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SUMMARY

Repair of DNA double strand breaks by homologous
recombination (HR) is initiated by Rad51 filament
nucleation on single-stranded DNA (ssDNA), which
catalyzes strand exchange with homologous duplex
DNA. BRCA2 and the Rad51 paralogs are tumor
suppressors and critical mediators of Rad51. To
gain insight into Rad51 paralog function, we investi-
gated a heterodimeric Rad51 paralog complex,
RFS-1/RIP-1, and uncovered the molecular basis
by which Rad51 paralogs promote HR. Unlike
BRCA2, which nucleates RAD-51-ssDNA filaments,
RFS-1/RIP-1 binds and remodels pre-synaptic
filaments to a stabilized, ‘‘open,’’ and flexible confor-
mation, in which the ssDNA is more accessible
to nuclease digestion and RAD-51 dissociation
rate is reduced. Walker box mutations in RFS-1,
which abolish filament remodeling, fail to stimulate
RAD-51 strand exchange activity, demonstrating
that remodeling is essential for RFS-1/RIP-1 func-
tion. We propose that Rad51 paralogs stimulate HR
by remodeling the Rad51 filament, priming it for
strand exchange with the template duplex.

INTRODUCTION

Homologous recombination (HR) is an essential mechanism for

the repair of DNA double strand breaks (DSBs) and damaged

replication forks. HR is initiated at single-stranded DNA (ssDNA)

exposed at nucleolytically processed DSB ends or post-replica-

tive ssDNA gaps by the exchange of the ssDNA binding protein

RPA for the recombinase enzyme Rad51, which forms helical

nucleoprotein filaments on ssDNA. Rad51-ssDNA filaments

probe for homologous duplex DNA and catalyze strand invasion,
displacing the non-complementary strand of the template

duplex to form a displacement loop (D loop) structure. Unloading

of Rad51 from double-stranded DNA (dsDNA) permits the initia-

tion of repair DNA synthesis and the resulting joint molecules are

processed by various enzymes to complete the repair reaction

(Chapman et al., 2012; San Filippo et al., 2008).

HR is regulated by mediator proteins, including BRCA2,

Rad54, and the family of Rad51 paralogs (San Filippo et al.,

2008), which appear to act as positive regulators at different

steps of the HR reaction. For example, BRCA2 facilitates

Rad51 nuclear localization (Jeyasekharan et al., 2013; Martin

et al., 2005), RPA displacement from ssDNA, and Rad51 filament

nucleation (Jensen et al., 2010; Liu et al., 2010; Thorslund et al.,

2010), whereas Rad54 unloads Rad51 from dsDNA to promote

repair DNA synthesis (Solinger et al., 2002). However, the molec-

ular mechanism underlying the stimulation of HR by the Rad51

paralogs has remained elusive.

Rad51 paralog proteins share sequence similarity to Rad51

and possess homology extending across the motor ATPase

fold, including the highly conserved Walker A and Walker B

boxes, but not the N-terminal helix-hairpin-helix motif (Lin

et al., 2006). Five Rad51 paralogs have been identified in

mammalian and avian species, which interact with one another

to form two constitutive complexes, RAD51B-RAD51C-

RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3) (Masson

et al., 2001; Yonetani et al., 2005), and in budding yeast two

Rad51 paralogs constitute the Rad55-Rad57 heterodimer

(Sung, 1997). In addition, the budding and fission yeast Shu

complexes (Martı́n et al., 2006; Shor et al., 2005) contain proteins

lacking detectable sequence homology to Rad51 but contain

Rad51-like folds as determined by crystal structures (Sasanuma

et al., 2013; Tao et al., 2012) or show very limited homology

centered on the Walker B motif, such as budding/fission yeast

Psy3/Rdl1 (Martı́n et al., 2006). The high degree of conservation

around these shortWalkermotifs among the Rad51 paralog fam-

ily reflects their functional importance in conferring resistance to

DNA damage and the integrity of the Rad51 paralog complexes
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in mammalian cells (French et al., 2003; Gruver et al., 2005; Wi-

ese et al., 2006; Yamada et al., 2004).

