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Abstract 

Background:  In order to find correlated pairs of positions between proteins, which are useful in predicting interac-
tions, it is necessary to concatenate two large multiple sequence alignments such that the sequences that are joined 
together belong to those that interact in their species of origin. When each protein is unique then the species name 
is sufficient to guide this match, however, when there are multiple related sequences (paralogs) in each species then 
the pairing is more difficult. In bacteria a good guide can be gained from genome co-location as interacting proteins 
tend to be in a common operon but in eukaryotes this simple principle is not sufficient.

Results:  The methods developed in this paper take sets of paralogs for different proteins found in the same species 
and make a pairing based on their evolutionary distance relative to a set of other proteins that are unique and so 
have a known relationship (singletons). The former constitute a set of unlabelled nodes in a graph while the latter are 
labelled. Two variants were tested, one based on a phylogenetic tree of the sequences (the topology-based method) 
and a simpler, faster variant based only on the inter-sequence distances (the distance-based method). Over a set of 
test proteins, both gave good results, with the topology method performing slightly better.

Conclusions:  The methods develop here still need refinement and augmentation from constraints other than the 
sequence data alone, such as known interactions from annotation and databases, or non-trivial relationships in 
genome location. With the ever growing numbers of eukaryotic genomes, it is hoped that the methods described 
here will open a route to the use of these data equal to the current success attained with bacterial sequences.

Keywords:  Phylogenetic tree matching, Correlated substitution analysis, Bipartite graph matching

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Introduction
The analysis of large multiple sequence alignments to reveal 
positions that co-vary (correlated mutations or substitutions) 
has recently become a powerful method to identify pairs of 
interacting positions that can be used as constraints in the 
construction of molecular models (see [1] for a review).

Correlated substitution analysis can also be used to find 
pairs of interacting positions between proteins if the mul-
tiple sequence alignments for two or more proteins are 
concatenated and processed as a single joint alignment. 
For this to work, however, requires that each pair of con-
catenated sequences coexist in the same organism (or a 
close relative) and have been subject to mutual evolution-
ary selection pressures.

If the pair of proteins is unique to that organism, then 
pairing-up the proteins on the basis of species name will 
produce the correct assignment. However, given the 
dominant mechanism of gene duplication and diversifi-
cation in protein evolution, the more typical situation is 
that there will be a number of choices (paralogs) for each 
protein with no guidance from the species name to which 
pairs of proteins interact.

In bacteria, the genes of proteins that interact are often 
co-expressed and found close in the genome sequence 
on an operon in which all the genes are under common 
expression control. Therefore co-location on the genome 
can provide a good guide to help match pairs of proteins. 
A way to do this is simply to note the difference in the gene 
identifier that are assigned sequentially along the genome.

However in eukaryotes, gene expression control is 
complex and co-location does not imply co-expression or 
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interaction of the resulting proteins. Indeed, interacting 
proteins can easily be located on different chromosomes.

Outline of the approach
Without any simple aid to pairing proteins, the relative 
sequence similarity between the paralogous proteins can 
be used as a rough guide. For example, if protein A and a 
interact and both duplicate to produce B and b which at a 
later time duplicate again into C and c  then their phylo-
genetic tree will be:

This structure would indicate that A/a is ancestral but 
remains agnostic on the pairing of the B/b and C/c pro-
teins. (Note that no information can be obtained from 
comparing the sequences between the different families 
as these will generally be completely unrelated proteins).

The way in which the inclusion of the B/b, C/c proteins 
identified A/a as ancestral can be extended by the inclusion 
of more family members and a recent duplication of C/c 
to D/d might allow B/b to be identified as a matching pair. 
However, as the number of paralogs cannot generally be 
guaranteed to be large, a more general approach is needed. 
Indeed, as a result of an ancient double genome duplication 
in the common ancestor of the metazoa (circa. 500M years 
ago), the number of paralogs for any gene is typically four.

The sketch trees drawn above are unrooted and to provide 
a root, it is common in phylogenetic analysis to include a 
distant family member to establish a root to the tree (called 
the outgroup). A similar approach can be used to help in 
the current situation but with the condition that the ’out-
groups’ should be drawn from a pool of related sequences 
that are unique to each species (and need not necessarily be 
distant relatives). For example, given three species: bat, cat 
and rat, the cat has four paralogs in each family (C1…4 and 
CA…CD) but the rat and bat have only one (B0, R0 and BZ, 
RZ). Including these extra sequences can resolve the ambig-
uous assignment of the cat sequences:

The known equivalence of the bat and rat sequences 
thus provides a reference frame allowing the relation-
ships of all the cat proteins to be established.

Such a scheme would be sufficient to solve the current 
problem, even with just one ‘outgroup’ species were it not 
for the introduction of evolutionary ‘noise’. Substantial vari-
ation in the relationships between the sequences in each 
family are to be expected as each family (C1..4 and CA..D) 
are completely different proteins with different pressures on 
their selection and possibly even different duplication times 
if one interaction partner begins by ‘moonlighting’ with two 
others. In addition, the use of the outgroup species assumes 
that they are unique, whereas it may simply be that they 
have other, unsequenced or unidentified, partners.

To circumvent the limitation of evolutionary ‘noise’ 
and the uncertainty in outgroup uniqueness, the proce-
dure can be repeated using different outgroups and dif-
ferent numbers of outgroups, building-up a consensus 
relationship among the paralogs. Ultimately, it would 
be best to use all the singleton outgroups to establish 
the relationships among the unlabeled sequences but 
the comparison of large trees is a computationally com-
plex and demanding calculation. Instead, a method will 
be developed below as a pre-filter that uses just the dis-
tances between sequences, thus avoiding the complexity 
of matching tree topologies.

In addition, the procedure is not limited to a single pair 
of families and other families can be included to establish 
consistent (transitive) relationships among them. In gen-
eral, given a set of proteins and species: 

 
sets of overlapping triples could be extracted and ana-
lysed for transitivity in their predicted matchings.

Relationship to other methods
The approach outlined above is not unlike the mirror-tree 
method [2] that attempts to find similarity between two, 
often quite large, trees of (labelled) orthologues from 
two species with the aim to identify interacting proteins. 
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While this method was considered for use in solving the 
current problem, it was avoided in favour of the simpler 
tree-matching methods in the PHYLIP package [3] which 
are sufficient for the smaller trees of paralogs.

The problem of paralog matching has recently been 
approached more directly by two similar methods that 
maximise the strength of the predicted contacts while 
iteratively introducing paralog pairings [4, 5]. Although 
only tested on a few examples, these methods give 
encouraging results but are limited by the heavy cost of 
continually recomputing the contacts. By contrast, the 
method developed below considers only direct sequence 
similarity which is a relatively fast calculation.

Methods
Topology‑based algorithm
The comparison of phylogenetic trees outlined in the Intro-
duction to discriminate unlabelled sequences in a partially 
labelled tree, relies on the relative distance of the unlabelled 
to the labelled sequences. Such a distance can only be com-
puted over branch-lengths when the two trees are topologi-
cally identical and given the degree of divergence expected 
between trees based on completely different proteins, such 
isomorphism cannot be guaranteed or even expected. To 
circumvent this problem, a degree of ‘noise’ was added to 
the sequence distances and matching trees extracted from 
the variations thus generated. For these calculations, the 
PHYLIP package [3] was used: firstly the program prot-
dist calculated the inter-sequence distances that were 
passed to the treedist program to find identical tree 
topologies. These were then re-processed by treedist 
using the branch lengths to return the distance between the 
trees (see “Implementation details” section, “PHYLIP pack-
age” for parameter settings).

