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Structural studies of RFCCtf18 reveal a novel
chromatin recruitment role for Dcc1
Benjamin O Wade1, Hon Wing Liu2, Catarina P Samora2, Frank Uhlmann2 & Martin R Singleton1,*

Abstract

Replication factor C complexes load and unload processivity
clamps from DNA and are involved in multiple DNA replication
and repair pathways. The RFCCtf18 variant complex is required for
activation of the intra-S-phase checkpoint at stalled replication
forks and aids the establishment of sister chromatid cohesion.
Unlike other RFC complexes, RFCCtf18 contains two non-Rfc subu-
nits, Dcc1 and Ctf8. Here, we present the crystal structure of the
Dcc1-Ctf8 heterodimer bound to the C-terminus of Ctf18. We find
that the C-terminus of Dcc1 contains three-winged helix domains,
which bind to both ssDNA and dsDNA. We further show that
these domains are required for full recruitment of the complex to
chromatin, and correct activation of the replication checkpoint.
These findings provide the first structural data on a eukaryotic
seven-subunit clamp loader and define a new biochemical activ-
ity for Dcc1.
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Introduction

Accurate duplication and segregation of chromosomes is vital to

maintain integrity of the genetic material. To facilitate this, cells

have evolved checkpoint mechanisms to ensure that aberrant

processes are detected and where possible, repaired. One such set of

checkpoints occur during DNA replication. The so-called intra-S-

phase checkpoints are required to maintain genome integrity at

stalled replication forks [1–5]. These are characterised by a build-up

of single-stranded DNA (ssDNA) that can arise from uncoupled heli-

case and polymerase activity, resulting from DNA lesions in the

template. This ssDNA is recognised by the sensor kinase Mec1 (ATR

in humans) which interacts with the ssDNA-binding protein

replication protein A (RPA) [6]. Activated Mec1 in turn recruits and

activates the diffusible checkpoint kinase Rad53 (Chk2) in

conjunction with Mrc1 (Claspin) [7–10]. The activation of Rad53 is

associated with its hyper-phosphorylation and induces a range of

downstream effects including the stabilisation of stalled forks,

repression of late-firing origins [11,12], up-regulation of dNTP

synthesis and transcription of DNA repair genes [13–15].

A number of studies in yeast have shown the requirement for

another protein complex, RFCCtf18 as being required for full

activation of Rad53 [16–18]. RFCCtf18 is a variant replication factor

C-like complex, the basic function of which is to load or unload a

DNA sliding clamp in an ATP-dependent manner [19,20]. All RFC

complexes contain four common subunits (Rfc2-5) and a single

variable large subunit that defines the function of the complex [21].

The prototypical member is RFCRfc1, which loads PCNA onto DNA

at replication forks and is essential for all replication and repair

processes. The best understood variant is probably RFCRad24, which

participates in the DNA damage checkpoint response by loading a

specialised clamp formed by Rad17, Mec3 and Ddc1 [22–26]. The

functions of other variants, RFCElg1 and RFCCtf18 are less clear.

RFCElg1 has been implicated in PCNA unloading [27–29] and

maintenance of genomic stability [30–36], while RFCCtf18 was origi-

nally identified in screens for chromosome mis-segregation

[18,37,38]. In addition to containing the Ctf18 variant of the Rfc1

subunit, RFCCtf18 also contains the proteins Dcc1 and Ctf8, making it

the only RFC variant formed of seven subunits. RFCCtf18 can both

unload and load PCNA in vitro [39–41]; however, studies in yeast

have suggested that its in vivo role is as a loader, as cells lacking

Ctf18 show a reduced level of PCNA at sites of DNA replication

[42]. The finding that Ctf18 deletion also impinges upon sister chro-

matid cohesion (SCC) has led to it being classified as a non-essential

SCC establishment factor, together with other replication-associated

proteins such as Chl1, Ctf4, Csm3, Mrc1 and Tof1 [38,43–47].

