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SUMMARY

Methylation of histone H3 lysine-4 is a hallmark of
chromatin associated with active gene expression.
The activity of H3K4-specific modification enzymes,
in higher eukaryotes the MLL (or KMT2) family, is
tightly regulated. The MLL family has six members,
each with a specialized function. All contain a cata-
lytic SET domain that associates with a core multi-
protein complex for activation. These SET domains
segregate into three classes that correlate with the
arrangement of targeting domains that populate the
rest of the protein. Here we show that, unlike MLL1,
the MLL4 SET domain retains significant activity
without the core complex. We also present the crys-
tal structure of an inactive MLL4-tagged SET domain
construct and describe conformational changes that
account for MLL4 intrinsic activity. Finally, our struc-
ture explains how the MLL SET domains are able to
add multiple methyl groups to the target lysine,
despite having the sequence characteristics of a
classical monomethylase.

INTRODUCTION

Histone methyltransferases and demethylases form a major part

of the highly dynamic chromatin modification system that en-

ables epigenetic regulation. Methylation of the lysine-4 residue

on histone H3 (H3K4) facilitates the recruitment of transcriptional

complexes and correlates well with active gene transcription

(Bannister and Kouzarides, 2011; Ruthenburg et al., 2007; Smith

et al., 2011). These marks play an essential role in organizing

gene expression, and as such their placement must be tightly

regulated. With increased complexity, elaborate regulatory

mechanisms have evolved in eukaryotic cells to control chro-

matin modifications (reviewed in Kusch, 2012; Shilatifard,

2012). Consequently, in yeast, a single methyltransferase com-

plex, Set1, is responsible for all H3K4 histone methylation,

whereas in humans, the homologous MLL (or KMT2) family has

expanded to six members (Kusch, 2012; Miller et al., 2001; Ro-

guev et al., 2001; Schlichter and Cairns, 2005). The different fam-

ily members can be distinguished by the pattern of their targeting

domains (such as PHD fingers, BROMO domains, or RRM do-

mains) (Figure 1A). These proteins, MLL1 and 2, MLL3 and 4,
S

and SetD1A and B (or KMT2a to KMT2f), have most likely arisen

from duplications of ancestral genes that encoded proteins

similar to the Drosophila Set1, TRX, and TRR (Morgan and Shila-

tifard, 2013).

The individual roles of each MLL protein are not fully under-

stood, but recent studies have revealed insights into their

separate functions (Denissov et al., 2014; Hu et al., 2013; Lee

et al., 2013). The emerging picture is that, whereas the SetD1A

and SetD1B proteins may be responsible for global H3K4

methylation, the TRX-like and TRR-like proteins have more

specialized roles (Bledau et al., 2014; Hallson et al., 2012).

For example, the MLL1 and MLL2 proteins are implicated in

the regulation of only a small number of Hox genes in early

development (Denissov et al., 2014). The TRR-like MLL3 and

MLL4 methyltransferases are implicated in the regulation of a

slightly broader subset of genes. For example, promoters

shown to bind MLL4 include those of p53, cyclic AMP signaling

genes, and retinoic acid receptors (Guo et al., 2012). Disruption

of different MLL proteins is associated with different disease

pathways; notably, it has long been known that chromosomal

translocations that disrupt MLL1 can contribute to aggressive

leukemias (Dou and Hess, 2008). However, mutations in

MLL4 are linked to the congenital abnormality Kabuki syn-

drome (Micale et al., 2014).

In humans, MLL proteins are relatively large in size. The small-

est SetD1a has 1,707 amino acids and the largest MLL4 has

5,537. However, the conserved H3K4-specific catalytic SET

domain is a small component at the C terminus, comprising

only 150 amino acids. A defining feature of the MLL family,

conserved through evolution, is that their SET domain must

associate with a multiprotein complex for full catalytic activity

(Dehe et al., 2006; Dou et al., 2006; Roguev et al., 2001; Yo-

koyama et al., 2004). Analyses indicate that additional compo-

nents may associate with different MLL proteins, but that all

bind to a conserved core complex (Hu et al., 2013; Van Nuland

et al., 2013). This core multiprotein complex comprises four sub-

units, WDR5, RbBP5, Ash2L, and Dpy-30, and is commonly

referred to as the WRAD complex. Mutation or downregulated

expression of WRAD proteins leads to a loss of the methyltrans-

ferase activity associated with MLL proteins, thus implying the

MLL SET domain must associate with WRAD for activation

(Dehe et al., 2006; Dou et al., 2006; Roguev et al., 2001).

The molecular basis of WRAD-mediated stimulation of MLL

methyltransferase activity has been the subject of a number of

studies, reviewed in Cosgrove and Patel (2010) and Ernst and

Vakoc (2012). All MLLs have a conserved arginine-containing

motif N-terminal to the SET domain, termed theWINmotif, which
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Figure 1. The KMT2 Family of Histone H3K4

Methyltransferases

(A) The domain architecture of the KMT2 proteins

found in yeast, Drosophila, and humans.

(B) Phylogenetic analysis based on the sequence of

only the SET domains of KMT2 proteins. The pro-

teins segregate into the same groups in both sets of

proteins. See also the extended sequence align-

ment in Figure S1.
binds WDR5 (Patel et al., 2008; Zhang et al., 2012). This appears

to form a hub that facilitates the recruitment of the other compo-

nents of the complex (Avdic et al., 2011; Couture and Skiniotis,

2013; Odho et al., 2010; Tremblay et al., 2014). Recent evidence

indicates that the assembly process may be regulated by post-

translational modification, for example through phosphorylation

of RbBP5 (Zhang et al., 2015). The crystal structure of the iso-

lated MLL1 SET domain revealed an open conformation, which

was suboptimal for methyl transfer to the target lysine (Southall

et al., 2009). This led to the hypothesis that the interaction with

WRAD components induced amore optimal SET domain confor-

mation, thus stimulating activity. However, the detailed mecha-

nism of stimulation of methyltransferase activity by WRAD is

not yet fully established. In in vitro studies, methylated histone

product could be detected following incubation with WRAD

complex reconstituted with an inactivated SET domain (Patel

et al., 2011; Shinsky et al., 2014). This led to the hypothesis

that assembly of the MLL SET domain with WRAD generates a

cryptic S-adenosylmethionine (SAM) binding site, which poten-

tially participates in di- and trimethylation events. The molecular

details of the pairwise interactions between theMLL SET domain

and different WRAD subunits are beginning to emerge (Cao

et al., 2014). An electron microscopy reconstruction has re-

vealed the overall shape of the homologous yeast COMPASS

complex, which provides a clear indication of the relative posi-

tion of the subunits (Takahashi et al., 2011). The yeast and

mammalian complexes are conserved, and MLL is expected to

retain a similar overall conformation.