This process was repeated a number of times and for 
different outgroup selections (see “Implementation 
details” section, “Outgroup selection and sequence dis-
tance scaling”). The pairings generated for the unlabelled 
nodes for each run were pooled and a final consensus 
generated using bipartite graph matching—as previously 
employed in the matching of unlabelled secondary struc-
tures in protein structure comparison [6]. (See “Imple-
mentation details” section,  “Bipartite graph matching” 
for a description of the algorithm.) The resulting pairings 
were then used to produce the concatenated sequence 
alignment required for the analysis of inter-protein resi-
due correlation (“Residue covariation analysis” section). 
The method was evaluated using different numbers 
of random trials, different numbers of outgroups and 
varying levels of random noise added to the distances. 
(Defined in more detail below).

The method is based on a pair of protein families, how-
ever, if three families are simultaneously considered then 

pairings that give consistent (transitive) solutions can 
be given precedence. As the method is stochastic, there 
may be solutions that fall short of transitivity within the 
’noise’ level. So that these were not missed, a number 
of pairings were generated by adding a small amount of 
noise to the similarity matrix before it was parsed by the 
bipartite matching algorithm. The pairings from these 
randomised comparisons were re-summed into a score 
matrix and those that generated a consistent relationship 
across the pairs of families were up-weighted by a factor 
of ten. The final consensus matrix was then re-processed 
by the bipartite matching algorithm with the resulting 
final solution thus including a bias towards transitivity.

The quality of data that is processed is shown in Fig. 1 
for five sequences from three proteins with six out-
groups embedded in a sequence-space using a dimen-
sional reduction method [7]. As no distances are known 
between the proteins, the three separate protein point-
sets (coloured red, green, blue) were combined to have a 
minimum RMSD superposition of their outgroups (larger 
balls).

Distance‑based algorithm
As the number of sequences increases, the chance of 
finding matching topologies using the method described 
above becomes smaller, requiring a corresponding 
increase in computation time to gain success. In addition, 
each protein may have different numbers of sequences 
which adds to the complexity. To alleviate these difficul-
ties, a simpler method was developed based only on the 
inter-sequence distances, without the constraint of rep-
resenting these in a tree structure. This approach also 
allows the distances of the unlabeled sequences to all the 
singleton sequences to be used. In practice, however it 
was found that a few hundred is more than ample and 50 
(default) is sufficient. The code will function with as few 
as two singletons but this limit was not tested.

The same method was followed as above, with the dis-
tances of each sequence to its intra-family singletons 
being compared between families to generate a matrix 
of similarities that can be processed by a bipartite graph-
matching algorithm. To retain the capacity to apply the 
transitivity bias described above, the protein families 
were processed as sets of triplets with the bipartite algo-
rithm operating on the three-dimensional matrix of simi-
larities (strictly, now a tripartite matching algorithm). The 
resulting matches are thus reduced to a set of sequences 
equal to the size of the smallest family—as required for 
the tree-based algorithm described above.

As much of the same code and data were used for 
both methods, the inclusion of a few outgroups was 
also retained in the sequence set for the distance-based 
algorithm. Although, now redundant (as all singleton 
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outgroups are compared), these additional sequences 
provided an internal control and only solutions, over a 
number of trials, that preserved the known identity of the 
outgroups were kept. As above, these were accumulated 
and re-processed by a final pass of the tripartite algo-
rithm to produce a consensus matching.

Solvent exposure filter
Structural information is assumed to be available for each 
protein, either in the form of a solved structure or as a 
predicted model based on calculated intra-sequence cor-
related mutation analysis, or any combination for a given 
set of proteins.

The known or model protein structures can add infor-
mation on the likely veracity of any given predicted 
inter-molecular constraint. Most obviously, if an inter-
protein contact is predicted between two buried residues, 
then it is less likely that the predicted contact is correct. 
(Although, the predicted pair may have co-evolved for 
reasons other than direct interaction.)

As any available structure must represent every 
sequence in a large alignment, the full-atom coordinates 
were not used to calculate the degree of burial for each 
position and as the structure may also be a relatively 
’rough’ model, consisting only of α-carbon coordinates, 
a pseudo-centroid was calculated for each side-chain [8] 
and the solvent accessible surface area (SASA) [9] calcu-
lated over this model using a probe radius of 5 Å, which 
is large enough to prevent cavities in the model appear-
ing to be exposed.

The score of each pairwise contact was down-weighted 
in proportion to the product of the logs of their SASA 
exposure, as: w = 1− exp(−Ai · Aj/100), where A is the 
SASA of each residue in the pair i, j. The spread factor of 
100 (c.f. variance in the Normal distribution) was chosen 
empirically to exclude only pairs of residues where one 
or both positions was substantially buried. The weight 
has a range 0..1 which allows the SASA contribution to 
be factored in as a linear contribution by a factor f as: 
S = f · s + (1− f ) · w · s, where s is the covariance score 
for the pair. When f = 0 there is no SASA contribution 
and when f = 1 the full SASA weight is applied.

Implementation details
PHYLIP package
Version 3.696 of the PHYLIP package was used [3]. (To 
download the package go to: http://evolution.
genetics.washington.edu/phylip.htm).

The program protdist, which calculates a distance 
between two sequences, was used with the JTT matrix 
[10] and otherwise default parameters.

The program neighbor was used with the Neighbor-
Joining method [11] to generate unrooted trees (taking 
the species in randomised order).

The program treedist was run in two modes: firstly 
with the “Symmetric Difference” option which uses the 
algorithm of Robinson and Flouds [12] to compare tree 
topologies, allowing those with an identical topology 
to be selected. However, as the PHYLIP programs only 
operate with labelled sequences, a ‘dummy’ working label 

Fig. 1  Sequence space visualisation. The distances between five unlabelled sequences (small balls) from three proteins (red, green, blue) are 
embedded in a sequence-space along with six ‘outgroups’ (larger balls). The known matching between the singleton outgroups is indicated by thick 
lines. The unknown matching to be predicted for the unlabelled sequences (parlogues) is indicated by fine lines. The two parts are a stereo-pair (to 
be viewed cross-eyed)

http://evolution.genetics.washington.edu/phylip.htm
http://evolution.genetics.washington.edu/phylip.htm
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was assigned to each sequence and all permutations of 
the working labels were tested allowing pairs of trees to 
be selected that had both identical topology and match-
ing working labels. The difference between topologically 
identical trees was then calculated using the “Branch 
Score Distance” option which compares the lengths of 
the branches using the algorithm of Kuhner and Felsen-
stein [13].

Outgroup selection and sequence distance scaling
The selection of outgroups for the topology-based 
algorithm was made by random selection of a pair of 
sequences/species from the list of singletons. As these 
have a known correspondence across all protein sets, it is 
possible to check that they have a consistent relationship. 
The visual equivalent in Fig.  1 is to measure how small 
the triangles are that connect the large balls (that repre-
sent in this example, six outgroups from three proteins, 
coloured red, green, and blue). However, as the outgroup 
sets are not superposed as in Fig. 1, a proxy for this rela-
tionship is whether the intra-protein outgroup distances 
are similar between proteins.