Despite the characterisation of the phenotypic effects of RFCCtf18

deletion and its implication in multiple cellular pathways, the

biochemical and mechanistic properties of the complex are not fully

understood. As the Dcc1-Ctf8 sub-complex is not required for the

PCNA-loading or unloading reaction [39,40], we hypothesised that

it might play a regulatory role. To investigate this, we have solved

the crystal structure of the Dcc1-Ctf8 heterodimer bound to the

C-terminus of Ctf18 (Ctf18C). To our surprise, we found that the

C-terminus of Dcc1 contains three-winged helix (WH) domains,

which we demonstrate can bind to both ssDNA and double-stranded

DNA (dsDNA). We further show that these domains aid recruitment
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of the complex to chromatin in vivo and are required for checkpoint

activation.

Results

Construct design and structure solution

RFCCtf18 is formed of seven subunits: Ctf18, Rfc2, Rfc3, Rfc4, Rfc5,

Ctf8 and Dcc1 (Fig 1A). The core complex, which is sufficient to

load and unload PCNA from DNA [37], is formed of Ctf18 and the

four small Rfc subunits. Each of these proteins contains an AAA+

ATPase domain. Previous studies have shown that Dcc1 and Ctf8

are able to form a stable sub-complex in vitro and that the

C-terminus of Ctf18 is required for the interaction with the Dcc1-

Ctf8 sub-complex [39]. To further investigate the interaction

between Ctf18 and the Dcc1-Ctf8 sub-complex and the function of

Dcc1-Ctf8, we designed a range of constructs using the S. cerevisiae

proteins for structural studies. We identified a construct that

expressed well in E. coli that includes the last 76 residues of Ctf18

(residues 666–741) with full-length Dcc1 and Ctf8. Crystals of this

complex (designated Ctf18C-Dcc1-Ctf8) were grown that diffracted

to 2.4 Å resolution. While working on this complex, we also

obtained crystals of the C-terminal domain of Dcc1 (residues 90–

380) that diffracted to 2 Å. Phase information for this crystal form

was determined using multiple-wavelength anomalous diffraction
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Figure 1. The overall structure of the heterotrimer.

A Schematic showing the overall organisation of RFCCtf18.
B The structure of the heterotrimeric complex Dcc1 (maroon), Ctf8 (green) and Ctf18C (blue).
C Detailed view of the C-terminal domain of Dcc1 with WH1 (blue), WH2 (grey) and WH3 (yellow) identified.
D The interaction domain between Ctf18 (blue) and the sub-complex, Dcc1 (red) and Ctf8 (green).
E Linear representation of the overall domain organisation of the heterotrimer.

Data information: See also Figs EV1 and EV2.
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(MAD) of selenomethionine-substituted protein. The refined struc-

ture was then used as a search model to determine the structure of

the Ctf18C-Dcc1-Ctf8 heterotrimer by molecular replacement (MR).

The final structures were of high quality with full statistics of the

crystallographic analyses given in Appendix Table S1.

Overall structure of the Ctf18C-Dcc1-Ctf8 heterotrimer

The overall structure of Ctf18C-Dcc1-Ctf8 is extended and looks like

a “hook”, as the C-terminus of Dcc1 folds back towards Ctf8

(Fig 1B). This C-terminus is primarily a-helical, while the N-terminus
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Figure 2. Ctf18 binding to the Dcc1-Ctf8 sub-complex.

A The binding interface of Ctf18 (blue) residues 714–740 to the surface of Dcc1-Ctf8 (grey).
B Surface conservation of the Ctf18-binding interface, shown in the same orientation as in (A). Yellow residues indicate that there was insufficient data from the

alignment.
C The C-terminal helix of Ctf18 (blue) with Ctf8 (green) and Dcc1 (maroon). The conserved tryptophans are shown in stick representation.
D Sequence alignment of yeast species with arrows indicating the location of conserved interacting residues.
E An expanded sequence alignment from yeast to human showing the functionally equivalent regions. Arrows indicate conserved interacting residues.
F The interaction of the b-strand region of Ctf18 (blue) with Ctf8 (green) and Dcc1 (maroon).
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of the protein and the majority of Ctf8 consist of b-strands. To

