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Abstract Metabolic network rewiring is the rerouting of metabolism through the use of

alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives.

Here, we report the first characterization of two parallel pathways for the breakdown of the short

chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-

expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin

B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12

deficient diets, or under genetic conditions mimicking the human diseases propionic- and

methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is

blocked. Our study presents the first example of transcriptional vitamin-directed metabolic

network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate

breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus

a selective advantage on different diets in the wild.

DOI: 10.7554/eLife.17670.001

Introduction
Metabolic network rewiring to adjust metabolic flux in response to dietary or cellular cues can occur

by transcriptional, post-transcriptional, or allosteric mechanisms (Desvergne et al., 2006). For

instance, genes encoding enzymes involved in the breakdown of galactose in the Leloir pathway are

activated in yeast and other organisms upon a shift from glucose to galactose as a carbon source

(Fridovich-Keil, 2006). As a second example, in both yeast and humans, glycolytic flux is temporarily

re-routed through the pentose phosphate pathway to provide a first-line protection against oxida-

tive stress (Stincone et al., 2014). However, metabolic network rewiring to compensate for the

absence of a vitamin or due to the toxic accumulation of a cellular metabolite has not yet been

described.

In both mammals and the nematode C. elegans, vitamin B12 is a critical cofactor in the canonical

propionyl-CoA breakdown pathway (Figure 1A and 1B). Propionyl-CoA is produced during the

catabolism of odd chain fatty acids and branched chain amino acids, and is interconverted with the
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short chain fatty acid propionate derived from bacterial fermentation of dietary fibers in the intestine

(Kasubuchi et al., 2015). Many organisms, however, do not utilize vitamin B12 in the breakdown of

propionate. For instance, Saccharomyces cerevisiae utilizes the methylcitrate cycle, whereas plants

and Candida albicans use a b-oxidation-like pathway (Halarnkar and Blomquist, 1989; Otzen et al.,

2014) (diagrammed in Figure 1A).

Mutations in genes in the canonical vitamin B12-dependent propionate breakdown pathway

cause propionic- and methylmalonic acidemias, diseases in which propionate and its derivatives

accumulate to toxic levels (La Marca et al., 2007). These diseases are diagnosed by elevated levels

of specific metabolites such as 3-hydroxypropionate (3-HP), which is not normally detected at appre-

ciable levels in healthy individuals (Matsumoto and Kuhara, 1996) (Figure 1B). Interestingly, 3-HP is

an intermediate in the b-oxidation-like propionate breakdown pathway found in some vitamin B12-

independent organisms (Figure 1A). This observation suggests that propionic- and methylmalonic

acidemia patients may break down propionate to some extent via an alternate oxidative route

(Ando et al., 1972).

We previously identified numerous C. elegans metabolic genes that are transcriptionally

repressed in response to vitamin B12 (MacNeil et al., 2013; Watson et al., 2014). This finding sug-

gests that the C. elegans metabolic network is differentially wired under vitamin B12-deficient versus

vitamin B12-replete nutritional conditions. However, the biological significance of the transcriptional

rewiring by the vitamin B12/propionate axis remains unknown.

Here, we find that C. elegans transcriptionally activates a b-oxidation-like propionate breakdown

shunt under vitamin B12-deficient dietary conditions, or under genetic conditions mimicking pro-

pionic- or methylmalonic acidemia. This pathway is chemically similar to, but genetically distinct from

the pathway found in Candida albicans. We detect elevated 3-HP in animals with a dysfunctional

canonical propionate breakdown pathway, demonstrating that the C. elegans model faithfully reca-

pitulates a metabolic phenotype of propionic- and methylmalonic acidemia.

eLife digest Inborn errors of metabolism are human genetic diseases that cause developmental

delays and are usually fatal. Propionic acidemia is an inborn error of metabolism where propionate,

a byproduct created during the breakdown of fat and proteins, cannot be broken down efficiently.

As a result, propionate builds up to toxic levels inside cells. Most animals, including humans, use a

particular enzyme pathway to get rid of propionate. This pathway needs vitamin B12 in order to

work, which is obtained from food.

Newborns are screened for propionic acidemia using a test that measures the levels of a

molecule called 3-hydroxypropionate (3-HP) in the body. This molecule is not normally found in

appreciable levels in healthy humans. However, it is not clear how 3-HP forms in individuals with

propionic acidemia.

In 2014, researchers showed that in worms called Caenorhabditis elegans, propionate activates

many genes when vitamin B12 levels are low. This suggests that the worms may have an alternate

way to break down propionate when vitamin B12 is in short supply.

Now, Watson et al. – including some of the researchers involved in the 2014 work – have used a

combination of genetic, computational and biochemical techniques to identify five genes that the

worms use to break down propionate when vitamin B12 is not available. Furthermore, the level of 3-

HP rises in worms that cannot use B12, just as is seen in humans with propionic acidemia. Thus, it

appears that producing 3-HP may be an important step in an alternate pathway that does not

require vitamin B12 to eliminate propionate.

Having an alternate way of breaking down propionate may be essential for C. elegans worms

living in the wild, which have to adapt to changing dietary conditions that may or may not provide

them with vitamin B12. Further studies are now needed to describe the metabolic effects of genes

turned on by propionate and repressed by vitamin B12, and to investigate how propionate alters

the activity of these genes.

DOI: 10.7554/eLife.17670.002
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Figure 1. Propionate breakdown pathways in different organisms. (A) Vitamin B12-dependent species use a

propionate carboxylation pathway to breakdown propionate. Other species use either the methylcitrate pathway

or a b-oxidation-like pathway. (B) Diagram of canonical vitamin B12-dependent propionyl-CoA breakdown

Figure 1 continued on next page
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C. elegans is likely to encounter both vitamin B12-replete and B12-deficient diets in the wild

because only a minority of bacterial species synthesize vitamin B12 (Karasseva et al., 1977; Sañudo-

Wilhelmy et al., 2014). We find that activation of the C. elegans propionate shunt enables survival

on vitamin B12-deficient diets. Altogether, our data suggest that metabolic network rewiring in

response to vitamin B12 status enables the animal to thrive both when dietary vitamin B12 is low,

and when this cofactor is in ample supply. This metabolic plasticity likely confers a selective advan-

tage and evolutionary benefit.

Results

A C. elegans model of propionic acidemia
Patients with propionic acidemia harbor loss of function mutations in both alleles of either PCCA or

PCCB, which encode the two members of the propionyl-CoA carboxylase complex that catalyzes the

first reaction in the canonical propionate breakdown pathway (Deodato et al., 2006) (Figure 1A

and B). These patients suffer from the toxic effects of propionate buildup, which manifest in several

organ systems and lead to acute symptoms such as poor feeding, vomiting, hypotonia, lethargy,

seizures, failure to thrive, intellectual disability, pancreatitis and cardiomyopathy (Carrillo-

Carrasco and Venditti, 2012).