Variation in the relative in vitro methyltransferase activity of

different MLL family members has been reported (Cao et al.,

2014; Shinsky et al., 2015; Zhang et al., 2012). Consistently

MLL1 exhibits the weakest activity in the absence of WRAD

complex, and in a recent study MLL3 intrinsic activity was sub-

stantially higher than that of the other MLLs (Zhang et al.,

2012). Differences have also emerged in how themethyltransfer-

ase activity of individual MLL proteins may be controlled. For

example, in their investigation of the effect of H2B ubiquitination

on MLL complex activity, Dou and colleagues found that MLL1

and SetD1A activity was positively regulated by ubiquitination,

whereas for MLL3 there was no discernible effect (Wu et al.,

2013b). In a study of compounds that inhibit H3K4 methylation,

MLL1 was found to be more sensitive than the other members

of the family to compounds that target the central binding site

of the WDR5 propeller (Cao et al., 2014).
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Using only the sequence of the C-termi-

nal SET domains, the MLL family segre-

gates into three distinct groups (Fig-

ure 1B). Intriguingly these subgroups
reproduce those created using the domain architecture of the

full proteins. Together with differences in expression, this implies

that the different MLL proteins are uniquely targeted. As the

sequence analysis indicates that their SET domains have

specialized, we were interested in whether SET domains from

different subgroups had evolved distinct intrinsic enzymatic

properties. MLL1 (KMT2A located on human chromosome 11)

and MLL4 (KMT2D located on human chromosome 12) were

selected as representatives of the TRX-like and TRR-like groups,

respectively. Here, we present the characterization of the MLL4

SET domain, and show that it has catalytic properties distinct

from those of MLL1. To explain how these differences arise

from small changes in primary sequence, we have determined

the crystal structure of the MLL4 SET domain (using a construct

inactivated by its C-terminal tag) and compared it with the previ-

ously published MLL1 structure (Southall et al., 2009). From this

analysis, in addition to confirming a role for the orientation of the

SET-I region in activation, we have identified a previously un-

known function for the postSET loop in the MLL activation

mechanism.

RESULTS

MLL1 and MLL4 Have Different Catalytic Properties
Although well conserved, the SET domains of MLL1 and MLL4

have a sequence identity of 47% and a similarity of 68%. We

looked for a correlation between their segregation into different

subgroups and their catalytic properties. Equivalent recombi-

nant constructs of these two proteins were prepared containing

the SET domain (starting from the conserved WDR5 binding

‘‘WIN’’ motif to the C terminus). First, we determined whether,

like MLL1, the MLL4 SET construct had minimal catalytic activity

in the absence of the core complex. A methyltransferase assay

was performed with both enzymes under identical conditions,

with saturating SAM and a range of H3 peptide substrate con-

centrations (Figure 2A). In the absence of the WRAD complex,

theMLL1 SET domain exhibited weak activity with aKM (H3 pep-

tide) of 430 mM and a turnover rate (kcat) of 0.06 min�1. However,

the equivalent MLL4 SET domain construct had approximately

ten times more activity (kcat 0.50 min�1) (Figure 2A). The MLL4

KM (peptide) was estimated to be 251 mM, and thus similar to

that of MLL1, showing that the higher intrinsic activity of

MLL4 is not likely to arise from differences in substrate binding

affinity.
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Figure 2. Activity and WRAD Binding of the MLL1 and MLL4 SET Domains

Details of the selection of assay conditions are provided in Figure S2.

(A) Methyltransferase activity of MLL1 and MLL4 SET domain constructs with saturating SAM and increasing H3 peptide substrate. MLL4 shows much higher

methyltransferase activity than MLL1 with respect to peptide substrate.

(B) Methyltransferase activity of MLL1 and MLL4 SET domain constructs plus WRAD complex with saturating SAM and increasing H3 peptide substrate. Both

MLL1 and MLL4 show significantly higher activity in the presence of WRAD complex. Quantification of methyl transfer was calculated from liquid scintillation

measurement of recovered peptide, assuming 1 dpm is equivalent to 5.68�9 nM CH3. Error bars represent the standard deviation of triplicate measurements.

(C and D) Binding kinetics of immobilized MLL1 SET domain (C) and MLL4 domain (D) to WRAD complex. Both MLL1 and MLL4 SET domain constructs bind

tightly to the WRAD complex.
The need to associate with the WRAD complex for full activa-

tion is a well-established principle for MLL SET domains

(Couture and Skiniotis, 2013; Ernst and Vakoc, 2012; Shilatifard,

2012). To compare the effects of WRAD-mediated stimulation of

MLL4 and MLL1 proteins, we coexpressed the WRAD complex

(WDR5, RbBP5, Ash2L, and Dpy-30) in insect cells, and purified

it using a Strep affinity tag on the RbBP5 subunit. Methyltransfer-

ase assays with the MLL1 and MLL4 WIN constructs were
S

then repeated in the presence of equimolar WRAD (Figure 2B).