As more than one outgroup is always chosen, the con-
sistency of their inter-relationship can be tested by com-
paring the RMS deviation between equivalent pairs of 
outgroups across different proteins. Specifically, if dij is 
the inter-sequence distance (calculated by the PHYLIP 
program protdist) between two outgroups, then 
over each set of outgroup sequences, an average dis-
tance was calculated as: d̄ = 1

N

∑
dij, over N pairs of 

sequences, and from this the RMSD (σ) was calculated 
as: σ =

√
( 1
N

∑
(dij − d̄)2). If 100 · σ fell above a given 

cutoff (initial value of 50n+ 100, where n is the number 
of outgroups), then the selection was discarded and new 
outgroups were picked. However, to ensure some suc-
cess, the cutoff was gradually increased by 10 with every 
selection.

As each set of sequences can come from completely 
unrelated proteins, these may have different rates of evo-
lution making the comparison of internal distances (or 
branch-lengths) between protein sets less reliable. To 
reduce this effect, sequence distances were normalised 
using the average outgroup distance, d̄, as calculated 
above, with the inter-sequence distance, dij (for sequence 
pair i, j) replaced by: dij · 10/d̄.

Bipartite graph matching
Although the “Stable marriage” algorithm was used pre-
viously [6] it does not guarantee the highest score on a 
weighted graph and a simpler semi-greedy algorithm was 
implemented instead. This took the ranked list of edges 
and starting with the highest, generated a matching by 
working down the list of edges. To prevent the strongest 

edge dominating the solution, this was repeated starting 
with the 2nd, 3rd,… Nth edge in the rank, with N being 
the number of nodes in each set. All the edges above 
and below the starting edge were still allowed to be part 
of the solution and the solution with the highest sum of 
weighted edges was selected. These algorithms can be 
used with unequal number of nodes in the sets.

The same algorithm was used for tripartite match-
ing but with a list of edges taken from all combinations 
of triple matches. Within a species, the inter-protein 
distances (d) were scaled and stored in the range 0...255 
and between species i and j, a similarity measure (s) was 
calculated as: sij = exp((di − dj)

2/100) The entry in the 
matrix of matches for each triple of sequences (i, j, k) was 
then: Dijk = sij + sjk + sik + r/10, where r is a random 
number between 0 and 1.

The process was repeated and for each solution, the 
pair of labelled ‘outgroups’ was used as an internal 
quality-control check and only solutions that correctly 
matched these was accepted.

Sequence data
Sequence searches were made using the Hmmer method 
[14] using the server at the EBI (https://www.ebi.
ac.uk/Tools/hmmer/search/phmmer) with the 
default search parameters. As some of the proteins have 
very large numbers of sequences, their number was lim-
ited to around 10,000 by using a variation of the repre-
sentative proteomics database (pr15...pr75).

Some of the proteins have individual Pfam entries for 
each of their domains and they were used where available 
[15].

Species identity was established by the coded-identifier 
included in the SwissProt code (the part following the 
underscore). If only the full species name is available, this 
can also be used after the removal/replacement of spaces 
and concatenation to the sequence identifier using the 
underscore character.

A list of species codes can be found at: http://www.
uniprot.org/docs/speclist. Only real species 
were used and the higher taxonomic groupings or “vir-
tual species” (which have a code starting with ’9’) were 
excluded.

Residue covariation analysis
In previous studies, the GREMLIN method [16] had 
been found to give good quality contact predictions [17, 
18] and also has the benefit of generating a best struc-
ture match to the predicted contacts (based on an iter-
ated double-dynamic programming algorithm [19]). 
(http://gremlin.bakerlab.org/index.php).

Although the method can be downloaded for local 
use, the equivalent CCMpred program [20] was used 

https://www.ebi.ac.uk/Tools/hmmer/search/phmmer
https://www.ebi.ac.uk/Tools/hmmer/search/phmmer
http://www.uniprot.org/docs/speclist
http://www.uniprot.org/docs/speclist
http://gremlin.bakerlab.org/index.php
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which provides a complete list of contacts, allowing 
some weaker inter-domain residue pairs to be con-
sidered. (General Public License v3 was downloaded 
from https://bitbucket.org/soedinglab/
ccmpred).

Contact score
The accuracy of a predicted contact was evaluated as 
previously [18] using a ‘soft’ measure of contact based 
on either the separation of the α-carbon atoms or the 
pseudo-centroids of the positions (as defined above), 
Both distances were inverted to give a score by a Gauss-
ian function with an ideal separation of 10 Å for pairs of 
α-carbon atoms or 6  Å for pseudo-centroids. (With an 
α-carbon–centroid ‘bond’ of 2  Å, this is equivalent to 
the 10  Å α-carbon separation). A spread factor (c.f. the 
standard deviation of the Normal distribution) of 5 Å was 
used for both types which means separations over 20 Å 
are effectively zero. Distances under the ideal separation 
were given a score of 1 (maximum) and those over 20 Å 
were ignored (score = 0).

The contact scores were typically plotted against the 
rank of the contact score but as this tends to be noisy, a 
cumulative score was plotted which is easier to assess vis-
ually. In a perfect selection, each pair will each score 1 so 
the closer this cumulative contact score approaches the 
line with unit slope (diagonal), then the better the result. 
This relationship was re-expressed as the gap between the 
score and the ideal line giving an error measure referred 
to below as the cumulative contact score error (CCSE), 
which should ideally remain zero over as many of the 
top-ranked contacts as possible.

Investigation protocol
Each test protein was processed following the same pro-
tocol (or pipeline). A wider range of options and param-
eters were considered for those tested initially and if any 
appeared markedly detrimental they were not explored 
fully in later tests. For options that appeared to make lit-
tle difference to the results, the simpler implementation 
of the method was adopted.

1.	 Domains were identified by a combination of manual 
and automatic methods [21].

2.	 The domain sequences were scanned against the 
sequences database, including Pfam, either separately 
or concatenated to gather between 5000–10,000 
sequences for each domain (if possible).

3.	 The sequences from species that were found in all the 
alignments were extracted and classified as singleton 
or multiple entry.

4.	 The distance-based algorithm was applied to 
sequences belonging to a common species with tests 

being made varying the number of trial runs (10, 30, 
50) and, to a lesser extent, the degree of noise added 
to the pairwise sequence distances (0.05, 0.1, 0.2).

5.	 The sequences for matched pairs of proteins were 
concatenated and the resulting joint alignment ana-
lysed for residue covariation.

6.	 The list of matched sequences was passed to the 
topology-based algorithm and the sequence matches 
recalculated. This was repeated varying the param-
eters as above with, in addition, variation in the num-
ber of outgroups (singletons) over 2, 4 and 6.

7.	 The results of both algorithms were analysed by the 
percentage of matched sequence identifiers and 
the fidelity of the predicted contacts, with the lat-
ter including a consensus over the runs with differ-
ent parameter values. Varying degrees of re-ranking 
based on solvent exposure were investigated.