Deletion of the C. elegans ortholog of PCCA, pcca-1, slows development rate (Watson et al.,

2014) and renders animal sensitive to propionate-induced toxicity: the LD50 of wild type animals is

~80mM propionate, while the LD50 of Dpcca-1 mutants is ~45 mM (Figure 2A and B). As expected,

vitamin B12 supplementation to wild type animals increases propionate tolerance on the low-B12 E.

coli OP50 diet (Watson et al., 2014), whereas it has no beneficial effect in Dpcca-1 animals

(Figure 2A and B).

pcca-1 is synthetic lethal with acdh-1
The C. elegans acyl-CoA dehydrogenase acdh-1 is differentially expressed depending on the vitamin

B12/propionate axis: its transcript levels are very low when vitamin B12 is high, and increase several

hundred fold in response to propionate accumulation (Watson et al., 2013; 2014). A null mutation

in acdh-1 also renders C. elegans sensitive to propionate: the LD50 in these animals is ~50 mM

(Figure 2A and B). However, in contrast to Dpcca-1 mutants, propionate sensitivity in Dacdh-1

mutants is completely rescued by vitamin B12 supplementation (Figure 2A and B). Furthermore,

Dacdh-1 mutants exhibit embryonic lethality on a very low-vitamin B12 diet (E. coli OP50 grown on

soy-peptone), and this phenotype can also be rescued by supplementing vitamin B12 (Figure 2C).

Acyl-CoA dehydrogenases catalyze the first step in b-oxidation of fatty acids (Berg et al., 2012).

Therefore, we hypothesized that acdh-1 may function in an alternate b-oxidation-like propionate

breakdown pathway, hereafter referred to as the ’propionate shunt’, to enable survival of the animal

on vitamin B12-deficient diets.

Genes in parallel pathways often exhibit synthetic phenotypes (Clark et al., 1994;

Costanzo et al., 2010). If acdh-1 does function in a propionate shunt, one would expect the propio-

nate sensitivity to further increase when both acdh-1 and the canonical propionate-breakdown path-

way are perturbed. To test this, we attempted to generate double null mutants that harbor

deletions in both acdh-1 and in pcca-1. However, a cross between Dpcca-1 and Dacdh-1 mutants

yielded no viable double homozygous mutant offspring (Figure 2D and Supplementary file 1). This

finding demonstrates that loss of function in both pcca-1 and acdh-1 results in synthetic lethality,

and supports the hypothesis that acdh-1 functions in a parallel propionate breakdown pathway

(Figure 2E).

Figure 1 continued

pathway indicating C. elegans and human enzymes and associated genetic diseases. MM – methylmalonyl, 3-HP –

3-hydroxypropionate, MSA – malonic semialdehyde, n.d. – not determined.

DOI: 10.7554/eLife.17670.003
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A synthetic lethality screen identifies additional propionate shunt genes
To identify additional C. elegans genes that may function in a pathway with acdh-1, we performed a

synthetic genetic interaction screen using Dpcca-1 mutants and an RNAi library of 836 C. elegans

metabolic genes (Supplementary file 2). RNAi of acdh-1 in the Dpcca-1 mutant resulted in complete

lethality in the presence of 30 mM propionate (Figure 3A). Therefore, we screened for knockdowns

that led to non-viable offspring in the Dpcca-1 mutant supplemented with 30 mM propionate. Only

three high-confidence hits were obtained from this screen: acdh-1 itself, ech-6, an enoyl-CoA hydra-

tase 6, and F09F7.4, which we named hach-1, for hydroxyacyl-CoA hydrolase (Figure 3B). Enoyl-

CoA hydratases function in the second step of b-oxidation (Berg et al., 2012) and, therefore, ech-6

is an excellent candidate to catalyze the second reaction in the propionate shunt, directly down-

stream of acdh-1. In the vitamin B12-independent yeast C. albicans, the Ehd3 enzyme converts 3-

hydroxypropionyl-CoA into 3-HP and CoA in the third step of the b-oxidation-like propionate break-

down pathway (Otzen et al., 2014). Ehd3 is the one-to-one ortholog of hach-1, the third gene we

identified, which we therefore placed downstream of ech-6. Importantly, knockdown of either ech-6

or hach-1 resulted in similar phenotypes compared to loss of acdh-1: increased propionate sensitivity

Figure 2. acdh-1 mutants are sensitive to propionate and synthetic lethal with pcca-1 mutants. (A) Dose-response curves showing that Dpcca-1 and

Dacdh-1 mutants exhibit increased sensitivity to propionate compared to wild type animals. Three biological replicate experiments are shown, each

with three technical replicates per data point with average and SEM plotted. (B) Average LD50 and standard deviation of data shown in (A). Unpaired

student’s T tests were used to calculate p-values. Black asterisks indicate significant difference compared to wild type, red asterisks indicate significant

difference compared to wild type plus B12. (C) Dacdh-1 mutants cannot survive on E. coli grown in vitamin B12 deficient media. (D) Dpcca-1 and Dacdh-

1 are synthetically lethal because a cross between Dpcca-1 and Dacdh-1 mutants yielded no viable double homozygous mutants. pcca-1 +/+;acdh-1 +/-

animals and pcca-1 -/-;acdh-1 +/- animals were grown on E. coli OP50 seeded plates containing 64nM vitamin B12, and individual F1s were picked onto

new plates, also containing 64nM vitamin B12. The distribution of acdh-1 genotypes among the viable F1s picked from each P0 genotype is shown. (E)

These genetic data support a role for acdh-1 parallel to the canonical propionate breakdown pathway.

DOI: 10.7554/eLife.17670.004
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that was partially rescued by the addition of vitamin B12 (Figure 3C). This observed phenocopying,

along with the co-synthetic lethality with pcca-1, supports the hypothesis that acdh-1, ech-6 and

hach-1 function together in a genetic pathway.

The first reaction of the propionate shunt produces acrylyl-CoA, a highly toxic and reactive

metabolite (Hellwig et al., 1993; Saillenfait et al., 1999). Since we predict that acrylyl-CoA is the

substrate of ECH-6, we hypothesized that ech-6 perturbation would result in a severe phenotype

due to toxic buildup of acrylyl-CoA or its hydrolyzed derivative acrylate. Indeed, RNAi of ech-6, and

to a lesser extent hach-1, strongly reduces C. elegans growth and viability (Figure 3D). This pheno-

type was partially rescued by vitamin B12 supplementation, which facilitates propionate flux through

the canonical pathway (Figure 3D). This rescue depends on a functional canonical B12-dependent

propionate breakdown pathway, as vitamin B12 supplementation had no beneficial effect when ech-

6 or hach-1 was knocked down in Dpcca-1 mutants (Figure 3D).