The methyltransferase activity of both MLL1 and MLL4

increased when complexed with WRAD. However, in identical

experimental conditions for MLL1 we observed a 40-fold in-

crease in kcat over the intrinsic activity, while kcat of MLL4

increased only 4-fold. To determine whether the higher stimula-

tion of MLL1 by WRAD was a consequence of a higher

affinity for the complex, we performed protein-protein interaction
tructure 23, 1921–1933, October 6, 2015 ª2015 The Authors 1923



experiments using biolayer interferometry. MLL1 and MLL4

constructs containing the WDR5 binding WIN motif were immo-

bilized on a sensor chip, and the binding ofWRADwasmeasured

(Figures 2C and 2D). WRAD complex bound tightly to both

enzymes; the estimated Kd for MLL1-WRAD and MLL4-WRAD

was 60 nM and 25 nM, respectively. Thus at the WRAD and

SET domain concentrations used in assays, we estimate that

approximately 93% MLL1 and 95% MLL4 should be present

as complex. For both MLL1 and MLL4-WRAD complexes

the observed enzymatic activity was similar, with KM (100 mM)

and kcat (2.35 min�1 and 2.65 min�1), respectively (Figure 2B).

Importantly, although MLL4 has significantly higher intrinsic

activity, both enzymes were only fully activated in complex

with WRAD.

The Structure of the MLL4 SET Domain
To address the molecular basis of the higher intrinsic activity of

the MLL4 SET domain, we determined its crystal structure. The

MLL4 (WIN) construct used in kinetic studies did not yield crys-

tals despite exhaustive attempts, so a combinatorial domain

hunting procedure was used to identify a construct suitable for

crystallography (Reich et al., 2006). An expression library of

MLL4 gene fragments was generated and screened for soluble

expression in Escherichia coli. From an initial library diversity of

157,000 clones, 25,000 colonies were screened and 18 unique,

well-expressed, and soluble constructs were identified that

covered both the SET and postSET domains. The final construct

used for structural determination, MLL4(tag), encompassed res-

idues 5,384 to 5,536, followed by a C-terminal 6xHis tag, and

crystallized with S-adenosylhomocysteine (SAH) cofactor prod-

uct (Figures 3A and S3). The crystals diffracted to a resolution of

2.2 Å and belonged to the space group P21. The structure was

determined by molecular replacement using the central core of

the MLL1 SET domain structure as the search model (Southall

et al., 2009), and the relevant crystallographic statistics are pre-

sented in Table 1.

The catalytic domain of MLL4(tag) adopts the canonical b-fold

structure observed for other SET domains, and closely resem-

bles that ofMLL1 (Figures 3C and 3D) (Dillon et al., 2005; Southall

et al., 2009; Xiao et al., 2003b). The N-flanking region of MLL4

forms an extended helical structure, and is markedly different

from the extended loop observed for MLL1. Conserved features

include the cofactor binding site, which is located in a surface

pocket created by the intersection of the SET-N, SET-C, and

postSET domains. The position of the substrate binding channel

is located between the SET-I and postSET domains, and is indi-

cated in Figure 3C. The C-terminal tag immediately follows the

conserved Cys4Zn cluster and enters the substrate binding

channel before turning and passing over the cofactor. The tag

was required for crystallization but resulted in a catalytically

dead construct (Figure 3B), and its impact on the MLL4 SET

domain structure and activity is discussed in detail in Figure S3.

An equivalent MLL4 construct prepared with an N-terminal tag,

like the MLL4(WIN) construct, had high intrinsic activity (Fig-

ure 3B), indicating that the determinants of this intrinsic activity

are contained within this region of the SET domain. The lack of

methyltransferase activity observedwith the C-terminally tagged

construct can be attributed to partial blocking of the substrate

binding channel and interactions with the cofactor.
1924 Structure 23, 1921–1933, October 6, 2015 ª2015 The Authors
Comparison of the MLL1 and MLL4 SET Domain
Structures
Previously, we observed that in the MLL1 SET domain structure,

the SET-I region lay further from the active site than in the struc-

tures of other SET domain proteins (Couture et al., 2005; Southall

et al., 2009; Xiao et al., 2003a; Zhang et al., 2002). We argued

that this contributed to the weak intrinsic activity observed for

MLL1, as the target lysine is not held in the optimal position for

methyl transfer. To compare the MLL4(tag) structure with

MLL1, the two structures were aligned using their SAH cofactors

as the reference (Figure 4A). The SET-N, SET-C, and postSET

Zn2+ ion binding regions all superpose closely, with a root-

mean-square deviation of only 0.8 Å for Ca atoms over this

region. However, two elements of the SET domain, the SET-I re-

gion and the postSET loop, adopt different positions in the two

structures.

In MLL4(tag) the SET-I region, which retains the conserved

fold observed in MLL1 and other SET domain structures, is in a

position that is more consistent with the ‘‘closed’’ conformation

proposed for an active SET domain (Southall et al., 2009). The

consequence of this position for the MLL4 SET-I region is that

the four-residue motif, termed the channel tetrapeptide (I-Y-

M-F in MLL4), is 3.3 Å closer to the conserved active-site tyro-

sine that flanks the target lysine side chain (Tyr5512 residue in

MLL4) relative to MLL1 (Figure 4B). The target lysine side chain

would therefore have less freedom of movement in MLL4, which

would promote the SN2 nucleophilic methyl transfer reaction and

increased catalytic efficiency. The catalytic efficiency (kcat/KM)

for MLL4 was 2.0 3 10�3, compared with 1.0 3 10�5 for MLL1.

When complexed with WRAD, the kcat/KM of both enzymes

increased to approximately 2.5 3 10�2. The position of the

SET-I region relative to the postSET Tyr observed in the

MLL4(tag) structure could therefore represent an intermediate

state, between the position in the deactivated conformation

observed for MLL1 and that when fully activated by WRAD. We

suggest that WRAD association with the MLL4 SET domain sta-

bilizes a fully activated conformation.