Computer requirements
The two core algorithms differ in their execution times by 
around an order of magnitude. However, much of this dif-
ference is due to the inefficient execution of PHYLIP pro-
grams very frequently. If this component were recoded in 
a single program large savings would be made. The faster 
distance-based method is limited by the step of comput-
ing the distance of the current group of paralogs to the 
singleton outgroups. Limiting these to 50 (default) helps 
and while this number might be further reduced, time 
could be saved by precomputing all these distances (which 
are frequently reused). For these reasons, no algorithmic 
complexity estimates have been made for the algorithms.

In practical terms, the length of a calculation depends 
directly (in a linear manner) on the number of species 
and the number of random trials performed. Both of 
these aspects are completely independent of each other 
which means that all species and all random trials can be 
processed in parallel. Given, access to a compute-farm, 
the time for a run will be the time for one trial on one 
species. For the distance-based method, this currently 
takes on average one minute for a typical species with five 
paralogs in each of its three protein families.

Results
Test data requires protein complexes of known structure, 
each component of which has sufficient sequences that 
can be aligned and equated with their partners across the 
protein families to generate a concatenated alignment. 
In bacterial systems, many such examples can be found 
and the alignments automatically generated and paired, 
for example by the GREMLIN method [16]. However, 
the automatic pairing across families retains an element 
of error which can be simply avoided by using domains 
in large proteins instead of subunits in a complex, which 

https://bitbucket.org/soedinglab/ccmpred
https://bitbucket.org/soedinglab/ccmpred
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because of their covalent link through the protein chain, 
are known without doubt to coexist and interact in the 
same organism.

With an aim towards assessing the contribution of tran-
sitivity in the pairing process, proteins with at least three 
domains were selected with preference given to those 
that had compact, self-contained, structures including 
interactions between each pair of domains. For this the 
3did domain database [22] (http://3did.irbbar-
celona.org/) provides a valuable resource. A selec-
tion of proteins that met the structural requirements and 
also had sufficient sequences to generate an inter-domain 
correlation signal are listed in Table 1.

1aoz
Ascorbate oxidase, 1aoz, consists of three all-β (Cu++ 
binding) domains, roughly 150 residues in length, that 
mutually interact. Conveniently, there is a Pfam entry 
for each domain (PF07731, PF00934 and PF07732, in 
sequential order) but due to alignment profile shrink-
age, each domain suffers some loss of sequence at their 
termini, however, the core domains and their interacting 
regions are unaffected.

Combining the Pfam families resulted in roughly 
5000 sequences for each domain (Table 2). In which 720 

species, were found in all three domain families and of 
these, 122 had a unique occurrence and were taken as 
the source of ‘outgroup’ species to combine with the sub-
groups of unassigned sequences. The distribution of the 
number of sequences for each species shows that about 
85% have 10 or less sequences with the larger families ris-
ing to just over 100 members (Fig. 2).

Distance‑based algorithm
Taking a cutoff of a maximum of 10 sequences per spe-
cies and applying the tripartite matching algorithm to 
select a set of equal numbers of sequences for each spe-
cies, reduced the total number of sequences for each 
domain to just under 2600, depending slightly on param-
eter choice. The two main parameters that were varied in 
the method were the number of trials and the degree of 
random perturbation applied to the edge-scores. These 
were evaluated by the percentage of correctly matched 
species names obtained over the three combinations of 
domains used in each test. However, this can only pro-
vide a rough absolute guide as close homologues may 
be selected which will still give a correct signal but will 
have different sequence identifiers. As such selections 
will be effectively random over a large number of species, 
the measure can, nevertheless, still be used for the rela-
tive comparison between runs. Based on this measure an 
average correspondence of 40% was obtained across all 
runs with little variation seen between parameter com-
binations. As the method appears quite insensitive to 
parameter variation, the randomisation factor was kept 
constant at 0.1 for all further runs while the number of 
trials was varied over the values 10, 30 and 50. The three 

Table 1  Proteins used as test data

Against the protein name and PDB code, the length of the portion used is given 
with the length of the full chain in parentheses. The three domains used for each 
protein are specified by their residue numbers in the PDB entry and the length 
of the domain. (NB: because of missing segments in the PDB structure and 
omitted segments, the difference in the domain end-points does not necessarily 
equal the number of residues in the domain)

PDB Protein Length Domain ends
Used (full) N–C (len)

1aoz Ascorbate oxidase 434 (552) 9–126 (118)

135–301 (167)

378–526 (149)

1lci Luciferase 404 (404) 24–186 (163)

187–355 (164)

359–435 ( 77)

1pkm Pyruvate kinase 367 (390) 41–116 ( 76)

117–388 (172)

409–527 (119)

3ctz Prolyl aminopeptidase 572 (617) 3–160 (158)

161–319 (159)

320–574 (255)

3vqt Translation factor RF3 495 (495) 1–277 (250)

278–389 (105)

390–529 (140)

4rcn Fatty-acid acyl-CoA 
carboxylase

401 (1972) 3–102 (100)

103–345 (176)

346–470 (125)
Fig. 2  Sequence distribution per species. The number of sequences 
found for each of the 720 species is plotted (Y-axis as log10) for each 
of the three domains that comprise the protein 1aoz (Ascorbate 
oxidase), ranked by the size of the smallest number of sequences in 
the three domains (X-axis)

http://3did.irbbarcelona.org/
http://3did.irbbarcelona.org/
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values were retained to generate variation to allow a con-
sensus selection of predicted contacts to be made.

The concatenated domain alignments were analysed 
by the residue covariation method to generate pre-
dicted contacts and a visual assessment of the contact 
maps, as plotted by the GREMLIN server, revealed only 
two closely spaced inter-domain contacts, which were 
nonetheless correct. Examination of the extended list 
of contacts calculated by the similar CCMpred method 
indicated additional contacts, not all of which were cor-
rect. To estimate a possible lower cutoff to discriminate 
true from false contacts, the cumulated contact score 

error, or CCSE (see “Methods” section), was plotted 
against the rank of the pair. The CCSE for 10, 30 and 50 
trials and their consensus remained low over the first five 
contacts, then rose gradually (Fig.  3a, thin green lines). 
Given that most residue pairs do not make any contact at 
all, this is clearly not a random selection.

To further reduce noise in the selection, only the resi-
due pairs that were found in two or more datasets were 
plotted This reduced the error level over the top 15 con-
tacts but gave little improvement in the top 5 (Fig.  3a, 
thick green line). There was little difference observed 
when requiring that each pair must be included in all 

Fig. 3  Top ranked contacts for 1aoz. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consensus 
plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. In both, the cumulative contact score 
error is plotted (Y-axis) against the rank of the pair (X-axis). The lower two panels constitute a stereo-pair of the structure with the domains coloured 
sequentially, purple, green, orange and the top predicted contacts linked by blue lines. The number of contacts to view was taken at the point 
where the purple line in (b) remained below a CCSE of 2
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three datasets. Adding the filter to reduce the weight of 
buried residue pairs resulted in a further improvement 
in selectivity with a 30% contribution having the greatest 
effect (Fig. 3b, green lines). The resulting selection of res-
idue pairs would be sufficient to constrain the domains in 
a reasonably unique orientation but this will be evaluated 
more quantitatively elsewhere following the approach 
used previously for RNA [23].

