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Abstract

Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for 

dendritic cells (DCs), which in turn activate CD8+ T cells through a process called antigen cross-

priming. To define how different forms of programmed cell death influence immunity, we 

established models of necroptosis and apoptosis, where dying cells are generated by RIPK3 and 

CASP8 dimerization, respectively. We found that release of inflammatory mediators such as 

damage-associated molecular patterns (DAMPs) by dying cells was not sufficient for CD8+ T cell 

cross-priming. Instead, robust cross-priming required RIPK1 signaling and NF-κB-induced 

transcription within dying cells. Decoupling NF-κB signaling from necroptosis or inflammatory 

apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated 

inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.

Phagocytosis of dying cells by dendritic cells (DCs) results in cross-presentation of cell-

associated antigen, and the priming of CD8+ T cells (1). This pathway mediates the 

processing and presentation of tumor antigens (2) as well as viral- and self-proteins in 

instances where expression is restricted to non-hematopoietic cells (3, 4). However, the 

*Corresponding author. albertm@pasteur.fr. 

Supplementary materials: www.sciencemag.org/cgi/content/full/science.aad0395/DC1

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2016 October 16.

Published in final edited form as:
Science. 2015 October 16; 350(6258): 328–334. doi:10.1126/science.aad0395.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencemag.org/cgi/content/full/science.aad0395/DC1


manner by which different forms of programmed cell death (PCD) influence the ability of 

DCs to cross-present and initiate CD8+ T cell responses is still poorly understood.

Until recently apoptosis was thought to be immunologically quiescent, in contrast to 

necrosis, which is characterized by rapid membrane permeabilization and release of 

inflammatory mediators termed damage-associated molecular patterns (DAMPs). 

Paradoxically, the inflammatory nature of necrotic cells (defined by their ability to activate 

innate immune cells) (5–8) does not correlate with their ability to serve as a source of 

antigen for the initiation of CD8+ T cell immunity (defined as immunogenicity) (1, 9–12). 

Moreover, immunogenic cell death has often been associated with apoptotic pathways (1, 

10, 13–15). Several recent studies highlighted the interconnections between cell death and 

inflammatory signal transduction. For example, proteins such as receptor-interacting protein 

kinase 3 (RIPK3) and caspase-8, which initiate necroptosis or apoptosis respectively, are 

incorporated into dynamic innate immune signaling modules (e.g., ripoptosome) (16–19). 

These cytosolic scaffolds establish the crosstalk between innate immune and cell death 

programs, and in some instances both pathways may be simultaneously engaged (fig. S1A). 

This integration of pathways, combined with the recent discovery of necroptosis, a regulated 

form of necrosis, prompted us to re-evaluate how different PCD pathways impact cross-

priming of CD8+ T cells.

To selectively induce apoptosis or necroptosis, we constructed “pure” cell death systems in 

which death effector proteins, caspase-8 or RIPK3, were fused to a modified FK506 binding 

protein (FKBP) domain (Fv-ΔN-Caspase-8 and RIPK3-2xFv, respectively) (20–22) (fig. 

S1B). RIPK3 oligomerization results in the recruitment of RIPK1 via RIPK3 RHIM 

(RHIMRIPK3) domain interactions, leading to the formation of a cytosolic ripoptosome-like 

complex (21, 23). Therefore, we also generated a C-terminally truncated construct 

(RIPK3ΔC-2xFv) (fig. S1B), which lacks the RHIMRIPK3 domain and does not recruit 

RIPK1 (21). NIH-3T3 cells were stably transduced with these activatable constructs 

(referred to herein as acC8, acR3, and acR3ΔC). Dimerization of caspase-8 resulted in the 

induction of apoptosis; whereas oligomerization of full length RIPK3 and RHIM-less RIPK3 

induced rapid cell swelling and membrane rupture (<3 hours) in the absence of caspase 

activation (Fig. 1, A and B; fig. S2, A to C; and movies S1 to S3). The ability to induce 

necroptosis in the absence of the RHIMRIPK3 domain enabled us to decouple RIPK1-

dependent ripoptosome complex formation from cell death (21), hence eliminating the 

activation of other pathways emanating from the ripotosome.

Cell death-associated molecules such as calreticulin (CRT), ATP and HMGB1, have been 

shown to trigger inflammation and to regulate immunogenic cell death (8, 15, 24-26). We 

thus quantified CRT surface exposure and the release of both ATP and HMGB1 by 

apoptotic or necroptotic cells. Only low levels of CRT exposure were observed during the 

three forms of cell death, whereas only the acR3 and acR3ΔC-expressing NIH-3T3 cells 

rapidly released high concentrations of ATP and HMGB1 upon treatment (Fig. 1, C to E). In 

all cases, there were no detectable levels of interleukin (IL)-1α, IL-1β or uric acid released. 