We found that loss of acdh-1 largely suppressed the phenotypic effects of ech-6 and hach-1

knockdown, likely due to the lack of acrylyl-CoA production in the absence of acdh-1 (Figure 3D).

Figure 3. A synthetic genetic interaction screen identifies candidate genes involved in the propionate shunt. (A) RNAi of acdh-1 is lethal in Dpcca-1

mutants supplemented with 30 mM propionate. (B) Synthetic genetic interaction screen of 836 metabolic genes in presence or absence of 30 mM

added propionate, in wild type and Dpcca-1 mutant animals identifies three candidate genes, including acdh-1. (C) Propionate toxicity dose response

curve showing that the two candidate genes identified in the screen, ech-6 and hach-1, phenocopy acdh-1 loss-of-function. (D) Genetic buffering of

ech-6 and hach-1 RNAi phenotypes by loss of acdh-1. Representative images of animals subjected to two generations of RNAi knockdown are shown.

(E) Our data indicate that ech-6 and hach-1 function downstream of acdh-1 in the propionate breakdown shunt.

DOI: 10.7554/eLife.17670.005

Watson et al. eLife 2016;5:e17670. DOI: 10.7554/eLife.17670 6 of 21

Research article Computational and Systems Biology Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.17670.005
http://dx.doi.org/10.7554/eLife.17670


This genetic buffering supports the placement of ech-6 and hach-1 downstream of acdh-1 in the pro-

pionate shunt (Figure 3E).

hphd-1 and alh-8 function in the propionate shunt
The b-oxidation-like propionate breakdown pathway includes two additional reactions that convert

the third metabolic intermediate 3-hydroxypropionate (3-HP) to malonic semialdehyde (MSA) and

finally to acetyl-CoA and CO2 (Figure 1A). Importantly, the gene encoding the enzyme that converts

3-HP into MSA has not yet been identified in any metazoan. To identify enzymes that may catalyze

the last two reactions in the C. elegans propionate shunt, we utilized WISP, a server for predicting

tissue-specific functional networks based on the integration of a large compendium of diverse data-

sets (http://wisp.princeton.edu, Yao et al., in preparation; V. Yao, personal communication, June

2016). The top predicted functional connections to acdh-1, ech-6 and hach-1 included the metabolic

genes Y38F1A.6 and alh-8 (Figure 4A), neither of which was tested in genetic interaction screen

because they were not included in the ORFeome RNAi library (Supplementary file 2). These genes

encode excellent candidate enzymes to catalyze the fourth and fifth reactions of the propionate

shunt, respectively. Y38F1A.6 is the ortholog of human ADHFE1 (also known as HOT), a hydroxya-

cid-oxoacid transhydrogenase that has been found to metabolize b-hydroxybutyrate (GHB), a struc-

tural analog of 3-HP (Lyon et al., 2009). We will henceforth refer to Y38F1A.6 as hphd-1

(3-hydroxypropionate-oxoacid transhydrogenase). ALH-8 is homologous to human ALDH6A1, a

decarboxylating dehydrogenase predicted to act on two structurally similar metabolites: methylma-

lonic semialdehyde from valine breakdown (Marcadier et al., 2013; Sass et al., 2012), and malonic

semialdehyde (Marcadier et al., 2013), the substrate in the fifth reaction of the propionate oxida-

tion pathway (Figure 1A). Additionally, hphd-1 and alh-8 are predicted to localize to the mitochon-

dria along with acdh-1, ech-6, and hach-1 (Yilmaz and Walhout, 2016; http://wormflux.umassmed.

edu/).

We obtained an hphd-1 deletion mutant from the C. elegans genetics center, and generated an

alh-8 deletion mutant by CRISPR/Cas9-mediated genome editing (Kim et al., 2014) (Figure 4B).

Both mutants phenocopied acdh-1, ech-6 and hach-1 loss of functions: they exhibited decreased

propionate tolerance that was at least partially rescued by vitamin B12 supplementation (Figure 4C,

Figure 4—figure supplement 1). Both Dhphd-1 and Dalh-8 mutants displayed partial lethality on

low-B12 diets, which was rescued by vitamin B12 supplementation (Figure 4D). This rescue was

dependent on a functional canonical propionate breakdown pathway, as vitamin B12 failed to rescue

the partial larval lethality exhibited by the double Dhphd-1;Dpcca-1 mutant (Figure 4D). This result

indicates that activation of the propionate shunt is required to sustain viability. Dhphd-1;Dpcca-1

mutants also exhibited increased propionate sensitivity compared to either single mutant, indicating

a conditional genetic interaction between hphd-1 and pcca-1, but not complete lethality like the

Dacdh-1;Dpcca-1 double mutant (Figure 4E). This may be due to Dhphd-1 not being completely null,

or it is possible that an intact half-pathway is sufficient for at least partial survival. Altogether, these

observations support the placement of hphd-1 and alh-8 in the same pathway as acdh-1 (Figure 4F).

Propionate shunt genes are repressed by vitamin B12 and activated by
propionate
We previously found reduced transcript levels of each of the five genes encoding propionate shunt

enzymes in response to the vitamin B12-synthesizing bacteria Comamonas aquatica (MacNeil et al.,

2013). However, under genetic conditions mimicking propionic acidemia (i.e., when the animals can-

not use vitamin B12 to breakdown propionate), vitamin B12 fails to reduce acdh-1 expression

(Watson et al., 2014). This observation led to the hypothesis that, rather than directly sensing vita-

min B12 levels, the C. elegans gene regulatory network responds to elevated levels of propionate or

propionyl-CoA (or a derivative thereof) to activate the shunt. Indeed, we found that reduced expres-

sion of all five shunt genes by vitamin B12 is reversed by supplementation of excess propionate

(Figure 5A).