identify whether any common domains were present in the hetero-

trimer, we performed a three-dimensional homology search using

the Dali server [48]. The results indicated that Dcc1 contains three-

winged helix (WH) domains from residues 182–252, 253–317 and

318–380, which we have called WH1, WH2 and WH3, respectively

(Fig 1C). These WH domains show structural homology to the WH

domains from PKZ [49], cullin-1 [50] and DsrD [51], with Z-scores

of 5.7, 7.4 and 4.9, respectively (Fig EV1). WH domains are often

involved in DNA binding or mediating protein–protein interactions

[52], suggesting possible functions for this structural feature. The

N-terminus of Dcc1 from residues 1 to 115 forms a large hetero-

dimer interface with Ctf8 (Fig 1D). This domain is comprised of 2

a-helices and 18 interconnecting b-strands from both Dcc1 and

Ctf8. The overall structure of the heterodimer resembles the

“triple” b-barrel fold which has previously been observed in RNase

H2 [53], and the transcription factors Rap30/74 [54], Sfc1/7 [55]

and A49/34.5 [56] (Fig EV2). This architecture appears to be used
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Figure 3. DNA-binding domain of Dcc1.

A Ribbon diagram of the C-terminal domain of Dcc1 with the triple WH domains: WH1 (blue), WH2 (grey) and WH3 (yellow).
B The surface charge of the C-terminal domain of Dcc1 with positive areas in blue and negative in red.
C The surface conservation of Dcc1 with highly conserved regions in dark pink and the unconserved regions in pale blue.
D Potential DNA-binding basic residues tested by mutational analysis depicted in stick representation.

Data information: The dotted areas indicate the presumptive DNA-binding region. Orientation of the structures is the same as in (A).
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primarily as a protein interaction motif, linking separate functional

domains of larger complexes. The similarity of Dcc1-Ctf8 to the

transcription factors listed also extends to sharing a modular struc-

ture consisting of a hetero-dimerisation fold preceding tandem WH

domains (Fig 1E).

Ctf18 binds to the Dcc1-Ctf8 heterodimer

Ctf18 binds as an extended peptide to a conserved groove present in

the dimer interface of Dcc1-Ctf8 (Fig 2A and B). The extreme C-

terminus of Ctf18 forms a short helix, which is partially buried in a

hydrophobic pocket of the first “barrel” of Dcc1-Ctf8. The structure

shows that W736 and W740 make crucial contacts with other

aromatic residues of both Dcc1 and Ctf8 as well as the extreme N-

terminal proline of Ctf8 (Fig 2C). These tryptophans are totally

conserved in yeast and are always hydrophobic residues in higher

eukaryotes, suggesting the overall binding mechanism is conserved

(Fig 2D and E). A recent study supports this binding model as co-

immunoprecipitation experiments in cells show that mutating both

W736 and W740 in Ctf18 disrupt binding to Dcc1-Ctf8 [57]. Further-

more, mutating both residues causes a defect in the phosphorylation

of Rad53 in hydroxyurea-treated cells, indicating impaired check-

point response. The N-terminal section of Ctf18 in our structure

forms a beta sheet with Ctf8, with E724 from Ctf18 forming a salt

bridge with R128 from Ctf8 (Fig 2F). Residues 666–713 of Ctf18

appear to be unstructured, suggesting they form a flexible linker

between the Dcc1-Ctf8 module and the rest of the Rfc1-like domain

of Ctf18. The overall binding mechanism is similar to that by which

RNase H2A binds to RNase H2B and H2C [53] (Fig EV2) where an

extended peptide from H2A binds along the H2B-H2C dimer inter-

face.

Dcc1 is able to bind DNA through the conserved WH domains

To further investigate the function of Dcc1, we studied both the

surface charge and conservation of the WH domains (Fig 3A–D). A

large conserved basic patch was present on the surface of WH3.

This suggested the domain could interact with DNA as basic resi-

dues are able to bind to the negatively charged backbone of DNA.