We next evaluated phagocytosis by DCs (i.e., acquisition of antigen) and subsequent DC 

maturation - two steps required for achieving CD8+ T cell cross-priming (27, 28). We found 

that bone marrow derived dendritic cells (BMDCs) and a CD8α+ DC derived cell line 
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(MuTuDC) acquired similar amounts of dimerizer-treated acC8-, acR3- and acR3ΔC-

expressing NIH-3T3 cells, but did not efficiently phagocytose live cells (fig. S4, A and B). 

Moreover, both acR3 and acR3ΔC induced the up-regulation of DC activation markers; 

whereas acC8 NIH-3T3 cells did not (Fig. 1F and fig. S4C). Similarly, intraperitoneal 

injection of dimerizer-treated acR3- or acR3ΔC-expressing cells induced higher recruitment 

of immune cells, as compared to acC8 cells (Fig. 1G). Together, these data suggested that 

necroptotic cells released DAMPs, induced DCs maturation in vitro and inflammation in 

vivo.

To assess the respective immunogenicity of apoptotic and necroptotic cells, we immunized 

C57BL/6 mice by intradermally injecting 106 dimerizer-treated NIH-3T3 cells that stably 

expressed a non-secretable form of ovalbumin (OVA) (29) (fig. S5A). Cells were exposed to 

dimerizer immediately prior to injection, thereby permitting them to undergo cell death in 

situ. We observed significantly higher CD8+ T cell cross-priming when mice were 

immunized with cells undergoing RIPK3-mediated necroptosis compared to caspase-8-

mediated apoptosis (Fig. 2A and fig. S5B; P < 0.0001). Immunization with acR3ΔC-OVA 

NIH-3T3 cells did not result in robust CD8+ T cell priming (Fig. 2A and fig. S5B; P < 0.01 

as compared to acR3-OVA) indicating that RHIM-dependent interactions are required for 

immunogenicity of necroptotic cells.

We next compared necroptosis to cells undergoing unregulated necrosis such as cells killed 

by “mechanical” necrosis (achieved by repeated freeze/thaw); or cells undergoing 

“secondary” necrosis (achieved by incubating apoptotic cells for 24h prior to immunization). 

We found that primary and secondary necrotic cells induced only weak CD8+ T cell 

responses (Fig. 2B; P < 0.01). Although the latter results could be partially explained by the 

loss of antigen after necrotic membrane permeabilisation (fig. S6), the findings suggested 

that in vivo necroptosis is a more efficient inducer of cross-priming, as compared to 

apoptotic or necrotic cells.

The efficiency and outcome of antigen cross-presentation has been shown to depend on a 

subset of CD8α+ / CD103+ DCs, whose differentiation is driven by the Batf3 transcription 

factor (30). We found that immunization of batf3−/− mice with acR3-OVA cells failed to 

elicit a CD8+ T cell response (fig. S7, A and B), confirming that cross-presentation of 

necroptotic cells-associated antigen is mediated by this DC lineage. We next characterized 

the CD8+ T cells induced by acR3-OVA immunization. CD8+ T cells primed by 

immunization with necroptotic cells produced multiple effector cytokines (Fig. 2, C and D), 

possessed in vivo cytolytic activity (Fig. 2, E and F), and protected mice from tumor 

challenge (Fig. 2G). Together, these data indicated that necroptotic cells are able to provide 

both antigen and immune stimulation, in turn supporting DC-mediated cross-priming of 

CD8+ T cells. The requirement of RHIMRIPK3 for the immunogenicity of necroptotic cells 

suggested that classical DAMPs (e.g., HMGB1) are insufficient to achieve robust cross-

priming and supported a critical role for RIPK1 independent of cell death.

To understand the requirement for RHIM for immunogenic necroptosis, we studied the 

signaling pathways engaged during the different forms of cell death and assessed MAPK 

and NF-κB activation following dimerizer treatment. Oligomerization of RIPK3 in acR3-
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expressing NIH-3T3 cells resulted in the rapid phosphorylation of p38 and ERK1/2, and 

degradation of IκB (Fig. 3A). Activation of these inflammatory pathways was not observed 

after dimerization of Caspase-8 and was attenuated in acR3ΔC-expressing NIH-3T3 cells, 

with the greatest difference mapping to the NF-κB pathway (Fig. 3A). To determine the 

impact on transcriptional profile, we quantified the mRNA expression of 179 immune-

related genes at different stages of cell death (Fig. 3B). Despite the rapid cell death kinetics, 

full-length RIPK3 activation triggered a significant upregulation of 72 inflammatory genes, 

many of which are regulated by NF-κB and MAPK activation (q < 0.05; fig. S8A and table 