Activation of acdh-1 in response to propionate buildup occurs through its 1.5 kb promoter, indi-

cating that it is governed by transcriptional mechanisms (Watson et al., 2014). Not only is the acdh-

1 promoter activated by propionate and by canonical pathway perturbations, it is also activated by

perturbation of the propionate shunt genes ech-6, hach-1 and acdh-1 itself (Watson et al., 2013).
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Figure 4. Identifying additional putative propionate shunt genes. (A) hphd-1 and alh-8 (blue) are tightly connected to acdh-1, ech-6 and hach-1 (green)

in a C. elegans intestinal functional network and are candidates to catalyze the fourth and fifth reactions of the propionate shunt, respectively. (B)

Structure of CRISPR/Cas9-generated alh-8 mutant. Diagram of the mutation generated by CRISPR/Cas9-mediated genome editing using an sgRNA (red

sequence) targeting alh-8. The alh-8(ww48) mutation consists of a 23 bp insertion and 399 bp deletion, and removes a part of the 5’UTR, the start

codon, the first and second exons, and part of the third exon. Also shown is the Dhphd-1(ok3590) mutation. (C) Propionate toxicity dose response

showing that Dhphd-1 and Dalh-8 mutants phenocopy acdh-1, ech-6 and hach-1 perturbation. (D) Dhphd-1 and Dalh-8 mutants exhibit partial lethality

on low-B12 conditions. Like the Dacdh-1 mutant phenotype, Dhphd-1 and Dalh-8 mutant phenotypes were rescued by 64nM B12 supplementation or by

Comamonas aquatica DA1877 (Coma.). The partial lethal phenotype of the Dhphd-1;Dpcca-1 double mutant was not rescued by B12. (E) Combined

deletion of hphd-1 and pcca-1 renders the animals more sensitive to propionate than mutation in either gene alone. Note that Dhphd-1 may not be a

null allele. (F) The C. elegans propionate breakdown shunt pathway comprises five genes: acdh-1, ech-6, hach-1, hphd-1 and alh-8.

DOI: 10.7554/eLife.17670.006

The following figure supplement is available for figure 4:

Figure supplement 1. Dhphd-1 and Dalh-8 mutants exhibit increased sensitivity to propionate compared to wild type animals.

DOI: 10.7554/eLife.17670.007
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To determine whether a deletion in hphd-1 also activates the acdh-1 promoter, we crossed the

Dhphd-1 mutant to a transgenic strain expressing the green fluorescent protein (GFP) under the con-

trol of the acdh-1 promoter. Loss of hphd-1 did in fact lead to greater acdh-1 promoter activity, pro-

viding additional evidence that hphd-1 functions in propionate breakdown (Figure 5B and C).

3-Hydroxypropionate is a substrate for HPHD-1
3-HP is a unique metabolic intermediate produced by the propionate oxidation pathway: to our

knowledge neither KEGG, nor any other metabolic database, lists this metabolite being produced

by any other metabolic pathway in metazoans, though it can be produced through several different

pathways in microorganisms. The fourth reaction in the propionate shunt involves the conversion of

3-HP into MSA (Figure 6A). Annotated with the enzyme commission number EC 1.1.1.59, the gene

encoding this enzyme has, to our knowledge, not yet been identified in any metazoan. Our co-

expression network analysis and subsequent genetic investigation identified HPHD-1 as a candidate

for this enzyme. If true, we would predict that 3-HP accumulates in the Dhphd-1 mutant.

Using liquid chromatography/selective reaction monitoring mass spectrometry (LC-SRM) we

detected 3-HP in C. elegans, but not in its E. coli diet (Figure 6B). We did detect ample propionyl-

CoA in E. coli supplemented with propionate, so the lack of 3-HP in E. coli was not due to lack of

pathway substrate (Figure 6C). Therefore, we conclude that the 3-HP detected is derived from C.

elegans and not from its bacterial diet. We observed a >4-fold increase in 3-HP levels in Dpcca-1

mutants, which mirrors elevated 3-HP levels observed in human patients with propionic acidemia

Figure 5. Transcriptional activation of the propionate shunt. (A) The expression of all five propionate shunt genes is repressed by vitamin B12 and

activated by propionate. Condition matrices are shown for each shunt gene. Expression is normalized to levels in the control condition (no vitamin B12,

no propionate). (B) Vitamin B12 reduces GFP levels in Pacdh-1::GFP transgenic animals, but not in those carrying a deletion in the canonical propionate

pathway gene mce-1 or in the propionate shunt gene hphd-1. (C) Quantification of GFP levels from part (B)

DOI: 10.7554/eLife.17670.008
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caused by PCCA or PCCB mutations (Carrillo-Carrasco and Venditti, 2012), and confirms that the

propionate shunt is active when the canonical pathway is perturbed (Figure 6B and D). Importantly,

we detected a >200-fold increase in 3-HP levels in Dhphd-1 mutants, which supports our prediction

that HPHD-1 metabolizes 3-HP under low B12 conditions (Figure 6B and D). To verify that 3-HP is

indeed derived from propionate, we performed carbon tracing by feeding Dhphd-1 mutant animals

E. coli OP50 supplemented with 13C-propionate. We detected the formation of 13C-3-HP after 2 hr,

demonstrating that C. elegans indeed converts propionate to 3-HP (Figure 6E).

Figure 6. 3-Hydroxypropionate is a substrate for HPHD-1. (A) Conversion of 3-hydroxypropionate (3-HP) into malonicsemialdehyde (MSA). (B) 3-HP

mass spectrometry chromatogram for wild type, Dpcca-1 and Dhphd-1 animals. 3-HP was not detected in E. coli OP50 with or without supplemented

propionate. (C) Propionyl-CoA chromatograms from E. coli and C. elegans samples. Propionyl-CoA quantifications are as follows: 1.86, 0.20, 0.14, and

0.13 nmol/mg protein for E coli + PA, wild type C. elegans, Dpcca-1 and Dhphd-1 mutants, respectively. For E. coli -PA, propionyl-CoA was detectable

but not quantifiable in our assay. (D) Average 3-HP quantities normalized to total protein levels from three biological replicates, +/- SEM. Animals were

grown on E. coli OP50. (E) 13C-labeled propionate fed to Dhphd-1 mutant animals for 2 hr yielded 13C-labeled 3-HP, demonstrating that C. elegans

oxidizes propionate to 3-HP. Shown are SRM (MS2) chromatograms specific for 3-HP. The peak corresponding to the natural 13C isotope distribution (~

1.1% of 12C signal) is illustrated for comparison in t = 0.

DOI: 10.7554/eLife.17670.009
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Human homologs of C. elegans shunt genes are activated by
propionate
3-HP is a specific diagnostic marker of propionic- and methylmalonic acidemias, as it is uniquely ele-

vated in these diseases. This suggests that an alternative propionate breakdown pathway may be

operational in humans as well, at least in patients with impaired canonical propionate breakdown.