To test this, we carried out an electrophoretic mobility shift assay

(EMSA) with fluorescently labelled ssDNA and dsDNA oligo-

nucleotides. The Dcc1 C-terminal construct was titrated against a

constant DNA concentration. A gel shift was observed with both

ssDNA and dsDNA, suggesting Dcc1 could interact with both

substrates (Fig 4A). To further dissect the contribution of the

individual WH domains to DNA binding, we deleted WH3

(residue 319–380) from Dcc1 and repeated the EMSA. The results

of the initial experiments indicate that WH1 and WH2 could not

bind either ssDNA or dsDNA (Fig 4B). However, when we

reduced the DNA concentration and overexposed the gel, a slight
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Figure 4. DNA binding analyses of Dcc1.

A DNA binding analysis conducted via an EMSA. 22-mer dsDNA or 25-mer ssDNA was fluorescently labelled, and the C-terminus of Dcc1 (residues 90–380) was titrated
in at concentrations indicated. Protein concentrations are given in lM.

B DNA binding properties of Dcc1 point mutants and WH3 deletion. Protein concentrations are given in lM.
C DNA binding by triple mutant. Protein concentrations are given in lM.
D Sequence alignment from yeast to human of WH2 and WH3, with arrows indicating putative basic DNA-binding residues.
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A Spot assay showing the effect of deleting WH domains. The resistance of dcc1Δ, Dcc1ΔWH3, Dcc1ΔWH2-3 and Dcc1ΔWH1-3 strains compared to wild-type cells in
hydroxyurea (HU) was tested by spotting 10-fold serial dilutions on YPD agar containing either 0 M, 0.1 M or 0.2 M HU.

B Checkpoint activation as assessed by Rad53 phosphorylation. Cells were arrested in G1 and released into medium containing 0.2 M HU for arrest in early S-phase.
Samples were taken at the indicated time points and analysed for Rad53 phosphorylation by Western blotting. Tubulin was used as a loading control.

C Sister chromatid cohesion assay using the same deletions as described above. The effect on sister chromatid cohesion was analysed by visualising tetracycline
repressor-GFP fusion proteins bound to tetracycline operator arrays integrated at the URA3 locus from cells arrested in a nocodazole-imposed mitotic arrest. The
percentage of cells with two TetR-GFP dots were recorded. Three independent replicates were performed, and error bars indicate the standard deviation.

D Analysis of Ctf18 levels at origins in HU-arrested cells. ChIP was conducted with an anti-HA antibody against HA-Ctf18. The enrichment was analysed by qPCR at
three early firing origins (ARS605, ARS606 and ARS607) and a late-firing origin (ARS609) on the indicated yeast strains. The means and standard error of three
independent experiments are plotted. Analysis of Ctf18 levels averaged over all three early origins by three-way ANOVA demonstrated statistically significant
reductions in both the dcc1Δ (decrease = �0.555, P = 5.06897e-11) and Dcc1WH3Δ (decrease = �0.3018, P = 1.1074164e-06) strains.
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gel shift was observed with ssDNA but not dsDNA, indicating

that WH1 and WH2 have a weak affinity for ssDNA, which is

enhanced by the presence of WH3 (Fig EV3A). Dcc1 was also

able to bind to dsDNA with a ssDNA extension at either the 30

or 50 end with an approximately equal affinity to single-stranded

or duplex DNA (Fig EV3B). To identify individual residues

involved in binding, we mutated basic residues in WH3 and

compared them to wild-type (WT) protein. The residues K326,

K357, K364, R367 and R380 (Fig 3D) were mutated to alanine

and their effect on DNA binding assessed (Fig 4B). Mutation of

K364, R367 or R380 reduced the affinity for both ssDNA and

dsDNA, albeit weakly with K364, while the triple mutant K364A,

R367A, R380A totally eliminated binding similar to the WH3

deletion (Fig 4C). These residues are widely conserved (Fig 4D)

and suggest that the binding site for ssDNA and dsDNA overlaps

to some extent.