S1). By contrast, we observed only modest changes in dimerizer-treated acC8-expressing 

cells (3 genes differentially expressed) and acR3ΔC-expressing cells (17 genes) (fig. S8A 

and table S1). We next measured inflammatory cytokines in the supernatant from dimerizer 

treated cell cultures and found that acR3 cells released high amounts of IL-6 (Fig. 3C) and 

CXCL1 (Fig. 3D), validating our transcriptional analysis. IL-6 production was inhibited in a 

time-dependent manner by treating the cells with actinomycin-D (ActD) or cycloheximide 

(CHX) (Fig. 3E). These data suggest that necroptotic cells actively transcribe and translate 

inflammatory cytokines during cell death (fig. S8B). Moreover, chemical inhibition of IκK 

kinase activity diminished IL-6 release (Fig. 3F) and stable expression of an IkB dominant 

negative protein (NFκB (S32A, S36A) super repressor, SR) also inhibited cytokine secretion 

(Fig. 3G). To formally test the contribution of RIPK1, we deleted RIPK1 from NIH-3T3 

cells and stably expressed RIPK3-2xFv construct under a tetracycline inducible promoter 

(Tet-acR3) (fig. S9, A and B). Addition of dimerizer triggered necroptosis in both cell lines 

(fig. S9C), however NF-κB activation (fig. S9D) and IL-6 production (Fig. 3H) were 

reduced in the cells lacking RIPK1. These results revealed an NF-κB transcriptional and 

translational activity that is engaged during RIPK3 necroptosis.

We next tested the hypothesis that RIPK1 signaling and NFκB-dependent gene expression 

within the dying cell are critical for cross-priming. We immunized mice using necroptotic 

cells that lacked RIPK1 (Tet-acR3-ripk1−/−) (Fig. 4A), cells that lacked NF-κB signaling 

(pre-treated with NFκBi (Fig. 4B), or overexpressing the NF-κB SR (Fig. 4C)), or cells in 

which transcription was inhibited (pre-treated with ActD) (Fig. 4D). Cross-priming was 

significantly reduced in all instances, thus establishing that active RIPK1-NF-κB signaling 

is essential for the immunogenicity of necroptotic cells.

To extend our findings in a second model that leads to simultaneous RIPK1-dependent NF-

κB activation and cell death, we utilized transfection of polyinosinic-polycytidylic acid 

(poly I:C) (fig. S10A), which engages the cytosolic RNA sensors RIG-I and MDA5, in turn 

recruiting the adaptor proteins IPS-1, RIPK1, TRADD and FADD (31). We confirmed that 

in this model, RIPK1 was essential for NF-κB activation (fig. S10, B and C), and cytokine 

secretion (fig. S10D) (31). Moreover, poly I:C transfection results in intrinsic apoptosis 

rather than necroptosis (32). We found that in both WT and ripk1−/− cells, poly I:C is 

capable of inducing similar levels of caspase-3 activation and cell death (fig. S10, E and F). 

Thus, we were able to decouple NF-κB activation from apoptosis induction downstream of 

double stranded (ds)RNA sensors. We next tested the hypothesis that immunogenic 

apopotosis induced by poly I:C(33) was regulated by the RIPK1-NF-κB axis and immunized 

mice with poly I:C-transfected OVA-expressing mouse embryonic fibroblasts (MEFs) (Fig. 
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4, E and F). Compared to WT cells, immunization with ripk1−/− (Fig. 4E) or NF-κB SR-

expressing cells (Fig. 4F) showed a significant reduction in CD8+ T cell priming. These data 

reinforce the crucial role of RIPK1-mediated NF-κB activation within dying cells during the 

initiation of CD8+ T cell immune responses, despite the presence of a strong inflammatory 

PAMP such a poly I:C.

Finally, we tested the relevance of our findings in the context of tumor immunity. Deletion 

of RIPK1 from poly I:C-transfected CT26 colon carcinoma cells (fig. S10G) rendered them 

poorly immunogenic in comparison to WT cells, as measured by interferon (IFN)γ 

production (Fig. 4G) and protection from tumor challenge (Fig. 4H). Overall, our results 

reveal RIPK1-induced NF-κB as the critical determinant of CD8+ T cell immunity to cell-

associated antigens.