Can sequence features be identified that account for the rela-

tive positions of the SET-I region in MLL1 and the MLL4(tag)

structures? The active site in SET domain proteins is enclosed

by three elements: the SAM cofactor, the SET-C region, and

the channel tetrapeptide segment (Figure 5C). At its N terminus

the tetrapeptide is connected to the cofactor by a hydrogen

bond with the conserved tyrosine (see Figures 4C and S4). A

bulky side chain, often a phenylalanine, for example in Ezh2,

Suv39, or Dim5, then makes a stabilizing interaction with a hy-

drophobic residue on the first b strand of the SET-C region. As

Figure 4C shows, in MLL4 the phenylalanine packs against an

alanine on the SET-C strand, but in MLL1 there is a serine in

the equivalent position on SET-C, so that the equivalent hydro-

phobic interaction cannot be made. Interestingly, mutation of

the MLL4 SET-C alanine (Ala5484) to a serine results in an

approximately 2-fold reduction in MLL4 methyltransferase activ-

ity (Figure 4D). It is likely that several sequence features combine

to promote the partially activated conformation and higher

intrinsic activity we observe for MLL4. It should also be noted

that the side chain of the first histidine of the MLL4 C-terminal

tagmakes a hydrogen bond to the side chain of the SET-I residue

Glu5440. Although it is not possible to rule out that this may
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Figure 3. Structure of the MLL4 SET Domain

(A) Schematic representation of MLL4 constructs used in this study, indicating the subdomains of the MLL4 SET domain and providing a key for colors used in

(C) and (D).

(B) Methyltransferase activity of SET domain constructs used in this study. Activities are presented relative to the MLL1 (WIN) construct. Further details of the

constructs used and their relative activity are presented in Figure S3. Error bars represent the standard deviation of triplicate measurements.

(C) Cartoon representation of MLL4 in two orthogonal orientations. SET domain regions are colored as indicated in the key. The protein is shown in cartoon

representation with the C-terminal 6xHis tag shown in yellow. The cofactor product, S-adenosyl homocysteine, is shown in stick representation, and the single

coordinated Zn2+ ion as a sphere. The substrate binding channel, inferred from the structure of MLL1, is indicated in gray.

(D) Orthogonal view of the MLL4 SET domain indicating the relative positions of the SET-I region and postSET loop. The box indicates the position of the

postSET loop.
influence the position of SET-I, this seems unlikely given the

inherent flexibility of the tag, and this issue is discussed in greater

detail in Figure S3.

Role of the postSET Loop in Activation
A short loop region, termed the postSET loop (Figures 3C and

3D), links the well-conserved postSET Cys4Zn cluster and the

SET-C region. The sequence of this loop region, which com-

prises residues 5,515–5,521 in MLL4, varies significantly among

the different MLL subgroups (Figure 5A). Although the loop is the

same length in MLL1 (TRX) and MLL4 (TRR), the difference in the

sequence of the TRX-like and TRR-like groups is conspicuous

given the otherwise high degree of conservation across the do-
S

mains. The sequence within the subgroups, for example be-

tween MLL3 and MLL4, is conserved. We were interested in

whether these differences in the postSET loop contributed to

the higher intrinsic activity of MLL4. We prepared chimera con-

structs in which the MLL1 and MLL4 postSET loop motif was

‘‘swapped.’’ The intrinsic methyltransferase activity of the

‘‘swap’’ constructs was compared with their respective wild-

type parent SET domains (Figure 5B). Replacing the MLL1

sequence with that of MLL4 led to a 3-fold increase in the meth-

yltransferase activity, while the reverse substitution reduced

MLL4 activity by about 2-fold. The domain swap data are consis-

tent with the sequence of the postSET loop region of the TRR-

like proteins contributing to their intrinsic enzyme activity.
tructure 23, 1921–1933, October 6, 2015 ª2015 The Authors 1925



Table 1. Crystallographic Data Collection and Refinement

PDB: 4Z4P

Data Collection

Space group P21

Cell Dimensions

a, b, c (Å) 38.3, 40.7, 51.0

a, b, g (�) 90.0, 91.8, 90

Resolution (Å) 2.20

Rmerge 0.063 (0.21)a

Mean I/sI 17.3 (8.3)a

Completeness (%) 98.9 (98.5)a

Redundancy 5.4 (5.5)a

Wilson B factor 30.3

Refinement

Resolution (Å) 2.20

No. of reflections 11,491

Rwork
b/Rfree

c 18.6/24.0

No. of atoms

Total 1,422

Protein 1,361

Ligand/ion 1

Water 60

B factors (Å2)

Protein 36.5

Ligand 36.6

Water 33.4

Root-mean-square deviations

Bond lengths (Å) 0.01

Bond angles (�) 1.17

Structure Validation (%)

Ramachandran outliers 0.6

Ramachandran favored 94.3

Rotamer outliers 0
aThe average value is across the resolution range while that in parenthe-

ses is the value for the highest-resolution bin (2.3–2.2 Å).
bRwork = S j jFoj � jFcj j/S jFoj.
cRfree = ST j jFoj � jFcj j/ST jFoj, where T is a test dataset of 5% of the total

reflections randomly chosen and set aside before refinement.
Previous analyses of SET domain structures have indicated

that the postSET loop is a flexible feature linking the SET-C to

the Cys4Zn cluster (Dillon et al., 2005). In crystal structures of

SET domains that have a Cys4Zn cluster in their postSET region,

such as Dim5, Suv39H2, and EzH2, the postSET loop was disor-

dered, and therefore was not included in the final atomic model

(Wu et al., 2010, 2013a; Zhang et al., 2002). Indeed, in our previ-

ously reported structural analysis of the MLL1 SET domain,

although we were able to build the postSET loop in the crystal

structure of the ternary complex with peptide and SAH, it was

not possible for the equivalent binary complex without peptide

(Southall et al., 2009). In the current structure of the MLL4 SET

domain, the postSET loop has B factors notably higher than

those in other regions. This again highlights the flexibility of this

region. Nevertheless, electron density maps, although weak,
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were good enough to build in this segment. Inspection of the

MLL4 structure reveals that several side chains of residues in

the postSET loop are oriented toward the SET-I region, and

some are capable of making hydrogen bonds with it (Figure 5C).