Ablation of Rad51 paralogs leads to severe HR defects, DNA

damage sensitivity, chromosome abnormalities, and defective

Rad51 nuclear focus formation after DNA damage, sugges-

tive of a major function at an early stage in the HR reaction

(Chun et al., 2013; French et al., 2002; Gasior et al., 1998;

Godthelp et al., 2002; Hays et al., 1995; Johnson et al., 1999;

Pierce et al., 1999; Rattray and Symington, 1995; Takata et al.,

2000, 2001). Like BRCA2 and PALB2, which are mutated in Fan-

coni anemia and breast and ovarian cancer (Howlett et al., 2002;

Lancaster et al., 1996; Rahman et al., 2007; Reid et al., 2007;

Wooster et al., 1995; Xia et al., 2007), biallelic germlinemutations

in RAD51C cause a severe form of Fanconi anemia (Vaz et al.,

2010), whereas monoallelic inheritance of mutations in

RAD51C and RAD51D, and RAD51B, predispose individuals to

ovarian and breast cancer, respectively (Golmard et al., 2013;

Loveday et al., 2011; Meindl et al., 2010), demonstrating an

important tumor suppressor function for HR mediators.

The budding yeast Rad55-Rad57 complex (Sung, 1997) and a

sub-complex of the human BCDX2 complex, RAD51B-RAD51C

(Sigurdsson et al., 2001), have been purified as heterodimers

and despite lacking intrinsic recombinase activity they stimulate

strand exchange by Rad51 in vitro. Rad55-Rad57 and the Shu

complex form co-complexes with Rad51-ssDNA filaments (Liu

et al., 2011a; Sasanuma et al., 2013), which in the case of

Rad55-Rad57 renders the pre-synaptic complex resistant to

disruption by the anti-recombinase Srs2 (Liu et al., 2011a). How-

ever, the mechanism by which Rad51 paralogs directly stimu-

late the recombinase activity of Rad51 has remained enigmatic

for many years (Sung, 1997). Additionally, whether the Rad51

paralogs confer any intrinsic stabilization or alteration in the

structural properties of the pre-synaptic complex is unknown,

as is the mechanistic importance of their conserved Walker

motifs.

In this study, we report the identification and characterization

of a Rad51 paralog complex, RFS-1/RIP-1, from Caenorhabditis

elegans. RFS-1/RIP-1 is required for HR and RAD-51 focus

formation at DNA damage sites in vivo, and it stimulates the

recombinase activity of RAD-51 and associates directly with

RAD-51 filaments in vitro. Using multiple biochemical and

biophysical approaches, we demonstrate that RFS-1/RIP-1

structurally remodels the pre-synaptic RAD-51-ssDNA filament

to a stabilized, ‘‘open,’’ flexible conformation, which facilitates

strand exchange with the template duplex. Using specific mu-

tants in the Walker boxes of RFS-1, which are compromised

for stimulating strand exchange, we demonstrate that filament

remodeling is critical for RFS-1/RIP-1 mediator activity. Collec-

tively, this defines the underlying mechanism of HR stimulation

by Rad51 paralogs.

RESULTS

Identification of a Heterodimeric Rad51 Paralog
Complex in C. elegans

To investigate the mechanism of action of Rad51 paralogs in

promoting HR, we utilized the simplified model system

C. elegans, which encodes a single canonical Rad51 paralog,
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RFS-1 (Figure 1A). We previously showed that rfs-1 mutant

strains are sensitive to DNA damage, defective for RAD-51 focus

formation at stalled replication forks, and exhibit meiotic defects

when combined with helq-1mutations (Ward et al., 2007, 2010).

However, attempts to purify RFS-1 yielded largely insoluble pro-

tein intractable to biochemical analysis (Figure S1A). Since

Rad51 paralogs in other organisms function as complexes, we

reasoned that RFS-1 may require a binding partner for optimal

function. Using a yeast two-hybrid screen (Boulton et al.,

2002), we identified an orphan protein encoded by R01H10.5

(Uniprot ID code Q21621) that we named RIP-1 (RFS-1 interact-

ing protein) (Figure 1A), which interacted with RFS-1 by yeast

two-hybrid (Figure 1B), glutathione S-transferase (GST) pull-

downs of C. elegans RFS-1 and RIP-1 expressed in human cells

(Figure 1C), and FLAG co-immunoprecipitation (co-IP) from

yeast cells (Figure 2A). Although RFS-1 interacts with RAD-51

in yeast two-hybrid, no interaction between RAD-51 and RIP-1

was detectable (Figure S1B).