The danger model predicts that cell death resulting from tissue damage and stress induces 

the passive release of preformed danger molecules that mediate subsequent immune 

responses (34). Breaking from this model, the present study reveals an unexpected role for 

RIPK1- and NF-κB-driven gene expression during cell death as a key determinant for cross-

priming of CD8+ T cells. Thus, while the release of DAMPs can trigger inflammatory 

responses, we show that RIPK1-mediated induction of NF-κB and its' downstream target 

genes are necessary for initiating CD8+ T cell adaptive immunity. To date, PCD pathways 

are defined by morphological and biochemical methods; our results highlight the need for a 

transcriptional definition of cell death as a means for understanding the relationship between 

dying cells and immunity. Whether these findings apply to other aspects of adaptive 

immunity (e.g., B cell or CD4 T cell priming) remains to be determined (7, 35).

NF-κB is a critical regulator of innate immune responses and is a prime target of pathogen 

interference, our results suggest an additional benefit for microbes that interfere with both 

NF-κB signaling (36) and cell death pathways (37, 38). For example, viral inhibitors of 

RHIM-dependent interactions (e.g., MCMV M45) may have evolved to subvert CD8+ T cell 

cross-priming. In turn, scaffold proteins such as RIPK1, which are an assemblage of 

multiple domains (RHIM domain, death domain and kinase domain), may have evolved to 

coordinate cell death and innate signaling modules (39), together orchestrating adaptive 

immunity. Thus, investigation and targeting of scaffold proteins at the crossroad of cell 

death and host defense pathways may provide new therapeutic opportunities in the field of 

immunotherapy.
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Fig. 1. Necroptotic cells release DAMPs and induce dendritic cell maturation
(A to C) NIH-3T3 cells expressing the death constructs were stimulated with dimerizer and 

cells harvested at the indicated time points and stained with Annexin-V and Live/Dead 

reagent (A); cleaved caspase-3 antibody and Live/Dead reagent (B); or calreticulin antibody 

(C). Cells that are Annexin V+ Live/Dead (indicating phosphatidylserine exposure prior to 

membrane permeabilization) or cleaved-caspase-3+ (indicating the activation of 

executionner caspases) are undergoing apopotsis. At later time points (24hrs), staining with 

Live/Dead reagent indicates loss of plasma membrane integrity and characterizes secondary 

necrotic cells. Rapid membrane permeabilzation without activation of executionner caspases 

(Live-Dead+ Caspase-3-) is a feature of necroptosis. N=2, results represent one 

representative experiment (D and E) ATP and HMGB1 were quantified from dying cell 

culture supernatants. N=3, results are reported as mean +/− SEM of triplicates of one 

representative experiment. (F) BMDCs were co-cultured with dimerizer treated acC8-, 

acR3- and acR3ΔC-expressing cells for 24h and DC maturation phenotype was assessed by 

flow cytometry. N=4, results are reported as mean +/− SEM of triplicates of one 

representative experiment. (G) 2×106 dimerizer treated cells were injected into the 

peritoneal cavity of WT C57BL/6 mice. 48h later, peritoneal cells were collected and 

immune cells were enumerated by cytometry. N=2, bars indicate mean of two pooled 

independent experiment with 4-5 mice per group (except PBS group). Each circle represent 

one mouse. p values were determined using one-way ANOVA test for (F) and Kruskal-

Wallis test (KW - multigroup comparision) followed by a Dunn's post-test, comparing each 
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group to PBS group for (G). *P < 0.05; ****P < 0.0001. acC8 = Casp8 apoptosis; acR3 = 

RIPK3 necroptosis; acR3ΔC = RIPK3RHIMless necroptosis; ATP= Adenosine triphosphate; 

HMGB1= High mobility group box 1; PBS= Phospahte-buffered saline.
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Fig. 2. 
Necroptotic cells are immunogenic and require RHIM-dependent ripoptosome formation for 

efficient cross-priming of CD8+ T cells. (A to G) To elicit cross-priming we intradermally 

injected (i.d.) OVA-expressing dying cells (H-2q) into mice (H-2b), and analyzed on day 9 

post-immunization (p.i.). (A and B) Using Kb-SIINFEKL-tetramers, OVA-specific CD8+ T 

cells were quantified and plotted as a percentage of total CD8+ T cells. N=4 (A), N=3 (B) 

Bars indicate median and results are pooled from three independent experiments with 3-6 

mice per group (each circle represent one mouse) (C and D) IFN-γ, TNF-α and IL-2 

production in response to ex-vivo SIINFEKL peptide re-stimulation was determined. 

