequence of acutely increased parental

motivation (stimulation of MPOAEsr1 neurons also elicits

retrieval of rubber pups [12��]), but further experimental

evidence is needed to address the role of this projection.

While it remains to be shown whether these projection-

defined MPOA subpopulations have separable genetic

identities (see e.g. [8�]), these results indicate that

discrete components of a complex behavior can be

isolated at the circuit level.

In addition to such efforts to trace parenting-relevant

circuits in an inside-out manner, i.e. starting from neuronal

populations deep in the brain, another possibility is to

define parental circuits in an outside-in manner, starting

from the sensory periphery. Such efforts have encoun-

tered both methodological and conceptual hurdles. One

technical challenge is the absence of suitable reagents for

anterograde trans-synaptic circuit tracing, although

progress has recently been made in this regard [38]. Other

limitations are of a conceptual nature: Because of their

presumed ability to ‘trigger’ instinctive behaviors,

pheromonal cues have long been proposed to be pro-

cessed along dedicated, stimulus-specific neural circuits

from the sensory periphery into the brain (labeled lines)
[39]. Pup-emitted pheromones are thought to promote

pup-directed aggression, since ablating vomeronasal

organ (VNO) function elicits paternal behavior in

otherwise infanticidal virgin males [2,3]. The identifica-

tion of pup-specific vomeronasal receptors (VRs) might

therefore constitute entry points into labeled line circuits

into the brain. However, a recent study found that neither

pup-sensitive vomeronasal receptors nor associated cues

are pup-specific [40��]. Instead, such receptors are also

tuned to adult chemosensory signals, and pup recognition

relies on a combination of physical and chemical traits

(see ‘Negative regulation of parenting’) [40��]. These

findings thus call into question the existence of labeled

lines for pheromone-triggered behavior [39,41], and

therefore the possibility of an outside-in identification of

parental circuits.

In summary, considerable progress has been made in

uncovering the functional circuit architecture underlying
www.sciencedirect.com
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Figure 2
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Emerging circuit logic underlying parental behavior. This functional circuit diagram is based on pharmacological and lesion- studies in virgin female

rats [1], and extended by recent findings (see text, refs. [9��,10��,11�,12��,32�,37,40��,42,53��]). ArcAgrp neurons, which sense caloric need and

mediate feeding behavior, project to a subset of MPOA neurons [11�]. Optogenetic stimulation of this projection decreases maternal nestbuilding

[11�]. Tyrosin hydroxylase-expressing neurons in the anteroventral periventricular nucleus (AVPeTH neurons) are critical for parental behavior in

females [42]. These neurons form monosynaptic connections with oxytocin-expressing neurons in the paraventricular hypothalamic nucleus,

thereby influencing oxytocin release [42]. Abbreviations: AHI, amygdalohippocampal area; AOB, accessory olfactory bulb; AVPe, anteroventral

periventricular nucleus; BNST, bed nucleus of the stria terminalis; LC, locus coeruleus; LS, lateral septum; lHb, lateral habenula; MeA, medial

amygdala; NAc, nucleus accumbens; PVN, periventricular hypothalamic nucleus; PVT, periventricular thalamic nucleus; RRF, retrorubral field;

SNpc, substantia nigra pars compacta; somat ctx, somatosensory cortex; SON, supraoptic nucleus; Vglut, vesicular glutamate transporter; Vgat,

vesicular GABA transporter; VMH, ventromedial hypothalamus; VTA, ventral tegmental area.
parental behavior. Key emerging principles are that these

circuits are enormously complex, overall remarkably sim-

ilar between the sexes (but see [32�,42]), and that specific

aspects of parenting can indeed be assigned to discrete

circuit elements [9��,43]. It will be interesting to investi-

gate how this circuitry interacts with neural

systems controlling other instinctive behaviors (or

whether they largely overlap), how information is
www.sciencedirect.com 
processed between successive circuit nodes and how

experience and physiological states affect their function.

Negative regulation of parenting

Under certain physiological and environmental

conditions, animals neglect or attack young conspecifics.