RIP-1 bears no obvious sequence homology with Rad51 fam-

ily proteins, but does contain a sequence resembling a Walker B

motif (Figure 1A), similar to the divergent yeast Rad51 paralog

Psy3 that adopts a Rad51-like fold (Martı́n et al., 2006; Sasa-

numa et al., 2013; Tao et al., 2012). Since Walker B motifs

mediate protein-protein interactions in human Rad51 paralog

complexes (Wiese et al., 2006), we tested if this dependency is

conserved for the RFS-1/RIP-1 protein-protein interaction. Mu-

tation of the second position valine in the Walker B box of either

protein (RFS-1 V135E or RIP-1 V128E) was sufficient to

completely abolish the interaction in yeast two-hybrid (Figures

1A and 1C), suggesting that the Walker B motifs mediate the

RFS-1/RIP-1 interaction interface. Notably, when these mutants

were expressed in yeast, FLAG-tagged RIP-1 was expressed

but was not detectable after co-IP (Figure S1C), suggesting

RFS-1 and RIP-1 are interdependent for their solubility, consis-

tent with the inability to purify RFS-1 in isolation (Figure S1A).

In contrast, mutation of other residues, including RFS-1 lysine-

56 and glutamate-138 in theWalker A and B boxes, respectively,

conferred weakened yeast two-hybrid interactions but were

still permissive for co-IP (Figures 1C and S1C), suggestive of

abnormal, but intact, protein complexes.

A rip-1 deletion mutant (tm2948) was found to phenocopy

rfs-1 mutants. Like rfs-1 mutants, rip-1-deficient strains are

defective for RAD-51 focus formation after treatment with

DNA-damaging agents that stall replication forks (Figure 1D),

are sensitive to DNA damage (Figures S1D and S1E), and

display elevated germline apoptosis after treatment with inter-

strand crosslinking agents (Figure S1F) (Ward et al., 2007).

rip-1 mutants also phenocopy the meiotic HR defects of rfs-1

strains (Ward et al., 2010), exhibiting elevated frequencies of

males (Figure S1G) and synthetic lethality with helq-1, which is

associated with persistent meiotic RAD-51 foci (Figures S1H–

S1J). These observations suggest that RIP-1 likely represents

a highly divergent RAD-51 paralog that functions as a complex

with RFS-1. The existence of non-canonical Rad51 paralogs in

other organisms is not unprecedented: yeast cells encode the

Shu complex (Martı́n et al., 2006; Shor et al., 2005), which func-

tions in HR, and human cells encode an ATPase-sharing homol-

ogy with the archael recombinase RadA, SWSAP1, required for



Figure 1. RIP-1 Is a Highly Divergent Rad51 Paralog that Forms a Complex with RFS-1

(A) Schematics of RAD-51, RFS-1, and RIP-1. RAD-51 and RFS-1 are homologous in their central Rad51-like folds (pink). Walker A and B motifs (blue) are

annotated, and residues examined by mutagenesis are indicated (red). RIP-1 contains an acidic region (yellow) of unknown function.

(B) RFS-1 and RIP-1 interact via ATPase motifs in reciprocal yeast two-hybrid assays, indicated by positive b-galactosidase expression and survival on

media containing 3-aminotriazole (3-AT) in the absence of histidine. Growth on media lacking leucine and tryptophan is a positive control for plasmid

transfection.

(C) GST pull-downs of C. elegans RFS-1 and RIP-1 expressed in human 293T cells. In, input. IP, pull-down.

(D) RAD-51 immunofluorescence (red) in mitotic nuclei of worm germlines from the indicated genotypes. DNA is stained with DAPI (blue). IR, ionizing radiation.

HU, hydroxyurea. CDDP, cis-platin. HN2, nitrogen mustard. UV-C, ultraviolet light.

See also Figure S1.
HR, Rad51 focus formation, and DNA damage resistance (Liu

et al., 2011b).