Representative FACS plots are shown and numbers indicate the percentage of gated cells 

(C); and frequency of IFN-γ expressing and polyfunctional cells are plotted (D) N=3, results 

are pooled from three independent experiments with 3-6 mice per group and reported as 

individual mice (each circle represent one mouse) and bars indicate median (IFN-γ) or as 

histogram and mean+/− SEM (TNFα and IL-2). (E and F) In vivo cytotoxicity assay was 

performed in acR3-OVA immunized mice. At day 8 p.i., mice were adoptively transfered 

with CFSE-labeled splenocytes and the frequency of CSFEhi (irrelevant peptide control) and 

CFSElow (SIINFEKL loaded) splenocytes (injected at a 1:1 ratio) was determined at day 9. 

Representative FACS plots are shown (E) and the percent of specific killing plotted (F). 

N=3, Bars indicate median and results are pooled from three independent experiments with 

4 mice per group (each circle represent one mouse). (G) Tumor challenge experiments were 

performed, injecting 5×105 B16F10-OVA cells on day 12 p.i., N=2, and results are reported 
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as a survival curve from one representative experiment with 8-11 mice per group ; OVA = 

ovalbumin. p values were determined using KW test followed by Dunn's post-test for (A and 

B), Mann-Witney (MW) test for (D and F) and mice survival (G) was compared by log-rank 

test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 3. RIPK3 oligomerization results in RIPK1-dependent activation of NF-κB mediated gene 
expression
(A to D), acC8-, acR3- and acR3ΔC-expressing NIH-3T3 cells were treated with dimerizer, 

and at indicated time points: protein extracts were analyzed by Western blot, N=2 (A); RNA 

was extracted for transcriptional profiling, N=3 (B); or culture supernatants were collected 

for luminex analysis (C and D). (E to H) IL-6 release upon addition of dimerizer was 

determined, after treating the cells with (E), or (F). In (E), 2μg/ml actinomycin D (Act D) or 

2.5μg/ml cycloheximide (CHX) were added at the indicated time points after addition of 

dimerizer (t=0), and IL-6 was measured at 6h. In (F), cells were pre-teated with 10μM 

Wedelolactone (NFKBi) and IL-6 measured at the indicated time points. In (G), acR3 cells 

stably expressing control vector (acR3-vector) or mutant super-repressor IκB (acR3-SR) 

were used. In (H), control NIH-3T3 cells (Tet-acR3), and cells lacking RIPK1 and 

expressing RIPK3 2xFv under a tetracycline promoter (Tet-acR3 ripk1−/−), were treated 

overnight with 500ng/ml of doxycycline (Dox) before addition of dimerizer. In (C to H), 

N≥2, and data are presented as mean +/− SEM of triplicates from one representative 

experiment. Heat map indicates the relative expression of the indicated transcript (red 

indicating high levels and green indicating low levels of expression).
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Fig. 4. RIPK1 expression and NF-κB activation during cell death are required for efficient cross-
priming and anti-tumor immunity
In (A) mice were immunized with Tet-acR3-OVA and Tet-acR3-OVA ripk1−/− NIH-3T3 

cells. Data represent one experiment with six mice per group, bars indicate median. In (B) 

acR3-OVA NIH-3T3 cells were pre-treated with DMSO or BAY 11-7085 (NFκBi-10μM) 

for 10 min prior to addition of dimerizer and immunization; In (C) mice were immunized 

with acR3-OVA cells expressing NF-κB-SR or control vector. In (D) acR3-OVA were pre-

treated with DMSO or ActD for 45 min prior to immunization. (E and F) OVA-expressing 

MEFs were transfected with 10μg/ml poly I:C and after 6h used for immunization. WT or 

cells lacking ripk1−/− were used in (E); or cells expressing control vector or NFκB-SR were 

used in (F). Cross-priming was assessed on day 9 p.i. In (B to F), N=3 and results shown are 

pooled from three independent experiments with 3 to 6 mice per group. (G and H) CT26 

Ctrl or a CRISPR/cas9-modified line that lacks RIPK1 expression (CT26 ripk1−/−) were 

pIC-transfected and injected into Balb/cByJ mice. 7 days later, spleen and lymph nodes were 

harvested and IFNγ production was quantified (G) or mice were challenged with 5×105 WT 

CT26 injected in the opposite flank and tumor growth was monitored every 3 days (H). N=3 

and results are from one representative experiment with 6 mice per group. p values were 

determined using MW test (A to G) or 2-way ANOVA test (multipe group comaprison) 

comparing each group to nonimmunized group (NI) (J). *P < 0.05; **P < 0.01; ***P < 

0.001; ****P < 0.0001.
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