Males in some species kill unfamiliar infants to gain

reproductive advantage [44–46] and females neglect or
Current Opinion in Neurobiology 2020, 60:84–91
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attack their young during stressful circumstances such as

food shortage or threat of predation [47]. In laboratory

mouse strains, which are a product of artificial selection

for a variety of physiological and behavioral traits

[45,47,48], aggressive behavior is less pronounced.

Infant-directed aggression has predominantly been

studied in males, which undergo a switch from infanticide

to paternal care after mating [2,3,49,50]. This striking

phenomenon seems to be synchronized with the female’s

gestation time to ensure paternity. Does infanticide

simply result from downregulating parental circuits, or

is it rather orchestrated by dedicated circuits? Several

lines of evidence now indicate that it is a combination of

both, as I will outline below.

In the periphery, detection of pup-emitted chemosen-

sory signals is crucial for male infanticide, since this

behavior is abolished by surgical or genetic ablation of

VNO function [2,3]. Two recent studies have identified

relevant cues and neurons involved in their detection:

Trouillet et al. found that conditional ablation of the

G-protein subunit Gai2 — expressed in a subclass of

VNO neurons — reduces infant-directed aggression. In a

complementary study, Isogai et al. systematically

screened for VNO neurons (which each typically express

a single VR) activated by pup cues. They identified a

repertoire of 7 VRs, knock-out of two of which, Vmn2r65

and Vmn2r88 (both Gai2-negative), significantly

decreased pup-directed aggression in virgin males

[40��]. Together, these results suggest that several

VRs (and, correspondingly, VNO neuron types)

contribute to the detection of infant cues. Surprisingly,

however, these VRs are also activated by adult cues, and

pup recognition requires a combination of chemical and

tactile cues [40��]. Furthermore, the chemical

stimuli detected by Vmn2r65 and Vmn2r88 are rather

unexpected: submandibular gland protein C, expressed

in salivary glands of pups and adult females, and

hemoglobins, which are ubiquitously found in social

environments, especially after parturition [40��]. These

results indicate that VNO cues emitted by infants are

ambiguous, and that adults use multisensory information

for pup recognition.

How are pro-infanticidal stimuli processed deeper in the

brain? Vomeronasal information is relayed to the MeA via

the accessory olfactory bulb (AOB) before reaching hypo-

thalamic areas, such as the BNST or MPOA (Figure 2)

[51]. Chemosensory signals from both VNO and the

main olfactory system are presumably integrated by

MeA neurons [52], but it remains unclear where and

how these signals interact with haptic and other

types of sensory information to form pup representations

(Figure 2). Intriguingly, ablation of Gai2 suppresses

infanticide, but enhances male-male aggression [53��].
Together with the observation that the MeA neurons

activated during infanticide are different from those
Current Opinion in Neurobiology 2020, 60:84–91 
involved in male-male aggression [53��], this suggests

that these aggressive behaviors are controlled by different

circuit mechanisms. MeA lesions facilitate parental

behavior in females, and activation of GABAergic MeA

neurons mirrors this effect [32�,54]. The effects of MeA

lesions on pup-directed behavior in males are unclear, but

Chen et al. recently reported that optogenetic activation

of GABAergic MeA neurons can result in either parental

behavior or infanticide, depending on illumination

strength [32�]. Since the large majority of MeA neurons

are GABAergic [55], these effects might be the

consequence of activating neuronal subpopulations with

distinct roles (see ‘Neuronal populations critical for

parenting’). Located further along the pheromone

processing pathway, lesions to the rhomboid nucleus of

the BNST (BSTrh) were shown to suppress infanticidal

behavior [56�], and functional maturation of BSTrh inputs

during adolescence has been hypothesized to underlie

the change from parental to infanticidal behavior [57�]. In

order to identify additional infanticide-relevant regions, a

recent study used brain-wide IEG mapping, uncovering a

marked upregulation of c-Fos in the caudal hypothalamus

after pup-directed aggression [58]. Autry et al.
subsequently investigated this region in greater detail

and found that Urocortin 3-expressing neurons in the

perifornical area (PeFAUcn3 neurons) are activated during

pup-directed, but not male-male, aggression in both sexes

[37]. While silencing of PeFAUcn3 neuronal activity in

virgin males blocks infanticide, activation of these

neurons elicits infant-directed neglect in virgin females

[37]. Intriguingly, PeFAUcn3 neurons receive direct inputs

from (almost exclusively inhibitory) MPOAGal neurons

[2], suggesting that infanticide-promoting circuits might

be actively suppressed in parental animals.