Interestingly, the closest human homologs of the C. elegans shunt enzymes are known to catalyze

structurally similar reactions in other metabolic pathways, including the breakdown of the branched

chain amino acids isoleucine and valine (Figure 7A-Supplementary file 3). Recent metabolomics

data in patients with mutations in ECHS1 (the homolog of C. elegans ech-6) and HIBCH (the homo-

log of C. elegans hach-1) revealed elevated levels of acrylyl-CoA, a propionate shunt intermediate,

in addition to the expected valine breakdown intermediates (Peters et al., 2014; 2015) (Figure 7A).

Figure 7. Comparison between putative human and C. elegans propionate shunts. (A) Comparison between C. elegans propionate shunt genes (red)

and candidate human shunt genes (green, gray). Green text indicates higher confidence annotations based on patient mutations and metabolomics, or

in the case of ADHFE1 one-to-one orthology of unique enzymes in both genomes. 3-HP is marked in magenta to indicate that it is a biomarker for

impaired flux in the canonical, vitamin B12-dependent propionate breakdown pathway, such as occurs in patients with propionic or methylmalonic

acidemia. (B) C. elegans propionate shunt genes and orthologs in mouse and humans are strongly co-expressed as a group compared to 10,000

random permutations of five genes from either the whole genome, a subset of only metabolic genes, or a subset of related metabolic genes from

connected pathways, including BCAA breakdown and the TCA cycle. The expression data used for this analysis was compiled and weighted using the

SEEK and modSEEK databases. Distributions of co-expression scores are shown for each set of randomizations, and vertical dashed lines indicate

actual weighted co-expression score for propionate shunt genes and orthologs in human, mouse and C. elegans. (C) The expression of several

candidate human genes is activated in response to propionate in HepG2 liver carcinoma cells. qRT-PCR experiment showing the average of four

replicate experiments, each containing three technical replicates.

DOI: 10.7554/eLife.17670.010
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Further, patients with mutations in ALDH6A1 (the homolog of C. elegans alh-8) exhibit elevated lev-

els of 3-HP as well as elevated levels of valine breakdown intermediates (Marcadier et al., 2013).

Taken together, these observations suggest that the closest human homologs of several C. elegans

propionate shunt genes may have conserved roles in propionate breakdown in humans in addition

to their known roles in other pathways.

We found that the closest human homologs of all five propionate shunt genes, ACADSB, ECHS1,

HIBCH, ADHFE1 and ALDH6A1 are significantly co-expressed in both mouse and human across a

large compendium of transcriptomic data in the SEEK database (Figure 7B) (Wang et al., 2015).

This suggests that, like their C. elegans counterparts, these human genes may be co-regulated at

the transcriptional level. Remarkably, the expression of ADHFE1, HIBCH, and to a lesser extent

ECHS1 and ALDH6A1, is upregulated in response to propionate in HepG2 cells (Figure 7C). These

data suggest that the regulated response of these genes to propionate at the gene expression level

is, at least to some extent, conserved between C. elegans and humans.

Discussion
In this study, we use a combination of synthetic genetics, network analysis, metabolomics and 13C

carbon tracing to identify a propionate breakdown shunt in C. elegans. We show that the shunt is

transcriptionally activated when propionate accumulates under low dietary vitamin B12 conditions,

or when the canonical propionate breakdown pathway is genetically perturbed.

Vitamin-controlled metabolic network rewiring
To our knowledge, our study presents the first example of transcriptional metabolic network rewiring

in which the catabolic route of a cellular metabolite is dictated by the presence or absence of a die-

tary vitamin, in this case vitamin B12. Other vitamins that have known roles in regulating gene

expression include vitamins A and D, and this regulation is important for development, growth and

homeostasis. However, vitamins A and D do not function directly in the metabolic network as cofac-

tors of metabolic enzymes, and instead function more like hormones; in fact vitamin D can be syn-

thesized endogenously. Vitamin D, via the vitamin D receptor (VDR), regulates mineral uptake

(Carlberg and Seuter, 2009; Haussler et al., 2008), while vitamin A, via the retinoic acid receptor

(RAR), regulates developmental programs as well as the enzymes that interconvert the regulatory

version of retinoic acid and the trans-retinal version required by rhodopsin for light-sensing

(D’Aniello and Waxman, 2015; di Masi et al., 2015).

Less is known about potential regulatory roles of other vitamins, including those that function as

true enzyme cofactors in the metabolic network. However, gene expression profiling in mammalian

cells has revealed transcript-level responses to vitamins B1 (thiamine) (Fraser et al., 2012; Liu et al.,

2004) (Tanaka et al., 2007), B2 (riboflavin) (Nakano et al., 2011), B3 (nicotinamide/niacin)

(Choi et al., 2011; Couturier et al., 2014; Giammona et al., 2006), B6 (pyridoxal 50 phosphate,

PLP) (Toya et al., 2012; Zhang et al., 2014), B9 (folic acid) (Barua et al., 2014; Champier et al.,

2012; Lin et al., 2011), C (ascorbic acid) (Canali et al., 2014; Jun et al., 2011; Takahashi et al.,

2014), and E (tocopherol/tocotrienols) (Landrier et al., 2010; Makpol et al., 2013;

Mustacich et al., 2009). The mechanisms behind, and consequences of, these observed vitamin-

induced gene expression changes have yet to be elucidated. Our study indicates that, in C. elegans,

low vitamin B12 leads to accumulation of the short chain fatty acid propionate due to reduced flux

through the B12-dependent propionate breakdown pathway. It remains to be determined whether

vitamin B12 is directly sensed similar to vitamins A and D, or whether propionate or perhaps one of

its derivatives is the sole proxy regulator (see below).

In mammals, propionate and other short chain fatty acids produced by the gut microbiota pro-

vide numerous benefits to the host, not only as nutrient sources that fuel colonocytes, but also

potentially to inhibit cancer cell proliferation, induce cancer cell apoptosis (Emenaker et al., 2001;

Hinnebusch et al., 2002), and reduce inflammation (Louis et al., 2014). However, excess propionate

accumulation, which occurs in patients with propionic- or methylmalonic acidemia, is toxic. It is possi-

ble that the metabolic network rewiring that we observe in C. elegans in response to the vitamin

B12/propionate axis has evolved not only to optimize energy yield from propionate depending on

the presence or absence of B12, but also to prevent toxic propionate buildup. This represents a
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novel example of built-in metabolic network flexibility to mitigate the toxic accumulation of an

endogenous metabolite.