Functional studies on the Dcc1 WH domains

Cells lacking Ctf18, Dcc1 or Ctf8 grown in the presence of hydroxy-

urea (HU) cannot properly activate the intra-S-phase checkpoint at

stalled forks [16–18,58]. To further understand the function of the

WH domains in Dcc1, we progressively deleted the WH domains

and assessed checkpoint activation as assessed by Rad53 phospho-

rylation as well as viability when treated with hydroxyurea. We

found that removal of any of the WH domains caused severe viabil-

ity problems under HU treatment and showed delayed and reduced

Rad53 phosphorylation, comparable to a complete Dcc1 deletion

(Figs 5A and B, and EV4A). These defects are unlikely to be caused

by impaired heterotrimer formation as Ctf18 and Ctf8 are still able

to form a stable soluble complex with the WH3 or WH2-WH3 trun-

cated Dcc1 proteins (Fig EV4B). The WH1-WH3 deletion is insoluble

when recombinantly expressed but stable Dcc1ΔWH1-WH3 can be

observed in cell extracts (Fig EV4A) suggesting it is also capable of

binding Ctf8 and Ctf18, as free Dcc1 is quite unstable and rapidly

degraded (data not shown).

We also find that deletion of the WH domains leads to sister

chromatid cohesion defects (Fig 5C). Interestingly, however, while

deletion of any of the WH domains had a severe checkpoint pheno-

type, deletion of the WH3 domain alone had a minimal impact on

sister chromatid cohesion. We further analysed the function of the

WH3 domain by chromatin immunoprecipitation (ChIP) and qPCR

on Ctf18 at sites of replication origins in hydroxyurea-treated cells

(Figs 5D and EV4C). Cells without the Dcc1 WH3 domain showed

a statistically significant reduction of Ctf18 at replication origins,

though not as much as complete Dcc1 deletions (Fig 5D). As

Ctf18 deletion does not compromise entry into S-phase [16], and

the truncated complex is still stable (Fig EV4B), this result

suggests impaired recruitment of the RFCCtf18 complex to stalled

forks.

Discussion

RFCCtf18 is a seven-subunit complex formed of Ctf18, Rfc2-5 and

the stable Dcc1-Ctf8 sub-complex. The complex is required for

activation of the intra-S-phase checkpoint and proper establish-

ment of sister chromatid cohesion. To better understand the

function of RFCCtf18, we determined the crystal structure of the

heterotrimeric Ctf18C-Dcc1-Ctf8 complex and analysed in vitro and

in vivo activities.

The structure of Ctf18C-Dcc1-Ctf8 was completely unexpected

and revealed that Dcc1 has three consecutive WH domains at its C-

terminus, the third of which can bind to both ssDNA and dsDNA.

To our knowledge, this is a completely novel organisation of WH

domains. The N-terminus of Dcc1 and Ctf8 form a “triple” b-barrel
fold, which can then bind Ctf18. This overall architecture has previ-

ously been found in a range of transcription factors and RNase H2.

Like the transcription factors, RFCCtf18 uses this domain as a bridge

between a larger complex and a variable number of WH domains

able to bind DNA. This suggests a common ancestor of both a subset

of transcription factors and RFCCtf18. RFC complexes are able to

directly recognise and bind DNA structures such as template-primer

junctions via multiple Rfc subunits [21,59]. The discovery that

RFCCtf18 contains additional binding sites for both dsDNA and ssDNA

suggests that directed recruitment is an important part of its mecha-

nism, as the intrinsic DNA binding activity of the core complex is

sufficient for the basic loading and unloading activity [39,40].

Recent studies have also shown that RFCCtf18 is able to bind to

DNA polymerase epsilon (Pol e) via the catalytic subunit Pol2

[57,60,61]. This interaction requires the intact Ctf18C-Ctf8-Dcc1

complex which we present in this study. Our structure shows that

mutations in, or deletion of the Ctf18 C-terminus would dissociate

the Dcc1-Ctf8 heterodimer from the complex, so disrupting the plat-

form for Pol e binding. The addition of two non-Rfc subunits to the

RFCCtf18 complex is reminiscent of the bacterial clamp loader, which

employs two auxiliary subunits, v and ѱ to link the loader to

single-stranded DNA-binding protein (SSB) upstream of the replica-

tion fork [62,63]. Dcc1 and Ctf8 bear no structural similarity to v
and ѱ [64]. However, the structure of the bacterial clamp loader

bound to a peptide derived from the ѱ protein [65] as well as the

location of the C-terminus of Rfc1 in the RFC-PCNA structure [66]

suggests that the linker region of Ctf18 emerges adjacent to the

“collar” domain of RFC. This would allow the Dcc1 subunit to inter-

act with both ssDNA emerging from the clamp loader as well as Pol

e, situated on the same face of the complex (Fig 6).