With larger numbers of sequences per species, the 
chance of obtaining a correct pairing decreases but 
including more sequences should also help improve the 
correlation signal. This balance between sequence num-
ber and accuracy, which was set above at a limit of ten 
sequences per species, was reassessed using the CCSE 
plot. Limits of five and fifteen sequences per species were 
tested with the lower limit giving a 10% increase in accu-
racy and the larger limit a drop of 5%, both relative to 
the 40% accuracy obtained with the limit of 10. The cor-
responding sequence numbers were 1824, 2595 and 3015 
and to see if this compensates for matching accuracy, the 
resulting cumulative contact score plot were compared 
(Fig. 4). These plots indicate that the ’default’ limit of ten 
species (green lines) gave the best selection of residue 
pairs and was retained as the default value throughout.

Topology‑based algorithm
The phylogenetic tree (topology) based algorithm was 
tested as above but because of the greatly increas-
ing computation time required for the permutation 
of the sequence order on the tree (see “Methods”), this 
approach was restricted to five unlabeled sequences 

embedded with up to six labeled sequences (the ‘out-
groups’). The list of sequences produced by the dis-
tance-based method (which all have an equal number 
of sequences per species) was taken as input and the 
sequence pairings re-calculated. As above, the percent-
age of matching sequence identifiers was taken as a rough 
guide, followed by the comparison of the CCSE plots. In 
addition to the number of trials, the topology method has 
the further complication that the number of outgroups 
can be varied. As above, the results with 10, 30 and 50 tri-
als were again evaluated but with each now in combina-
tion with 2, 4 and 6 outgroups.

The contacts predicted from the concatenated align-
ment have been visualised using the GREMLIN server 
which also uses the predicted contacts to find a structural 
match (Fig.  5). A clear correspondence in inter-domain 
contacts can be seen, even though some contacts lie 
towards the weaker end of the spectrum.

With a sequence identifier match of 58.6%, the topology 
algorithm was an improvement over the 52.6% obtained 
with the distance algorithm using the same upper limit of 
5 sequences per species (averaged over all the runs). The 
nine CCSE plots for each parameter combination, along 
with their consensus plot show a corresponding depres-
sion (improvement) compared to the results from the 
distance algorithm (Fig. 3a, purple lines). With the addi-
tion of a small contribution from the SASA filter, up to 15 
contacts remain relatively error free (Fig. 3b, purple lines, 
with the 30% contribution plotted as a thicker line). The 
contacts corresponding to this trace are shown in Fig. 3.

Shuffled control test
As a control, the sequence pairings were shuffled. As 
there is no distinction between paralogs and orthologs 
at the sequence level, the shuffling was made at the 
final stage when the three domain alignments are con-
catenated. This was done by cyclicly permuting the 
sequence order in the second alignment by 1/3 and 
the third alignment by 2/3. This degrades the inter-
domain contact signal to such an extent that, for exam-
ple, almost all intra-domain contacts for the full 1aoz 
sequence (20,000) were ranked above the inter-domain 
contacts using the CCMpred program. As a stricter 
control, a similar shuffling was made just within each 
set of paralogs. This maintains the match of singletons 
and, on average, half of doubletons a third of triples, etc. 
As expected, these randomised results lie between the 
fully random results and the optimal results (see Addi-
tional file 1).

1lci
Luciferase, 1lci, has a core structure of three domains 
and a weakly interacting C-terminal domain which was 

Fig. 4  Top ranked contacts from the distance-based algorithm. The 
results of the distance-based algorithm with different maximum 
numbers of sequences per species are compared using the CCSE 
plot of the predicted contacts for a maximum of 5 (red), 10 (green) 
and 15 (blue) over three runs each with the consensus plotted with a 
thicker line. The corresponding sequence numbers were 1824, 2595 
and 3015
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removed. The remaining core domains, sequentially, two 
β/α domains followed by an all-β domain, all interact 
closely and are sequentially separated.

After reducing the initial databank sequences to 
those that had common species for each domain, 3841 
remained, of which 565 were singletons. When matched 

with the distance-based algorithm, 64% correct sequence 
identifiers were matched (Table  2). In terms of contact 
prediction, this translated into a number of correct con-
tacts (Fig.  6a, green lines). Taking the consensus, there 
were no errors in the top 6 and only one in the top 11 
(Fig. 6a, thick green line).

Fig. 5  Contacts predicted by the GREMLIN method for 1aoz. The concatenated alignment generated by the topology-based method was submit-
ted to the GREMLIN server with the results shown as a matrix of predicted contacts on a scale of light to dark blue (strongest). The origin is the 
top-left corner (a). In b the stronger contacts are overlayed on contacts from the closest matches found in known structures (grey dots), using an 
adaption of Taylor’s double-dynamic programming algorithm. For comparison, c and d show the contacts predicted by GREMLIN when given the 
full correctly paired concatenated alignment of domains. Bold lines correspond to domain boundaries and feint lines mark residues by 10 and 100s
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Applying the topology-based algorithm to the set of 
2045 sequences (reduced because of the lower upper 
limit of 5 sequences per species) resulted in a slight 
increase in the number of incorrect contacts but with the 
CCSE measure still remaining below 2 over the top 16 
residue pairs (Fig. 6).

The SASA filter made little difference to either the dis-
tance-based or the topology-based results (Fig. 6b green 
and purple lines, respectively).

1pkm
Pyruvate kinase, 1pkm, has three distinct domains com-
prising a TIM barrel with a C-terminal β/α domain and 
an all-β domain inserted roughly in the middle of the 
TIM barrel. As the inserted domain interacts less strongly 
than the other pair and the interruption in the TIM bar-
rel makes the sequence manipulation more complex, this 
domain was removed and instead the two remain parts of 
the TIM barrel were treated as separate domains.

The initial 6500 odd sequences found for this protein 
dropped by half when filtered for common species and 
of the remaining 3275, 1026 were singletons. Boosted by 
this large number of correctly matched singletons, the 

overall percentage of matched sequence identifiers was 
72% (Table 2). This translated into well predicted residue 
pairs with errors only starting to accumulate after the 
top 20–30 contacts (Fig.  7a). The SASA filter gave little 
improvement with either the distance- or topology-based 
methods (Fig. 7b).

The majority of the top predicted contacts were 
between the first two domains which were the parts of 
the TIM barrel. However, within the top 20 contacts, 
three good links were seen between the third domain and 
the previous two (Fig. 7).

3ctz
Cytosolic X-prolyl aminopeptidase, 3ctz, has three 
interacting β/α domains, with the largest C-terminal 
domain terminating in two α-helices that do not contrib-
ute to the domain interfaces which were removed.

Despite the small number of just 1085 sequences after 
filtering and 487 singletons, the percentage of matched 
sequence codes was remarkably high at 93%. This 
appeared to be due to the lower number of sequences 
reducing the number of sequence per species to more 
managable groups with almost all falling under five.

Table 2  Sequence data and pairing accuracy

For each protein (“PDB”), the number of sequences found for each domain in the initial databank search is tabulated under “start”, followed by the number of species 
common to all domains (“spec.”) and the number of species with a single sequence entry (“ones”). After processing by the distance-based algorithm the number of 
sequences common to all domains dropped (“dist.”) with a further drop on application of the more restrictive topology based algorithm (“topol.”). The rough measure 
of matching success, based on the identity of paired sequence codes is given for the two methods (“dist.” and “topol.”) as a percentage along with the success rate for 
the topology based method when the transitivity bias is omitted (“no trans.”). These values are averages over the three domain pairings but as these matches are not 
independent, the percentage over the first two domain pairs (1,2 and 2,3) are given in parentheses

PDB Start spec. Number of seq.s Percent code match

ones dist. topol. dist. topol. no trans.