Although due to the inherent flexibility of the loop these interac-

tions may be transient, they may contribute to MLL4 intrinsic

activity. In the MLL1 ternary complex structure the postSET

loop adopts a conformation that is much more distant from the

SET-I region, and there are no implied interactions between

these two regions (Figure 5D). Our interpretation is therefore

that while the MLL postSET loop is inherently flexible, the

biochemical data support the idea that sufficient interactions

can be made with SET-I that contribute to activity.

We were interested in the contributions of individual postSET

loop residues to activity. The conformation of the MLL1 and

MLL4 postSET loops start to diverge at the MLL4 Asp5515 res-

idue, which is equivalent to Pro3947 in MLL1 (Figures 5A and

5D). The MLL4 D5515P mutant had reduced methyltransferase

activity compared with wild-type (Figure 5E), although the

reversemutation inMLL1, P3947D, led to only amodest increase

(Figure 5F). Two MLL4 postSET residues are close enough to

interact with SET-I residues Asp5519 and His5521 (Figure 5C).

Asp5519 is centrally located in the loop and could make a

water-mediated hydrogen bond with Asn5437 on SET-I. In

MLL4 the D5519A mutation effectively abolished the intrinsic

methyltransferase activity (Figure 5E). In MLL1 the equivalent

residue is Ala3951, and a MLL1 (A3951D) mutant had approxi-

mately 6-fold higher methyltransferase activity compared with

wild-type (Figure 5F). The His5521 residue may make a relatively

weak hydrogen bond to SET-I residue Glu5440, although this

interaction may be influenced by the second His tag residue,

which also interacts with Glu5440. The MLL4 (H5521A) mutation

reduced intrinsic MLL4 activity by about 2-fold, and the reverse

mutation in MLL1 (N3953H) led to a modest increase in activity.

The MLL4 Asp5519 had the most significant effect on intrinsic

activity but, interestingly, when the MLL4 (D5519A) mutant was

reconstituted with WRAD complex, in common with the other

postSET loop mutants the activity was restored to near wild-

type levels (Figure 5E). A role for the postSET loop has been pre-

viously proposed in substrate/cofactor product release (Dillon

et al., 2005; Zhang et al., 2003). We propose that the inherent

flexibility of the postSET loop region means that in addition it

makes a transient interaction with SET-I, contributing to the sta-

bilization of the active conformation in MLL4. The addition of

WRAD complex then further stabilizes the active conformation.

MLL Product Specificity
The phenylalanine/tyrosine switch hypothesis is a well-estab-

lished rule of thumb for predicting the product specificity of

SET domain proteins based on the sequence of their active

site (Couture et al., 2008; Xiao et al., 2003b; Zhang et al.,

2003). Essentially, if the two residues in the active site that

constrain the target lysine Nε are both tyrosines, the SET domain

is restricted to monomethylation. However, SET domains with a

phenylalanine in the position of one of these ‘‘active-site tyro-

sines’’ also have the capacity for di- and trimethylation activity.

Many studies have reported mono-, di-, and trimethylation of

H3K4 for MLL methyltransferases (reviewed in Kusch, 2012).

However, across the MLL family both the active-site residues
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Figure 4. Comparison of the MLL1 and

MLL4 SET Domain Structures

(A) Superposition of the MLL1 (darker colors) and

MLL4 SET domains in carton representation. Su-

perposition performed in Coot on the cofactor

molecule.

(B) Detail of the position of the channel tetrapep-

tide segments of MLL1 and MLL4, showing how

the MLL4 construct better constrains the target

lysine substrate due to a shift of approximately

3.3 Å toward the Tyr5510 residue (MLL4

numbering).

(C) Schematic representation showing the rela-

tionship of the channel tetrapeptide with the

cofactor and SET-C strand. The Ala residue on the

SET-C strand forms a closer interaction with

the tetrapeptide Phe in MLL4.

(D) Mutation of the MLL4 Ala5484 residue to Ser

reduces the intrinsic methyltransferase activity of

the construct relative to the wild-type. Further

structural details are presented in Figure S4.

Error bars represent the standard deviation of

triplicate measurements.
are conserved tyrosines (Figure S1). Superposing the MLL4(tag)

structure with PR-Set7 confirms that these residues occupy the

same positions in the active site as this well-established mono-

methylase (Figure 6A). Using H3 substrate peptides that were

either unmodified, monomethylated, or dimethylated at the K4

position, we measured the intrinsic product specificity of the

MLL4 SET domain construct (Figure 6B). We found that it had

a significant preference for the unmodified peptide substrate

and, in linewith the sequence and structural prediction, indicates

that MLL4 has intrinsic monomethylase activity.

In common with the other MLL proteins, MLL4 has been asso-

ciated with mono-, di-, and trimethylation of H3K4 in cellular

studies (Issaeva et al., 2007; Lee et al., 2013). We used

MALDI-TOF mass spectrometry to investigate the methylated

state of histone peptide following incubation with MLL4 (Guitot

et al., 2014). An unmodified histone peptide was incubated

with an equimolar concentration of enzyme, and the reaction

products were analyzed at specified time points (Figure 6C).

After 60 min of incubation an approximately equal amount of un-

modified and monomethylated species was detected. Following

overnight incubation, dimethyl species was also observed. How-

ever, with the addition of WRAD the peptide was rapidly con-

verted to the monomethylated species (Figure 6D). After

30 min of incubation the dimethylated species dominated, and

a trimethylated species was detected following a longer incuba-

tion of 4 hr. After overnight incubation the trimethylated species

was the only product detected. Thus, theMLL4 SET domain per-

mits the generation of multiple methyl species and, in complex

with WRAD, the reaction proceeds more rapidly. Interestingly,

the Couture group has recently reported that the second TRR-
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like subgroup member, MLL3, can also

introduce multiple methyl groups to an

unmodified H3 substrate, in this case

when in complex with a Ash2L/RbBP5

heterodimer (Zhang et al., 2015). In their

assays, in the absence of the Ash2L/
RbBP5 heterodimer, only monomethyl product was detected

using the MLL3 SET domain.