Our structure shows that the Ctf8-Dcc1 interface acts as a binding

site for the Ctf18 C-terminus, which together forms a platform

capable of binding Pol 2. Given the proximity of the WH domains to

this binding site, it seems likely that they are also capable of inter-

acting with the Pol e complex, and/or DNA within the replisome.

The reduced occupancy of Ctf18 on chromatin observed following

WH3 deletion supports this notion. Although all the WH domains

are required for full checkpoint activation, we find that only WH1

and WH2 are required for correct sister chromatid cohesion. This

separation of function might be explained if the cohesion pathway is

more tolerant to reduced levels of chromatin bound Ctf18 relative to

the checkpoint pathway. Alternatively, the WH3 domain might form

a checkpoint-specific interaction with other proteins.

It has been reported that RFCCtf18 also acts in additional path-

ways, for example telomere positioning and stability [67–69] and

opens up the intriguing possibility that Dcc1 has other, as yet unde-

termined activities that require robust DNA interactions. Determin-

ing the precise details of exactly how and where this multi-faceted

protein complex contributes to DNA replication and chromosome

segregation activities will provide an interesting ongoing challenge.
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Materials and Methods

Protein expression and purification

The genes coding for the subunits Ctf18 (residues 666–741), Dcc1

(full length) and Ctf8 (full length) were amplified from genomic

DNA and cloned into the vectors pET-28a, pCDFDuet and pETDuet,

respectively. The Ctf18 subunit had the addition of an N-terminal

His6 tag and TEV protease site. These subunits were then sequenced

to confirm that no mutations had been introduced. The vectors

containing the subunits were transformed into BL21(DE3)-RIL

competent cells (Agilent) using standard procedures. An overnight

culture of freshly transformed cells was grown at 37°C in LB, which

was used to inoculate a 1 l culture. These cells were then grown at

37°C until an OD of 0.6 was reached, upon which expression of the

complex was induced by the addition of 0.25 mM IPTG at 16°C for

18 h. The cells were harvested and sonicated in 50 mM Tris pH 7.5,

300 mM NaCl, 10% glycerol and 0.5 mM TCEP and then centrifuged

at 35,000 × g, 4°C for 1 h. The supernatant was loaded onto a 5 ml

His-Trap HP (GE Healthcare) and eluted using imidazole. The tag

was then cleaved from the Ctf18 subunit by the addition of TEV

protease at 0.04 mg/ml and left overnight at 4°C. The protein was

loaded onto a MonoQ 10/300 GL (GE Healthcare) column equili-

brated in 20 mM Tris pH 7.5, 100 mM NaCl and 0.5 mM TCEP. The

protein was eluted in a high concentration of NaCl. The complex

was concentrated and loaded on an equilibrated HiLoad 16/60

Superdex 75 column (GE Healthcare) in 10 mM Tris pH 7.5,

150 mM NaCl and 0.5 mM TCEP. Eluted protein-containing frac-

tions were analysed for purity by SDS–PAGE. Selenomethionine

incorporated protein was obtained by growing the cells in minimal

media where selenomethionine was the only source of methionine

and purification of the protein was identical to the native protein.

The Dcc1 truncation (residues 90–380) was expressed and purified

using the same protocol as for the full complex.

Crystallisation and structure solution

The selenomethionine incorporated C-terminus of Dcc1 was

concentrated to 20 mg/ml and crystallised in 2 ll sitting drops with

equal volumes of protein to reservoir solution at 20°C. The reservoir

contained 0.2 M potassium sodium tartrate and 18% PEG 3350.