1aoz 8553 720 122 2588 982 39.7 (62.9) 58.6 (55.5) 54.8 (55.3)

6356

7940

1lci 5843 1579 565 3841 2045 63.8 (76.0) 75.7 (74.6) 60.8 (62.2)

5830

5655

1pkm 6243 1566 1026 3275 1989 72.3 (81.8) 80.0 (81.2) 79.9 (81.2)

6499

6532

3ctz 2095 634 487 1085 785 93.2 (94.7) 91.9 (91.5) 91.1 (90.8)

2143

2137

3vqt 4886 1132 633 2896 1858 95.8 (97.3) 91.3 (91.2) 91.6 (91.5)

4886

4886

4rcn 6018 705 120 2426 1151 50.2 (72.0) 53.1 (50.6) 53.1 (50.2)

4212

5879
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The resulting predicted contacts, which were simi-
lar for both methods, gave an unexpectedly high CCSE 
(Fig. 8a) which was not helped by any degree of exposure 
filtering (Fig.  8b). Examination of the contacts on the 
structure (Fig. 8) clearly showed that the top 15 contacts 
were effectively correct but those between the first and 
last domains were long, up to 20 Å. It seems likely that 
these constitute a meaningful covariation signal, either 
originating through interaction with a common moiety, 
or more likely, come into contact through domain move-
ment in the the native protein.

3vqt
The translation factor RF3, 3vqt has three distinct, 
closely interacting, domains that were adopted without 
editing.

The initial run of the distance-based algorithm gave 
a remarkably accurate pairing of sequence identifiers 
of 96% over almost 2900 sequences (of which 633 were 
singletons). Despite this accuracy over a good num-
ber of sequences, only the top 7 contacts were correctly 
predicted by the distance-based method and even less 
with the topology-based method, before errors quickly 

Fig. 6  Top ranked contacts for 1lci. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consen-
sus plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. The lower two panels constitute a 
stereo-pair of the structure with the domains coloured sequentially, purple, green, orange with the contacts in blue (selected as described in the 
legend to Fig. 3)
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accumulated (Fig. 9a). A situation that was not helped by 
any degree of SASA filtering (Fig. 9b).

4rcn
The long-chain fatty-acid acyl-CoA carboxylase, 4rcn, is 
a large multi-domain protein but has an amino terminal 
group of three mutually interacting domains.

Despite having a typical distribution of sequences 
and sequence codes matched to a comparable degree as 
1aoz, the predicted contacts for this molecule were the 
poorest yet observed. With no apparent reason for this 
in the distribution of data, it may be the result of errors 

in the data such as misaligned sequences (as the full 
sequence is very long), or simply due to natural variation 
in the degree to which the domains interact (Fig. 10).

Transitivity contribution
The contribution of consistent pair selection (transitivity) 
was assessed by removing the bonus score given to tran-
sitive relationships. It can be seen from the percentage 
of matched sequence codes that this can make a marked 
contribution to those that have a lower percentage but 
when the quality of match is high, the contribution is not 
noticeable (Table 2, rightmost column).

Fig. 7  Top ranked contacts for 1pkm. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consen-
sus plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. The lower two panels constitute a 
stereo-pair of the structure with the domains coloured sequentially, purple, green, orange and the contacts (blue) selected as previously
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Although the boost to select transitivity takes no addi-
tional computer time, it does reduce the number of 
sequences by requiring that there is sequence member 
present in each of the three proteins. To test this effect, 
a sample of the proteins considered above were pro-
cessed as domain pairs and it was found that the num-
bers dropped only by between 10 and 100. These were 
run as pairs and to maintain comparability this test used 
the same code but with two of the three domains being 
identical. This ‘short-circuits’ the transitivity test causing 
it to default to a test for reflexive relationships that were 
still given the same bonus when they were found. On a 

limited number of trials, the results were not significantly 
different from the triple sets within the ‘noise’ level of 
repeated runs (data not shown).

It should be noted that the domain derived examples 
considered above have well balanced sequence sets since 
the three domains are derived from the same chain. If the 
sequences had been collected independently, a larger differ-
ence would be expected. In this situation, running both as 
domain pairs (as in some additional examples below) and 
as triples (to gain any transitivity contribution) would be 
recommended. The results from these differing runs can, of 
course, still be pooled into a consensus as described above.

Fig. 8  Top ranked contacts for 3ctz. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consen-
sus plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. The structure is a stereo pair with 
domains coloured sequentially, purple, green, orange and contacts in blue (selected as described above)
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Cutoff selection
All the methods and filters tested above give no indica-
tion of the extent to which predicted contacts can be 
trusted. The degree of error that can be tolerated will, of 
course, depend to some extent on how the information 
is used but assuming that some form of docking method 
will be employed to satisfy the predicted contacts as 
restraints, then it is likely that more than 30% error 
would make it difficult to find a unique solution.

Three approaches to this problem are explored below 
using internal consistency tests based on aspects of the 
known structures of the component domains, including 

the situation where the interaction of one pair of domains 
is known.

Exposure based cutoff
The principle that buried contacts should be less likely to 
contribute to an interface was tested above as a filter on 
the selection of residue pairs. Although the benefit of this 
filter was marginal, it was re-tested as a criterion on which 
to limit the number of contacts that should be considered. 
A measure of burial error was taken as 1− w, where w is 
the Gaussian transform of the product of the SASA for 
a pair of residues (see  “Solvent exposure filter” section). 

Fig. 9  Top ranked contacts for 3vqt. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consensus 
plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. The structure has domains coloured 
sequentially, purple, green, orange with contacts in blue (selected as described above). Unlike the previous examples, the top contacts predicted by 
the distance-based algorithm are shown
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This score is 1 for a fully exposed pair and 0 for a com-
pletely buried pair. The score was accumulated over the 
ranked list of residue pairs in the same way as the CCSE.

The plot of the accumulated burial score was gener-
ally low for the top ranked residue pairs (in agreement 
with their expected surface location) and rose at a rate 
of roughly half that observed for the CCSE. Applying a 
scale factor of 0.5 to the rank, allowed these two measure 
to be compared more easily (Fig. 11, green line = CCSE, 
purple = burial error). For four of the proteins (1aoz, 
1lci, 1pkm, 4rcn), the curves run reasonably close, by 
contrast, a substantial shift to the right (higher rank) was 

seen for 3ctz and 3vqt. If taken as a cutoff, this would 
lead to the inclusion of too many contacts. However, this 
would be a reasonable outcome for 3ctz where the long 
contacts between domains 1 and 3 can be considered 
correct but for 3vqt false contacts would be included.