Conversion of the unmodified peptide substrate to the tri-

methyl species by MLL4/WRAD was also observed in a gel-

based assay format using a set of methyl-specific antibodies

to analyze the product (Figure 6E). In this experiment the sub-

strate peptide was in 20-fold excess of the enzyme complex. Us-

ing this assay format, we were also able to follow the generation

of different methyl species using recombinant mononucleo-

somes as a more physiologically representative substrate. Again

the signal for monomethyl H3K4 peaked after 5 min, but had dis-

appeared after overnight incubation. Meanwhile the trimethyl

product gradually accumulated over the course of the reaction.

Can theMLL1 andMLL4(tag) structures explain howMLL pro-

teins are able to catalyze multiple methylation steps? We have

previously reported that an MLL1 SET domain construct was

able to methylate both unmodified and monomethylated H3K4

peptide, implying that it had both intrinsic mono- and dimethy-

lase activity (Southall et al., 2009). WRAD association stimulates

the overall methyltransferase activity of both MLL1 and MLL4

SET domains (Figure 2B). This increase in activity was also

observed using premodified H3K4me1 and H3K4me2 sub-

strates, but the pattern of substrate preference remained broadly

in line with that observed for the SET domain alone (Figures 6F

and 6G). Thus for MLL4 the active site is best suited to monome-

thylation, and this is the most efficient reaction it catalyzes.

Importantly, however, the higher overall activity in association

with WRAD means that the di- and trimethylation activity,

although still lower than for monomethylation, becomes more

easily detected.
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Figure 5. Role of the PostSET Loop in

Enzyme Activation

(A) Sequence of the postSET regions of the MLL

methyltransferases. Position 5522 in MLL4, indi-

cated by an asterisk, is Lys in some database en-

tries. The boxed sequence indicates the motif

swapped between MLL1 and MLL4.

(B) The effect of swapping the postSET loop re-

gions of MLL1 and MLL4 on methyltransferase

activity, relative to respective wild-type (WT). Error

bars represent the standard deviation of triplicate

measurements.

(C) The MLL4 postSET loop (orange) makes po-

tential interactions with the SET-I region (cyan).

The C-terminal tag is indicated in yellow.

(D) Superposition of the MLL1 and MLL4 postSET

regions, showing that the MLL1 postSET loop

(gray) is located further from the SET-I region than

that of MLL4 (orange).

(E) Site-specific mutations to the MLL4 postSET

loop have a detrimental effect on their activity

relative to the WT construct. However, activity is

recovered in the presence of WRAD complex.

(F) The effect of reverse mutations in MLL1 on

activity.
It is striking that in these assays MLL1 is better than MLL4

at catalyzing multiple methylations (Southall et al., 2009; Fig-

ure 6G), even though the key residues defining the active site

are conserved and occupy similar positions to those observed

in MLL4 and PR-Set7 (Figure 6A). However, the more open posi-

tion of the MLL1 channel tetrapeptide residues, discussed

above, also has implications for the position of the active-site

residues. In PR-Set7 the tetrapeptide tyrosine residue, in addi-

tion to forming a hydrogen bond with its side chain and the

SAM cofactor, makes a good hydrogen bond (H-bond geometry

distance 2.7 Å) between its main-chain carbonyl and the

hydroxyl of the second active-site tyrosine, Tyr(2) (Figure 6A),

thus helping to constrain the position of this residue. In the

MLL proteins the orientation of the tetrapeptide main chain is

different, and the distance between the equivalent hydrogen

bond groups increases (3.5 Å in the MLL4 structure and 3.8 Å

in MLL1). As a result, the active site Tyr(2) to target lysine Nε dis-

tance is greater in the MLL4(tag) structure than in PR-Set7, and
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even greater in MLL1. There is now suffi-

cient space around the target lysine Nε

to accommodate multiple methyl groups,

and indeed a dimethyl lysine substrate

product was cocrystallized in the MLL1

structure (Southall et al., 2009). Thus, we

propose that the mobility of the tetrapep-

tide element in MLL SET domains could

contribute to their partial non-compliance

with the phenylalanine/tyrosine switch

rule.

DISCUSSION

The high demand for regulation of histone

H3K4 methylation at chromatin sites has
led to the expansion of the MLL family to six members in higher

eukaryotes. In addition, the MLL methyltransferase domains

must assemble into amultiprotein complex for full catalytic activ-

ity. The MLL SET domains segregate into three classes based

only on the sequence of this 150-amino-acid motif, and these

are the same groupings that arise through classification based

on their targeting domains. This suggests that the different

MLL SET domains may have evolved discrete properties linked

to their different targeting features. The residues that define

cofactor and substrate recognition are absolutely conserved,

indicating that methylation of H3K4 is their core function. Here

we have shown that the representatives of the TRX-like and

TRR-like subgroups, MLL1 andMLL4, respectively, differ in their

intrinsic catalytic properties. Specifically, MLL4 has 10-fold

higher methyltransferase activity than MLL1, and had a stronger

preference formonomethylase product specificity. Upon associ-

ation with the WRAD complex the observed activity of both

proteins increased, with the MLL1/WRAD and MLL4/WRAD



complexes exhibiting similar kinetic behavior. From this we infer

that when associated with WRAD, both proteins adopt a similar

optimal conformation when fully activated. This implies that the

structure of the isolated MLL4 SET domain, with respect to the

positions of the SET-I region and postSET loop, may represent

an intermediate state, which is partially stabilized by features

unique to MLL4.

Superposing the MLL1 and MLL4 SET domain structures re-

vealed a significant difference in the position of the SET-I region.