The biological function of metabolic network rewiring by vitamin B12
What is the biological function of metabolic network rewiring by the vitamin B12/propionate axis? A

loss of propionate breakdown capability, in double Dpcca-1/Dacdh-1 mutants, or in Dacdh-1 mutants

on a very low vitamin B12 diet (E. coli OP50 grown on soy peptone) is not compatible with viability

(this study). Vitamin B12 is exclusively produced by bacteria, and studies of microbial communities

have found that only 20–30% of community members synthesize vitamin B12 (Sañudo-

Wilhelmy et al., 2014). C. elegans is found all over the world in temperate climates and is likely to

feed on a variety of bacterial species (Félix and Duveau, 2012). Our data suggest that the ability to

catabolize propionate whether or not vitamin B12 is provided by the diet may provide the animal

with the metabolic flexibility to survive in different dietary conditions, thus providing a selective

advantage and evolutionary benefit.

On vitamin B12-replete bacterial diets, such as Comamonas aquatica, expression of the propio-

nate shunt is greatly reduced, indicating that the canonical vitamin B12-dependent propionate

breakdown pathway is preferred. We speculate that this may be because the canonical pathway is

more efficient at metabolizing propionyl-CoA than the propionate shunt due to the high redox

potential between propionyl-CoA and acrylyl-CoA, the first shunt pathway intermediate (Sato et al.,

1999). Other advantages of the canonical pathway over the shunt include the use of fewer enzymes,

and the lack of production of highly toxic intermediates (e.g., acrylyl-CoA).

While all of the five genes identified in this study as propionate shunt members lead to similar

phenotypes when mutated or knocked down (sensitivity to propionate-induced toxicity and at least

partial lethality on B12-deficient diets), the severity of these phenotypes differs depending on the

gene disruption. This could potentially be explained by different levels of reactivity (and therefore

toxicity) among the intermediates in the pathway, which may accumulate to different levels depend-

ing on which enzyme is disrupted. For instance, ech-6 knockdown results in a very severe phenotype,

likely due to the accumulation of its substrate acrylyl-CoA, which is highly toxic. Simultaneously, the

buildup of substrates containing CoA could lead to widespread metabolic impairment due to CoA

sequestration (Mitchell et al., 2008). Additionally, several enzymes that function in the shunt may

also have roles in isoleucine and valine breakdown, and may therefore be pleiotropic. It should be

mentioned that the Dhphd-1 and Dalh-8 deletion mutants used in this study may not be null since

they are both partial locus deletions, and this may explain the less severe phenotypes observed for

these mutants compared with the null Dacdh-1 mutant. It is also possible that C. elegans can (some-

what) tolerate B12 deficiency with only a partially intact shunt consisting of the first three reactions,

or that there are other unidentified (partially) redundant enzymes that can compensate for loss of

hphd-1 and alh-8.

Transcriptional rewiring of C. elegans metabolism
How does C. elegans rewire its metabolic network in response to the vitamin B12/propionate axis?

Each of the five genes that encode enzymes of the propionate shunt is repressed by vitamin B12

and activated by propionate. By using a GFP reporter driven by 1.5 kb of acdh-1 promoter DNA we

previously found that GFP levels are high when animals are fed bacterial diets low in vitamin B12,

whereas GFP is greatly reduced when the animals are fed bacteria that synthesize high levels of vita-

min B12, or upon direct supplementation of vitamin B12 (MacNeil et al., 2013; Watson et al.,

2013; Watson et al., 2014). This demonstrated that the response of acdh-1 occurs at the level of

transcriptional regulation. Vitamin B12 is not sufficient to repress the acdh-1 promoter when

enzymes within the B12-dependent propionate breakdown pathway are genetically perturbed, or

when excess propionate is added to the media (Watson et al., 2014). Therefore, we propose that

the C. elegans gene regulatory network activates acdh-1 expression in response to the buildup of

propionate, which occurs when this vitamin is in low supply.

We have previously identified more than 50 C. elegans transcription factors that regulate acdh-1

(MacNeil et al., 2015; Watson et al., 2013), including the nuclear hormone receptor NHR-10 that

directly binds its promoter (Arda et al., 2010). Future studies will reveal which of these transcription

factors mediate the response to propionate and/or vitamin B12. Nuclear hormone receptors utilize
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binding to small molecule ligands to regulate gene expression. For instance, VDR directly interacts

with vitamin D, and RAR binds biologically active forms of vitamin A (Carlberg, 1999). While humans

have 48 nuclear hormone receptors, C. elegans has more than 270 (Reece-Hoyes et al., 2005). It is

tempting to speculate that one or more C. elegans nuclear hormone receptors directly respond to

propionate, or its CoA derivative propionyl-CoA.

Similarities and differences between propionate breakdown in C.
elegans and humans
Several lines of evidence indicate that humans also utilize a propionate detox shunt, at least to some

extent. First, the detection of the unique shunt intermediate 3-HP is used as a diagnostic marker for

propionic- and methylmalonic acidemia in newborns. Since 3-HP is not predicted as an intermediate

in any other metazoan pathway, this finding suggests that a propionate shunt may also be functional

in humans. Second, while the human homologs of several C. elegans shunt enzymes have well-estab-

lished functions in the breakdown of branched chain amino acids, their genetic perturbation also

results in the accumulation of propionate shunt intermediates. For instance, recent metabolomic

analyses of patients with mutations ECHS1 and HIBCH revealed not only elevated upstream inter-

mediates from valine catabolism, but also acrylyl-CoA, a unique intermediate from propionate oxida-

tion (Peters et al., 2014). Interestingly, global metabolomics has identified 3-HP in healthy

individuals (Bouatra et al., 2013; Guneral and Bachmann, 1994). This finding suggests that the pro-

pionate shunt may also be active to some degree when the canonical pathway is functional and thus

may be part of central metabolism in humans.

It is important to note that, in spite of evidence supporting alternative propionate breakdown

mechanisms in humans, patients with an impaired canonical propionate breakdown pathway are very

sick and must strictly adhere to diets low in the amino acids that are broken down to propionyl-CoA.

This indicates that, in humans, alternative propionate catabolism routes are not sufficient to maintain

propionate levels below the toxic threshold.