Inter/intra contact balance
In the test examples used above, only the contacts 
between domains were considered, however, the covaria-
tion analysis gives predictions for all pairs of residues and 
as the structures of the component domains are assumed 
to be known, then the increase in internal contact errors 

Fig. 10  Top ranked contacts for 4rcn. a Raw data with the consensus plotted bold: green = distance-based, purple = topology-based. b Consen-
sus plots filtered by residue exposure. Bold = 30% weight: green = distance-based, purple = topology-based. The structure has domains coloured 
sequentially, purple, green, orange with contacts in blue (as above)
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Fig. 11  Internal controls on pair numbers. Two internal quality control measures were evaluated to assess pair selection based on the known 
domain structures. The CCSE score for inter-domain residue pairs (green) is plotted along with the CCSE score for intra-domain pairs (orange) but 
with the rank of the latter (X-axis) scaled by a factor of 1/10 to make the plots commensurate. The accumulated burial score for inter-domain resi-
due pairs is also plotted with a smaller reduction by 1/2 (purple)
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can be used to identify a cutoff limit. Because of their 
weaker degree of interaction and the errors in sequence 
matching, the inter-domain contacts will be predicted 
with a much lower score than their internal counterparts. 
Thus a relative comparison is needed.

The error in the intra-domain contacts accumulated 
much more slowly than the inter-domain contacts (for the 
reasons mentioned above) and applying a factor of 1/10 
to the rank scale brought the majority of the curves closer 
to the inter-domain CCSE curve (Fig.  11, orange lines). 
An exception was 1pkm, which is dominated by the con-
tacts between the two halves of the TIM barrel which are 
effectively internal contacts which suffer little loss of fidel-
ity because of the accurate matching of sequence pairs 
(Fig. 11c). For 3ctz the intra-domain contact error plot, 
like the burial error plot, also stayed low over more of the 
ranked list of residue pairs indicating, correctly, that more 
contacts should be included than would be suggested by 
the CCSE plot (Fig.  11d). Unlike the burial measure, for 
3vqt the internal contacts indicated that a stricter cutoff 
should (correctly) be applied (Fig.  11e) but for 4rcn the 
situation was reversed with the internal contacts (wrongly) 
admitting more residue pairs than the burial measure.

Consensus cutoff
Combining the two measures evaluated above may lead 
to a more robust cutoff and simply taking the point where 
the average of the two curves equals 3 (feint blue line on 
the plots in Fig.  11) would give a good estimate of the 
number of correct contacts. However, such is the varia-
tion between individual proteins that more examples will 
need to be tested.

Known pair interaction
The test examples used above were chosen to have three 
interacting domains not only to test the benefit of finding 
transitive relationships but also so that the interaction of 
a pair of domains can be assumed to be known and used 
as a way to set a limit on the number of predicted con-
tacts to be considered.

This was evaluated by finding the limit in the ranked 
residue pairs within which all predicted contacts between 
domains 1 and 2 were correct. The same number were 
then evaluated between domains 1 and 3 and between 
domains 2 and 3 using the criteria that the resiue pair 
must be within the 20 Å cutoff, with a clear ’view’ of each 
other. (This includes the widely separated residue pairs 
between domains 1 and 3 in 3ctz.) A simple table of true 
and false tally of contacts was then compiled (Table 3).

Although this is only a limited and superficial evalua-
tion, it is sufficient to high-light pit-falls. Most obviously, 
from the example of 1pkm where it is clearly not useful 
to use the contacts in an artificially split single domain 
(the TIM barrel) to set a limit on less tightly interacting 
domains—even if both have had their sequences paired 
in the same way. However, with the exception of 3vqt, 
a reasonable selection was made for the other proteins 
with most scoring 50% and over.

Comparison to other methods
The two methods, mentioned in the Introduction [4, 5], 
that directly maximise the strength of the predicted con-
tacts are evaluated below. Given limitations on computer 
time, this comparison is not an exhaustive benchmark 
but is sufficient to give a clear indication of the relative 
performance of the methods.

Bitbol et al. method
Bitbol et  al. tested their method on the bacterial histi-
dine-kinase/response-regulator system. The kinase is a 
large protein and the regulator is a small protein of which 
che-Y is a typical family member. There is no shortage of 
sequences in both families, which in the current Pfam 
databank, have 85,578 and 176,760 members in the “full” 
entry or around six times as many in the “Uniprot” and 
“NCBI” entries in the database. Not unsurprisingly, the 
authors did not deal with these numbers but used around 
5000 sequences from each family and a fragment of the 
kinase comprising the alpha-helical hairpin that acts as 
a ’docking-platform’ for the response-regulator. Running 

Table 3  Predicted contact numbers assuming one known pair

For each protein (“PDB”) the maximum number of correct contacts between domains 1 and 2 (“known”) was used to limit the residue pairs considered between the 
other domain pairs. In these interactions, the number of true (“T”) and false (“F”) contacts is tabulated and scored by the fraction correct (“score”)

PDB Domains 1,2 Domains 1,3 Domains 2,3 Score

(Known) T F T F

1aoz 3 3 0 3 0 6/6

1lci 10 0 2 8 1 8/11

1pkm 11 3 7 4 6 7/20

3ctz 7 7 0 6 1 13/14

3vqt 6 1 5 2 4 3/12

4rcn 3 1 2 2 1 3/6
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on a single laptop, it was practical to run this system with 
the parameter Nincrement set to 25 which gives around 
80% accuracy in pair assignment. Such a run takes sev-
eral hours.

The same dataset when processed using the current 
distance-based method gave 70.8% accuracy over 654 
sequence pairs with the family size limited to 5 paralogs 
or 50.6% over 1900 sequence pairs with a limit of 10 per 
family. As it was suspected that these results were ham-
pered by the small size of the kinase fragment, the full 
topology-based method was not run and the proteins 
were rerun instead using the full protocol outlined above 
starting with the smaller Pfam entries from the reference 
proteome datasets (rf15) comprising 15,502 and 31,596 
sequences extracted from the families PF00512 and 
PF00072, respectively. With these, still large datasets, the 
current method was only run using the distance-based 
methods which is sufficient to provide a lower-bound 
on performance. This gave a percentage accuracy of pair 
assignment of 72.2%, but only over 306 sequence pairs. 
As shown above, following this with the topology-based 
method is likely to add up to 10%. Despite the large num-
ber of starting sequences, the low number remaining 
most likely is because the rf15 datasets have been inde-
pendently reduced for each protein without the require-
ment to preserve matching species.

These limited results provide an indication that, 
although the current method falls behind on the Bitbol 
et  al. test dataset, it retains the capacity to be applied 
to larger systems with equal effect, but further testing 
should be better carried out using protein families of a 
more managable size.

Gueudré et al. method
Gueudré et al. also tested their method on the histidine-
kinase signaling system as well as proteins from the 
bacterial tryptophan synthesis operon, comprising the 
genes trpA..G, of which trpA/B and trpE/G correspond 
to interacting protein pairs. Given the similarity of the 
two methods, the trp-synthase A/B pair was selected 
for comparison, which is also conveniently provided as 
the test example in their download (from https://
github.com/Mirmu/ParalogMatching.jl). As 
with the previous method, these sequence data are frag-
ments (under 50 residues) and would not be suitable test 
data for the current method. As above, the Pfam families 
for trpA (PF00290) and trpB (PF00291) were considered, 
but having 4195 and 32,960 sequences, respectively, the 
more balanced selection of 4139 and 6968 (after removal 
of close homologues) returned by the GREMLIN server 
was preferred. These alignments were generated using 
the sequences from the complex of known structure 

(PDB: 1k7f) as a probe, allowing the inter-chain results 
to be directly evaluated over this structure.