Crystals were harvested after 2 days in 20% ethylene glycol. A two

wavelength MAD data set was collected at Diamond Light Source on

beamline IO3. The AutoSHARP [70] package was used to solve the

structure, and Buccaneer [71] was used to trace the initial model.

Iterative rounds of rebuilding and refinement were carried out in

Coot [72] and Refmac5 [73]. The final model was then fitted by

molecular replacement to a higher resolution native data set

obtained from a different crystal form grown in the same conditions.

Ctf18C-Dcc1-Ctf8 was concentrated to 35 mg/ml and was crys-

tallised in 4 ll sitting drops with equal volumes of protein to reser-

voir solution. The reservoir contained 0.1 M Bis–Tris propane pH

6.3, 0.2 M NaBr and 17% PEG 3350. Crystals were grown at 20°C

for 10 days before harvesting in 15% ethylene glycol and stored in

liquid nitrogen. Native data were collected at Diamond Light Source

on beamline IO3. Molecular replacement was carried out in Phaser

[74] using the C-terminus of Dcc1 as a start model. An initial model

was traced using phenix.autobuild [75], and iterative rounds of

rebuilding and refinement were carried out as before. Some spots

fell beyond the edge of the detector accounting for reduced

completeness in the outer shell. Full statistics for data collection and

refinement are shown in Appendix Table S1.

DNA binding analysis

DNA binding analysis was conducted on both dsDNA and ssDNA.

The dsDNA had the sequence TCTCCACAGGAAACGGAGGGGT and

a fluorescent 6-FAM tag on the 50 sense strand. The DNA was

annealed and purified using standard techniques. The ssDNA used

was a 25-mer oligo d(T), with a 50 6-FAM fluorescent tag. Both

oligos were synthesised and purchased from Sigma-Aldrich. A 6%

non-denaturing DNA retardation gel was pre-run at 4°C at 3 mA for

1 h in 0.5× TBE. DNA was at 1 lM unless otherwise stated and

protein titrated at increasing concentrations. Samples were loaded

and run for 75 min at 5 mA, 4°C. The gel was then analysed using a

Typhoon 9400 imager excited at 488 nm, and emission was detected

at 520 nm at 500 V.

Yeast strains and cultures

All strains used in this study were of W303 background and are listed

in Table 1. Gene deletions and epitope tagging of endogenous genes

were performed by gene targeting using polymerase chain reaction

(PCR) products [76,77]. Cells were grown in rich YP medium supple-

mented with 2% glucose as the carbon source [78]. Synchronisation
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Figure 6. Organisation of the RFCCtf18 complex.
Schematic diagram showing the location of the Ctf8-Dcc1 heterodimer in
relation to the clamp loader/clamp and likely location of the Pol e binding site.
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in G1 was performed by addition of a-factor (0.4 lg/ml) for 2 h. To

arrest cells in early S-phase, G1 synchronised cultures were filtered,

washed and re-suspended in fresh medium containing 0.2 M hydrox-

yurea for 60 min. Arrest in G2/M was achieved by release into

medium containing 5 lg/ml nocodazole for 120 min.

Yeast molecular biology techniques

Chromatin immunoprecipitation was performed as previously

described [79], as was the quantitative analysis of chromatin

immunoprecipitates [80]. Analysis of sister chromatid cohesion was

done by visualising tetracycline repressor-GFP fusion proteins

bound to tetracycline operator arrays integrated at the URA3 locus

on chromosome 5, as previously described [81]. Hydroxyurea (HU)

resistance was tested by spotting 10-fold serial dilutions of cultured

strains on YPD agar containing 0 M, 0.1 M or 0.2 M HU. Antibodies

used for Western blotting or chromatin immunoprecipitation were

anti-HA (clone F-7, Santa Cruz), anti-tubulin (clone YOL1/34,

Serotec) and an antibody specific to Rad53 (ab104232, Abcam).

Data availability

Coordinates and structure factors of Ctf18C-Ctf8-Dcc1 and Dcc190–380

structures have been deposited in the Protein Data Bank under

accession codes 5MSM and 5MSN, respectively.

Expanded View for this article is available online.
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