Identification of HPHD-1 as enzyme EC1.1.1.59
Perhaps the most interesting gene we identified as a participant in the propionate shunt is hphd-1,

which is the one-to-one ortholog of human ADHFE1. hphd-1 is the first metazoan gene to be associ-

ated with the reaction catalyzed by 3-hydroypropionate dehydrogenase (EC 1.1.1.59), which con-

verts 3-HP to MSA. ADHFE1 is thought to metabolize a structural analog of 3-HP, GHB, which is

commonly known as a recreational drug. However ADHFE1 is not assigned by KEGG or BRENDA

enzyme databases to any endogenous metabolic pathway. ADHFE1 is unique in that, unlike most

dehydrogenases that transfer electrons from their substrates to NAD or FAD, it transfers electrons

to the TCA cycle intermediate a-ketoglutarate, thereby producing (D)-2-hydroxyglutarate

(Struys et al., 2005), a putative oncometabolite (Dang et al., 2009; Kranendijk et al., 2010). Inter-

estingly, other than neomorphic isocitrate dehydrogenase (IDH) enzyme mutants found in many can-

cers, ADHFE1 is the only known enzyme to naturally produce (D)-2-hydroxyglutarate (Struys et al.,

2005). Currently, no patients have been identified with mutations in ADHFE1 so there is no metabo-

lomics data available to determine which metabolites build up in humans lacking ADHFE1 enzyme

function. However, our C. elegans mass spectrometry data in mutants lacking hphd-1 revealed

greatly elevated 3-HP levels (Figure 5), and, since hphd-1 and ADHFE1 are clear one-to-one ortho-

logs, ADHFE1 is a good candidate to function in propionate oxidation in humans directly down-

stream of 3-HP.

Materials and methods

C. elegans strains
N2 (Bristol) was used as the wild type strain, and animals were maintained as described (Bren-

ner, 1974). pcca-1(ok2282), acdh-1(ok1489), mce-1(ok243) and hphd-1(ok3580) strains were pro-

vided by the C. elegans Gene Knockout Consortium and were backcrossed 3 times against N2 prior

to assays. The hphd-1(ok3580) allele removes only part of the C-terminus of the protein and may not

be a complete loss-of-function mutation. For a diagram of deletion mutant loci, see Figure 4B and

for a full list of genotyping primers refer to Supplementary file 4.
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Propionate toxicity assays
Approximately 100 synchronized L1s (hatched overnight, 20 hr post-bleach) were added to E. coli

OP50-seeded 35 mM NGM (bactopeptone) agar plates containing various concentrations of pH-neu-

tralized propionic acid. Each dose tested included four technical replicates. After 72 hr, un-arrested

survivors (animals that had developed past L1 stage) were counted. Dose response curves were fit

to the raw data using the following equation:

Y¼BottomþðTop�BottomÞ=ð1þ 10^ððLogLD50�XÞ�HillSlopeÞÞ

The dose required to kill 50% of the population (LD50) was calculated according to the fitted

dose response curves. Toxicity assays were performed in biological triplicate, and the average

LD50’s are plotted +/- SEM. To obtain enough viable Dacdh-1 mutant animals for these assays,

64nM B12 was supplemented to animals two generations prior to assay.

In the larval lethality quantifications, animals were fed for one generation on E. coli OP50 supple-

mented with 64nM B12, and then grown for one generation on E. coli OP50, E. coli OP50 +B12 or

Comamonas aq. DA1877. Offspring were harvested and live and dead L1s and embryos were quan-

tified following a 24 hr arrest.

RNAi screen
A list of metabolic enzyme domain-containing genes was manually curated based on KEGG and

WormBase databases, and available metabolic gene-targeting clones in the ORFeome RNAi library

were re-arrayed in 96 well format. See Supplementary file 2 for the gene list. RNAi experiments

were performed as follows: 24-well NGM (bactopeptone) agar plates containing 1 mM IPTG and

1 mM Ampicillin were seeded with one dsRNA-expressing E. coli HT115 clone per well the night

before use. A separate set of plates containing 30 mM pH-neutralized propionate was also prepared

and seeded with the same HT115 clones. The HT115 cultures were prepared by seeding 1 mL fresh

LB + Ampicillin with 50 mL overnight culture, growing at 37oC for 6 hr, then centrifuged and resus-

pended in 150 mL LB + Ampicillin. 30 mL of this resuspended culture was placed in the center of

NGM wells in the 24-well plates. Wild type and Dpcca-1 mutants were cultivated on E. coli OP50,

and eggs were harvested by bleaching, and hatched overnight in M9 media (20 hr), and synchro-

nized L1s were added to prepared plates. Animals were observed after three days to observe effects

in the 1st generation, and after six days to observe lethality in the 2nd generation.

C. elegans qRT-PCR experiments
Animals were synchronized by L1 arrest and grown on plates containing bactopeptone and various

doses of B12 and/or propionate, seeded with E. coli OP50. Approximately 1500 adult animals were

harvested for each condition, in biological duplicate. Animals were washed in M9 buffer, and total

RNA was isolated using Trizol (Invitrogen) followed by DNAseI treatment and cleanup using Qiagen

RNeasy columns. cDNA was prepared from RNA using oligo-dT and Mu-MLV enzyme (NEB). Primer

sequences for quantitative RT-PCR (qRT-PCR) were generated using the GETprime database

(Gubelmann et al., 2011) and are listed in Supplementary file 4. qPCR was performed in technical

triplicate per gene per condition using the Applied Biosystems StepOnePlus Real-Time PCR system

and Fast Sybr Green Master Mix (Invitrogen). Relative transcript abundance was determined using

the DDCt method (Schmittgen and Livak, 2008), and normalized to averaged ama-1 and act-1

mRNA expression levels.

C. elegans liquid culture
Synchronized animals were cultivated on 15 cm NGM plates seeded with E. coli OP50, and bleached

after 3 days. Bleached eggs were washed three times in M9, then allowed to hatch for 20 hr. 1 mil-

lion synchronized L1s were added to 400 mL liquid NGM in a 2L Erlenmeyer flask, containing con-

centrated E. coli OP50 bacteria from 500 mL overnight LB culture, and total volume was adjusted to

450 mL with M9. Some flasks contained 20 mM pH-neutralized propionic acid. Flasks were kept at

20˚C, shaking gently at 100 rpm. Each day concentrated bacteria were added to the flasks to feed

the worms. Adult animals were collected (after 3 days of development for N2, and four days for the

mutants) and washed 2 times in M9 in sterile Imhoff settling cones. The final pellet was flash-frozen

and stored at �80˚C until extraction.

Watson et al. eLife 2016;5:e17670. DOI: 10.7554/eLife.17670 15 of 21

Research article Computational and Systems Biology Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.17670


C. elegans metabolite extraction
Cell extracts were obtained by re-suspending the frozen C. elegans or bacterial pellets in 4 mL of

5% trichloroacetic acid (TCA). Cell suspensions were homogenized in a Polytron PT 1300 for 2 min

at 20,000 rpm and neutralized with 1 mL of 2M of potassium monoacid phosphate. The samples

were centrifuged at high speed for 10 min at 4˚C and immediately injected for propionyl-CoA deter-

mination. The pellets were stored for protein quantification using the bicinchoninic acid method

(Thermo Scientific Pierce Protein BCA Kit). For 3-HP measurements, the cell extract was desiccated

in a Speedvac and the resulting pellet was resuspended in the same volume of methanol. Then, the

samples were centrifuged at high speed for 10 min at 4˚C. For E.coli metabolite extraction, the cell

extracts were obtained as mentioned above except that bacteria cells were disrupted by sonication

for 2 min using intervals of 15 s of sonication followed by 15 s for cooling.