The position observed in the current MLL4 structure is more

consistent with that of SET domains of structures that do not

require additional components for activation, for example, PR-

Set7, Set7/9, or Dim-5 (Couture et al., 2005; Xiao et al., 2003a;

Zhang et al., 2002). Although they had significantly different

intrinsic activity, we found that in complex with WRAD both en-

zymes reached a similar overall level of activity. In this model

for activation, the crystal structures of the MLL1 and MLL4 iso-

lated SET domains would represent snapshots of different

stages of the activation mechanism. We speculate that WRAD

binding may induce a further movement in SET-I, resulting in

an even more closed active site. MLL1 was more permissive

than MLL4 with regard to product specificity, even when associ-

ated with WRAD complex. We propose that the more open

conformation observed for the isolated MLL1 SET domain struc-

ture implies greater flexibility, and that this may contribute to the

observed product specificity. Following this line of reasoning

would require that even when in complex with WRAD, MLL1

SET-I retains more flexibility than MLL4. Flexibility of MLL SET

domain regions may be linked to cofactor turnover, and it may

therefore be significant that there is contact between the

conserved channel tetrapeptide tyrosine and the cofactor.

The flexibility of the postSET loop has previously been linked

to cofactor turnover (Dillon et al., 2005). It is interesting that in

the MLL4(tag) structure we have captured MLL4 in a conforma-

tion that suggests this region may also have an additional role in

activation. Although this structural analysis suggests that inter-

actionswith SET-I may only be transitory, deactivatingmutations

inMLL4, and the reversemutations that activateMLL1, support a

role for interactions made by these residues in activation. Poten-

tial interactions the postSET loop may make with substrate have

not been tested in our current analysis, but may also contribute

to intrinsic activity. It is significant that WRAD association com-

pensates for the postSET mutations in MLL4, such as D5519A,

that were detrimental to intrinsic activity. One hypothesis pro-

posed to explain WRAD activation of MLLs is that WRAD sub-

units form a surface with MLL that creates a secondary active

site (Shinsky et al., 2014). Our new data do not contradict this

model. However, we favor a model in which the WRAD associa-

tion with the MLL SET domain stabilizes a fully activated confor-

mation, consistent with our previous observations that the

individual members of WRAD act cooperatively to enhance

MLL1 activity (Odho et al., 2010; Southall et al., 2009). The fea-

tures in the postSET region of MLL4 therefore stabilize an inter-

mediate conformation. A fully formedMLL-WRAD complex is the

optimally active configuration for all MLL methyltransferases.

However, our data, together with those showing intrinsic activa-

tion of MLL3 (Zhang et al., 2012), suggest that there may be a

hitherto unidentified function for TRR-like proteins utilizing

monomethylation of H3K4 independent of the complex.
S

EXPERIMENTAL PROCEDURES

Sequence Analysis

Multiple sequence alignments were performed using the T-Coffee server

(tcoffee.crg.cat). For phylogenetic analysis, the sequence from the SET-N re-

gion to the C terminus was used, the tree was produced in T-Coffee, and the

tree diagram was produced using the Phylodendron phylogenetic tree printer

(Indiana University). To generate pairwise identity/similarity statistics, the

EMBOSS-needle algorithm for pairwise sequence alignment (McWilliam

et al., 2013) was used.

Protein Production

Human MLL4(5308–5537), MLL4(5382–5537), and MLL1(3745–3969) SET

domain constructs were expressed as glutathione S-transferase (GST)-fusion

proteins. The MLL4(5382–5536), used for crystallization, was expressed with a

C-terminal 6xHis tag. All constructs were expressed in E. coli BL21 cells (Agi-

lent). GST-fusion proteins were isolated from clarified lysates using glutathione

Sepharose affinity resin (GE Healthcare), and separated from the tag by cleav-

age with rhinovirus 3C protease. His-tagged proteins were isolated on HisTrap

FF columns (GE Healthcare) and eluted with an imidazole gradient. Proteins

were further purified on a HiTrapQ HP column (GE Healthcare). All proteins

were finally purified by size-exclusion chromatography (Superdex S75; GE

Healthcare). The purification buffer was 50 mM HEPES (pH 7.2), 300 mM

NaCl, 5% glycerol, and 0.5 mM tris(2-carboxyethyl)phosphine (TCEP). Muta-

tions were generated in the constructs MLL4(5308–5537) and MLL1(3745–

3969) using the Quikchange PCR mutagenesis method (Agilent).

The WRAD complex was prepared by coexpression in insect cells. Modified

pFBDM and pUCDM vectors were a kind gift of Z. Zhang and D. Barford.

Mouse cDNAs of full-length WDR5 with RbBP5 and Ash2L with DPY30 were

cloned into these vectors using USER cloning (Berger et al., 2004; Frandsen

et al., 2008). A double Strep-tag together with a tobacco etch virus cleavage

site was introduced into the C terminus of RbBP5. The recombinant plasmids

carrying WDR5-RbBP5 and Ash2L-DPY30 expression cassettes were trans-

formed into DH10MultiBacCre cells (competent DH10MultiBac cells containing

plasmid-expressing Cre recombinase). Expression cassettes of WDR5-

RbBP5-Ash2L-DPY30 were then integrated into a bacmid by transposition

and recombination (Berger et al., 2004). The WDR5-RbBP5-Ash2L-DPY30

(WRAD) was expressed using the baculovirus and insect cell (Sf9) systems,

and purified through Strep-Tactin (Qiagen), anion-exchange (Resource Q),

and gel-filtration chromatography (Superdex S200; GE Healthcare). Protein

subunits in the complex were confirmed by peptide mass fingerprint.

Crystallization

Crystals were obtained by the vapor diffusion method. A solution of MLL4(tag)

protein (300 mM) containing SAH (600 mM) was crystallized in a condition con-

sisting of 100 mM Tris-HCl (pH 8.5) and 20% ethanol, and improved through

several rounds of seeding. Crystals were harvested into a cryobuffer consist-

ing of the reservoir condition with 20% glycerol, and flash-frozen in liquid

nitrogen.

Structure Determination

Data were collected at the Diamond Light Source (Oxfordshire, UK) on station

I02. The reflections were indexed using XDS (Kabsch, 2010) and reduced/

scaled with programs from the CCP4i suite (Bailey, 1994). The structure was

solved by molecular replacement using the PHASER package (McCoy et al.,

2007) using the coordinates of human MLL1 SET domain from the binary

complex with SAH (Southall et al., 2009). Differencemaps were used to rebuild

and extend the initial model using the Coot molecular graphics package

(Emsley and Cowtan, 2004). Iterative cycles of refinement were carried out us-

ing REFMAC (Murshudov et al., 2011). The coordinates and structure factors

for the structure have been deposited in the PDB under accession code

PDB: 4Z4P.