Altogether, these observations indicate that (1) infant-

directed aggression relies on dedicated circuits which are

likely distinct from those mediating male-male aggres-

sion, (2) these circuits directly interact with parental

circuits — potentially in a mutually inhibitory fashion,

and (3) similar neural mechanisms control infant-directed

aggression in males and females. It will be exciting to

further dissect the circuit mechanisms underlying infant-

directed aggression, to investigate how stress promotes

this behavior in females, and to address which plasticity

mechanisms govern the switch from infanticide to

parenting in males.

Towards a systems-level investigation of parental

behavior

A key insight from recent studies is that parenting, as well

as other instinctive behaviors, rely on highly complex,

unexpectedly malleable, and potentially overlapping cir-

cuits [9��,35,59,60]. It remains unclear whether parental

behavior is controlled by parenting-specific circuits or

rather by general-purpose social behavior circuits that

are state-specifically and/or context-specifically engaged.
www.sciencedirect.com
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Distinguishing between these scenarios will require the

use of systems neuroscience approaches and the integra-

tion of anatomical, functional and behavioral data.

First, single cell and spatial transcriptomics approaches

have the potential to identify novel genetic entry points

into parenting-relevant neuronal populations, and to

uncover plasticity mechanisms within these populations.

For instance, Moffitt et al. recently used a massively

multiplexed in situ hybridization pipeline (MERFISH)

to create a cell atlas of the preoptic area, defining novel

cell types and subdividing MPOAGal neurons into ten

transcriptionally and spatially distinct clusters [8�].
Second, refined anatomical approaches will help uncover

further motifs in parental circuits, thereby guiding future

functional investigations. Improved viral vectors now

enable more specific, efficient and permanent access to

defined neurons and circuits [61–65]. However, viral

tracing approaches typically visualize connectivity

between hundreds to thousands of neurons, thereby

obscuring cellular-level anatomical diversity. Individual

neurons can be reconstructed by serial two-photon

tomography after sparse neuronal labeling, which

revealed strikingly complex morphologies and brain-wide

projection patterns [66,67]. However, this approach is is

highly time-consuming, resource-intensive and laborious.

High-throughput, sequencing-based strategies, such as

MapSeq [68] are expected to give complementary

insights into the organizational principles of parenting-

relevant circuits. Third, rather than investigating these

circuits one node at a time, addressing dynamic informa-

tion processing at brain-wide scales will be necessary to

understand the neural computations underlying

parenting and other instinctive behaviors. High-density

recordings from thousands of individually resolved

neurons across the brain, will be instrumental for tracking

information flow within circuits [69–72]. Lastly, deep

learning approaches now allow for automated, marker-

less tracking of animals under varying experimental

conditions, thereby greatly reducing the time required

to analyze behavioral video recordings [73–75]. These

methods have facilitated behavioral tracking, but behav-

ioral classification remains challenging (e.g. pup grooming

versus chemoinvestigation), especially for social interac-

tions involving several subjects. Further improvements to

these algorithms, assay-specific behavioral classifiers,

and optimization of experimental conditions will without

doubt result in increasingly automated behavioral

quantification.

Fully leveraging these methodologies will put us in a

position to address key questions in neuroscience, such as

the degree of plasticity within neural circuits thought to

be hardwired, how robustness and plasticity are balanced

in such systems, and whether circuits for different

behaviors are separate or highly overlapping. Thus,

insights into the neural mechanisms underlying parental
www.sciencedirect.com 
behavior have the potential to broadly contribute to our

general understanding of how evolutionarily sculpted

circuits control instinctive behaviors.
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