Having now lost the reference pairings from the origi-
nal test-set, a simple check was made on pairing accuracy 
by counting only sequence pairs from species in which 
the proteins were labeled “TRPA” and “TRPB”. This gives 
a random sample of around 50 sequence pairs which is 
sufficient for a rough comparison. By this measure the 
current method made 49 pairings of which 75.5% were 
correct (run with max.10 parlogs) while the Gueudré 
et  al. method found 52 with 73.1% correct. In addition, 
contacts from the concatenated alignments were pre-
dicted and visualised by GREMLIN but both methods 
found almost no inter-protein contacts despite their rea-
sonable pairing accuracy. In the top 2000 predicted con-
tacts, the current method had one (wrong) inter-protein 
contact prediction while for the Gueudré et al. method, 
one predicted contact in the top 5 was correct (with 3 in 
the top 10). Although the current method may do slightly 
better if using the topology-based approach, both meth-
ods fall far behind what can be obtained using gene co-
location (see: http://gremlin.bakerlab.org/
cplx.php?uni_a=P0A877&uni_b=P0A879).

The Gueudré et al. method was also tested on the three 
domain pairings from 1aoz using the alignments gen-
erated above. As the domain sequences each retain the 
original code of the protein, their pairing accuracy can 
be measured unambiguously over all sequence pairs. This 
gave percentages of 37.7, 38.8 and 43.9 over domain pairs 
1,2 and 2,3 and 1,3 with 6246, 6269 and 7643 sequences 
respectively, which can be compared to the 58.6% 
obtained with the current method but over a smaller 
number of sequence pairs. Again, the concatenated align-
ments were used to predict contacts in GREMLIN where 
some inter-domain contacts are predicted between adja-
cent domains by the Gueudré et  al. method but none 
between domains 1 and 3 (Fig. 12). This can be compared 
to those found by the current method where contacts are 
predicted between all domain pairs (Fig. 5).

Discussion
Summary of the results
The methods were tested on a set of proteins that cov-
ered a wide range of situations. Despite all having a suf-
ficiently large initial collection of sequences, the initial 
matching of sequence pairs ranged from 40% of correctly 
paired identifiers to over 90%. When translated into pre-
dicted contacts, the order of success was not preserved, 
probably due to the relatively arbitrary choice among 
close homologues causing a loss of matches when only 
sequence code names were compared. Indeed the worst 
protein (1aoz) and the best protein (3vqt) as measured 

https://github.com/Mirmu/ParalogMatching.jl
https://github.com/Mirmu/ParalogMatching.jl
http://gremlin.bakerlab.org/cplx.php?uni_a=P0A877&uni_b=P0A879
http://gremlin.bakerlab.org/cplx.php?uni_a=P0A877&uni_b=P0A879
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Fig. 12  Contacts predicted by the GREMLIN method for 1aoz. The concatenated alignment generated by the method of Gueudré et al. was 
submitted to the GREMLIN server with the results shown as a matrix of predicted contacts as in Fig. 5. Three pairs of plots are shown for the three 
domain combinations. Bold lines correspond to domain boundaries and feint lines mark residues by 10 and 100s
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by code matching had almost swapped positions when 
assessed by the quality of their contact predictions. There 
appeared to be no correlation in the quality of the final 
prediction with either the number of sequences (as long 
as there were sufficient to produce a signal), the number 
of species or the number of singletons (one sequence per 
species). Adding a bonus for transitivity had some benefit 
for those with a lower percentage of matched codes but, 
obviously, did little to improve pairings that are already 
almost perfect.

The use of solvent accessible surface area to filter the 
selected pairings also had some benefit but this was less 
than might have been expected. This may have been because 
direct contact is not an essential requirement to generate a 
correlation signal between a pair of residues but more prob-
ably, is simply a consequence that in small domains, there is 
a large number of exposed residues relative to those that are 
completely buried, so giving less selection power.

The application of residue burial to the difficult prob-
lem of setting a cutoff to the number of predicted con-
tacts to accept as true was, however, more successful and 
when a cumulative error based on the inclusion of buried 
residue pairs was monitored, in most cases, it provided a 
good guide to the point at which errors rapidly accumu-
late. The addition of the CCSE score based on predicted 
internal domain contacts also had useful information and 
between them the two scores might form the basis of a 
cutoff measure.

Algorithmic evaluation
The two algorithms developed in this work, distance-
based and phylogenetic-tree or topology-based, were 
originally viewed as a main method (topology) fed by a 
pre-filter based on distance. However, the good perfor-
mance of the distance-based measure itself cast this rela-
tionship into doubt. Although the tree-based measure 
remained superior, in its current implementation it is 
limited by the burden of comparing many trees gener-
ated by combinatorial enumeration. Much of this burden 
could be eliminated by avoiding the use of repeated calls 
to external programs from the PHYLIP package but, in 
principle, the combinatorial ‘explosion’ for larger num-
bers of sequences-per-species will remain a barrier even 
if shifted slightly to allow greater numbers to be consid-
ered. It is possible that improvements to the distance-
based algorithm may provide the more hopeful path for 
development, such as introducing a partial tree structure 
in the form of a minimal-spanning-tree (MST), however, 
there are currently no suitable MST comparison algo-
rithms for trees with partially labelled nodes.

Although the method was only tested with double and 
triple domain/subunit proteins, this is not a fundamen-
tal limitation. Extending to larger numbers of domains 
(and/or subunits) could be implemented by extending the 
test for transitive relationships to a test for cyclic braids. 
While this may be implemented in the future, as sug-
gested in the introduction, a simpler extension could be 
made with the current code by running sets of overlap-
ping triples.

Conclusions
The methods developed here have been designed to solve 
the problem of matching paralogs from a pair of proteins 
within a single species without using any known infor-
mation about those proteins except their amino acid 
sequence. The method is aimed at eukaryotic proteins 
where the number of sequences remains low compared 
to bacterial proteins and the numbers of sequences used 
in this work were kept low to reflect that limitation.

Both derived information in the form of predicted con-
tacts and external information, such as gene location, 
can be used in addition to find solutions to the sequence 
matching problem. The power of maximising predicted 
contacts was evaluated above and found to be compa-
rable to the current approach but as both methods use 
unrelated algorithms it might be hoped that a joint analy-
sis would lead to additional improvements. Being able to 
work on relatively long sequences also would allow the 
current method to pre-process the data to focus the more 
time-consuming distance calculations towards a probable 
interaction zone.

External information can be found in the form of func-
tional annotation and protein-protein interaction net-
works as well as gene location in the genome, which is 
used to good effect in the simpler bacterial genomes. As 
gene co-location in eukaryotes seems to be limited to 
occasional tandem duplications [24], methods such as 
the SNAP algorithm [25], might be used to extract less 
obvious gene location relationships. Development of the 
current method will consider these sources.

Additional file

Additional file 1: Figure S1. CCSE plots of randomised controls. The 
results of the topology (tree) based method shown in purple as in the 
main text (eg: Fig. 3a). Fully shuffled matches are plotted in blue and 
matches shuffled only within a family are plotted in green. The latter 
preserve the identity of singleton families and doubletons with 50% 
chance, etc. Note that 1pkm, which included a split domain and has many 
singletons still scores well and that for 3ctz, the purple lines run higher 
than expected because of the longer predicted links between domains 1 
and 3 (see Fig. 8).
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