Methyltransferase Assays

Methyltransferase assays were performed using peptide substrates based

on the histone H3 amino terminal sequence (ARTKQTARKSTGGKAPR-Y)

(Cancer Research UK) either unmodified, monomethylated, or dimethylated

in the underlined position. For end-point assays, reagent concentrations
tructure 23, 1921–1933, October 6, 2015 ª2015 The Authors 1929
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Figure 6. Product Specificity of the MLL4 SET Domain

(A) Superposition of the active sites of MLL1 (blue), MLL4 (cyan), and PR-Set7 (orange) indicating the positions of the channel tetrapeptide residues and Phe/Tyr

switch residues. Conserved hydrogen bonds are indicated by gray dots, while the tetrapeptide main chain to active-site tyrosine hydrogen bond is shown by

orange dots. This interaction is affected by the position of the channel tetrapeptide in MLL1 and MLL4. Here the main-chain carbonyl of the next tetrapeptide

residue is within hydrogen bonding distance of the active-site tyrosine hydroxyl (3.5 Å in both structures), probably contributing to a displacement of this residue

compared with the position observed in PR-Set7.

(B) MLL4 shows intrinsic monomethylase specificity. Error bars represent the standard deviation of triplicate measurements.

(C) Analysis of the reaction products at specified time points following incubation of MLL4 with unmodified peptide substrate. Different methyl species are

indicated by the shading in the adjacent key. Representative MALDI-TOF spectra are shown to the right, and the full range of spectra is presented in Figure S5.

(D) Analysis of the generation of H3K4 methyl species using MLL4/WRAD complex, shaded as in (C).

(legend continued on next page)
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were 1 mM peptide, 0.5 mM SAM (including 0.625 mM 3H SAM [PerkinElmer]),

in an assay buffer of 50 mM HEPES (pH 8), 200 mM NaCl, and 0.5 mM TCEP.

Following separation of the peptide from cofactor by C18 cartridge purification

(Waters), the incorporation of 3H-labeled SAM into the peptide was estimated

by scintillation counting, as previously described (Xiao et al., 2003a). Assays

were carried out at 30�C for 60 min with a final enzyme concentration of

10 mM unless otherwise stated. For kinetic analysis, the final SAM concentra-

tion was 1 mM and the peptide concentration was as stated. For kinetic

analysis, raw dpm (disintegrations per minute) scintillation counter data were

converted to nmol CH3/min/mmol enzyme, based on the assumption that 1

dpm is equivalent to 3 3 10�14 mmol CH3. This conversion assumes a radio-

label stock chemical concentration of 36.6 mM and that there is complete

recovery of labeled peptide. All assays were carried out in triplicate and ex-

pressed as mean ± SD. Kinetic analysis of reaction rates was performed using

the GraphPad Prism software package (GraphPad).

MALDI-TOF mass spectrometry was used to examine the reaction products

of the methyltransferase reaction with the H3 peptide at specific time points,

essentially as described by Guitot et al. (2014). The reaction mixture contained

10 mM enzyme (either MLL4(WIN) or MLL4(WIN) + WRAD), 200 mM SAM, and

10 mM unmodified H3 peptide in the reaction buffer described above, and was

incubated at 30�C. At different time points a 10-ml aliquot of the reaction was

removed and quenched by the addition of an equal volume of 1% trifluoroace-

tic acid, and then mixed in a 1:5 ratio with a-cyano-4-hydroxycinnamic acid.

The samples were analyzed on a Bruker AutoFlex mass spectrometer (Bruker)

in reflectron mode. The reactions were performed in triplicate, and the propor-

tion of methyl species at each time point calculated by combining these mul-

tiple measurements.

Gel assays were performed in a buffer containing 40 mM HEPES (pH 8.0),

150 mM NaCl, and 2 mM DTT. Final reagent concentrations were 0.5 mM

SET domain construct (containing WIN motif), 1 mM WRAD, 100 mM SAM,

and either 10 mM peptide or recombinant mononucleosome substrate (pre-

pared by the salt dialysis method [Luger et al., 1999]). Reactions were incu-

bated at 30�C and stopped by addition of SDS sample buffer at the times indi-

cated. Following SDS-PAGE, protein was transferred to Immobilon-PSQ

transfer membrane (Merck Millipore). Membrane was probed with histone

H3K4 methyl-specific antibodies H3K4me1 (ab8895), H3K4me2 (ab7766),

and H3K4me3 (ab8580) (Abcam) at 1:2,500 dilution in Tris-buffered saline

buffer with 0.05% Tween. The blocking solution was 5% milk solution. The

secondary antibody was goat antirabbit conjugated to horseradish peroxidase

at 1:500 dilution (Promega), and detected by autoradiography following incu-

bation with ECL reagent (Thermo Scientific).

Biolayer Interferometry

The binding of the WRAD complex to MLL1 and MLL4 SET domain constructs

wasmeasured using anOctet RED biolayer interferometer (Pall ForteBio). Site-

specific biotinylation of MLL1 andMLL4 constructs was achieved by the addi-

tion of an AviTag (GLNDIFEAQKIEWHE) coding sequence N-terminal to the

WINmotif. BiotinylatedMLL1 or MLL4 protein was immobilized onto the strep-

tavidin biosensor (Pall ForteBio) surfaces for 5–15 min until a response of

�1.3 nm was achieved. Binding of WRAD was measured at room temperature

at concentrations in the range 62.5–500 nM by association and dissociation

steps of 400 and 2000 s, respectively. The buffer used in the analysis was

50 mM Tris-HCl (pH 7.5), 350 mM NaCl, 10% glycerol, 0.5 mM DTT, and

0.05% Tween 20. Association and dissociation rate constants kon and koff
were determined from the analysis of association and dissociation phases,

respectively.
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