LC-MS/MS quantification
The quantification of metabolites was performed using a LC-MS/MS system consisting of an ultra-

high pressure LC system (Agilent 1290) online coupled to a Triple Quadrupole mass spectrometer

equipped with an electrospray ionization source (Agilent 6460). Propionyl-CoA was separated using

a column Zorbax Eclipse Plus C18 Rapid Resolution HD 2.1 � 50 mm 1.8 Micron (Agilent) at 30˚C.
The mobile phase was composed of Buffer A: 10 mM tributylamine, 15 mM acetic acid and 5%

methanol; and Buffer B: 100% methanol. The flow rate was 0.5 mL/min and the gradient method

consisted of: 0–0.25 min, 2.5% B; 0.25–0.5 min, 2.5–30% B; 0.5–5 min, 30–70%B; 5–5.25 min, 70–

100% B; 5.25–6.25 min, 100% B; 6.25–7 min, 2.5% B; 7–8 min 2.5% B. The 3-hydroxypropanoic acid

was separated using a column Zorbax Eclipse Plus C18 Rapid Resolution HD 2.1 � 100 mm 1.8

Micron (Agilent) at 30 C. The mobile phase was composed of Buffer A: 0.1% formic acid in water;

and Buffer B: 100% methanol. The flow rate was 0.35 mL/min and the gradient consisted of: 0–

3 min, 5% B; 3–4 min, 5–70% B; 4–5.25 min, 70%B; 5.25–5.5 min, 70–100% B; 5.5–6.5 min, 100% B;

6.5–7 min, 5% B; 7–7.5 min 5% B. Q1/Q3 (MRM) transitions, ion source and collision energy settings

were optimized according to the metabolites and were: 91->73, 25 eV; 824.2->317.1, 25 eV; and

92->74, 25 eV (in positive mode), for 3-HP, propionyl-CoA and 13C labeled 3-HP, respectively. Ion

source settings were as follows: gas temperature, 300 C: gas flow, 8L/min; nebulizer 50 psi (Nitro-

gen); sheath gas temperature, 200 C: sheath gas flow, 11 L/min, capillary 3500 V and nozzle voltage,

500 V. We confirmed the peak identity of 3-HP by matching retention time, mass/charge ratio and

MS/MS fragmentation spectra to a chemically synthesized 3-HP standard.

CRISPR/Cas9 genome editing
The alh-8 mutant was generated by dual sgRNA directed-deletion (Chen et al., 2014). We used a

co-CRISPR strategy, which includes unc-22 as a CRISPR marker to enhance detection of genome-

editing events (Kim et al., 2014). The target sequences were manually derived to conform to the

sequence N19NGG near the 5’ end of alh-8. Two target sequences were chosen: CCGCCCATCTC

TTGTGATTTTC and CTGTGCGACAGTTGTCGTATGG. We designed forward and reverse oligos

containing the N19 sequence and ends of BsaI recognition sites. The forward and reverse oligos

were annealed and ligated to BsaI-digested pRB1017 vector (Arribere et al., 2014). The alh-8

sgRNA plasmids were prepared using a PureLink Quick Plasmid Miniprep Kit (Invitrogen). The other

co-injected DNA vectors were purified using a Qiagen midiprep kit. The DNA mixture used in micro-

injection contained Peft-3::Cas9 vector, pRF4::rol-6(su1006), unc-22 sgRNA vector (all gifts from the

Mello lab) and two alh-8 sgRNA vectors, each with a concentration of 40 ng/ml. Approximately 20

young adult hermaphrodite worms were injected. After recovering from injection, each worm was

placed onto an individual E. coli OP50 plate. After 2–3 days, the F1 rollers (dominant phenotype

indicating presence of the pRF4::rol-6(su1006) construct) were picked onto new plates. F1s with

twitcher F2s were genotyped by PCR for mutations in alh-8. The PCR primers are outside of the

sgRNA-targeted region. Forward primer: TTCAATGTTCGCGTGTATTTTG; Reverse primer: TCAGC-

GAGCTTCTTCATGT. The amplicons with smaller size than wild type amplicons were reconfirmed by

sequencing. Forward primer: ATTCGAAACGTGATCAGTAATG; Reverse primer: CTCTCTTGA

TCAAGGCTTGA. A mutant animal with a ~400 bp deletion (23 bp indel and 399 bp deletion) was

chosen for further analysis, and was outcrossed with N2 three times before use in phenotypic assays.
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Network analysis - WISP
The WISP tissue-specific functional networks were built using a semi-supervised regularized Bayesian

approach that integrated 56,179 expression- and interaction-based measurements across 174

genome-level datasets [http://wisp.princeton.edu; Yao et al., in preparation, V. Yao, personal com-

munication, June 2016]. Using the intestine network, we found genes that were tightly connected to

acdh-1, ech-6 and hach-1 even after adjusting for average network connectivity, which improved the

specificity of the retrieved genes to our seed genes.

Network analysis – SEEK
The SEEK (seek.princeton.edu) and modSEEK search engines have compiled thousands of publicly

available expression datasets and given a gene set query, weights datasets by relevance (using a

cross-validation method) and calculates a weighted coexpression score for every other gene in the

genome to the gene set according to the dataset relevance weights. For every gene set, we can

thus use the leave-one-out approach to calculate average weighted coexpression scores for the

entire set. To construct null distributions for these 5-gene queries, we compared with average

weighted coexpression scores based on random sets (n = 10,000) from (1) all genes with sufficient

data; (2) all genes that show enzymatic activity (as indicated by known annotation to the catalytic

activity GO term); (3) all genes in similar gene families / related pathways (members of acdh, ech, alh

families, as well as those known to participate in branched chain amino acid breakdown, the canoni-

cal propionyl-CoA breakdown pathway, and the TCA cycle).

Tissue culture
HepG2 cells were seeded in 6 well plates at 0.6 � 106 cells/ml in 3 ml DMEM plus 1% FBS with or

without 50 mM propionic acid. Cells were incubated for 48 hr at 37˚C, 5% CO2 and 65% relative

humidity. Cells were washed two times in PBS and before proceeding to Trizol lysis for RNA extrac-

tion. qRT-PCR was performed as described above, using actin and GAPDH to normalize expression

levels.
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