RFS-1/RIP-1 Binds ssDNA and Stimulates RAD-51
Recombinase Activity
To investigate the biochemical properties of RFS-1/RIP-1, we

co-purified recombinant proteins from budding yeast cells

(Figure 2A), which migrated with a molecular weight of approx-

imately 70 kDa on size-exclusion chromatography (Figure S2A),

consistent with a 1:1 heterodimer. Electrophoretic mobility

shift assays (EMSA) demonstrated that RFS-1/RIP-1 weakly

binds ssDNA, but not dsDNA, in a nucleotide-independent

manner to form a discrete slow-migrating protein-DNA com-

plex in native polyacrylamide gels (Figures 2B and S2B).

Although RFS-1/RIP-1 contains Walker motifs, there was little
detectable ATPase activity over the background, suggesting

that the RFS-1/RIP-1 complex may lack intrinsic ATPase activ-

ity (Figure S2C). However, it remains possible that the optimal

biochemical condition and/or the appropriate substrate for

RFS-1/RIP-1 ATPase activity are yet to be identified.

To assess how RFS-1/RIP-1 might regulate the HR reaction,

we performed strand exchange and D loop formation assays.

The nematode RAD-51 is an extremely weak recombinase in

the absence of mediators even when tested at a wide range of

protein-to-DNA ratios (Petalcorin et al., 2006). Nevertheless,

addition of sub-stoichiometric concentrations of RFS-1/RIP-1

relative to RAD-51 caused a dramatic stimulation of both D

loop formation (Figure 2C) and strand exchange activities (Fig-

ure S2D), which was dependent on the presence of the nucleo-

tide co-factor ATP (Figure 2D).
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Figure 2. Biochemical Properties of RFS-1/RIP-1 Complex

(A) Purification of recombinant RFS-1/RIP-1 from yeast cells by FLAG immunoprecipitation. Western blots confirm the identity of the two bands.

(B) EMSA showing RFS-1/RIP-1 binding to ssDNA, but not to dsDNA (60-mer).

(C) RFS-1/RIP-1 stimulates D loop formation by RAD-51. Error bars indicate SD (n = 4).

(D) RFS-1/RIP-1 mediator activity requires ATP.

See also Figure S2.
RFS-1/RIP-1 Binds to RAD-51-ssDNA Filaments
To investigate the mechanism by which RFS-1/RIP-1 stimulates

RAD-51 recombinase activity, we first assessed how RFS-1/

RIP-1 influences RAD-51-ssDNA filament properties in native

polyacrylamide gels. RAD-51-ssDNA complexes resolve as

fast-migrating smears, representing filaments (Figure 3A) that

were only clearly observed in the presence of ATP, and not in

the presence of ATPgS, AMP-PNP, or ADP or in the absence

of nucleotide (Figure S3C; data not shown). When RAD-51-

ssDNA filaments were co-incubated with RFS-1/RIP-1, the re-

sulting nucleoprotein complex migrated more slowly with a

concomitant reduction in the amount of free unbound ssDNA,

above the additive value predicted from mixing the two proteins

(Figure 3A). The effects observed were independent of the

relative order of incubation of the protein and DNA components

(Figure S3A), occurred at sub-stoichiometric quantities of

RFS-1/RIP-1 (Figure S3B), and were specific to RFS-1/RIP-1

(Figure S3D).

Wealsoassessedprotein-DNAcomplexes resolved inagarose

gels after glutaraldehyde crosslinking, and this permitted detec-

tion of RAD-51-ssDNA filaments in the presence of ATP, ADP, or

AMP-PNP and in the absence of nucleotide or magnesium ions

(Figures 3B and S3E). RFS-1/RIP-1 caused a greater than addi-
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tive increase in the proportion of protein-DNA complexes in the

presence of any nucleotide. In contrast, the opposite effect was

observed in the absence of nucleotide and magnesium, where

RFS-1/RIP-1 reduced the proportion of protein-DNA complexes

at equilibrium, indicating that the effect of RFS-1/RIP-1 is nucle-

otide dependent.

Upon co-incubation with RAD-51, we noted that the discrete

RFS-1/RIP-1-ssDNA species observed in polyacrylamide gels

(Figures 3A, S3A, and S3B) were diminished, suggesting

RFS-1/RIP-1 may associate with the filaments. Indeed, retarda-

tion of the mobility of the RAD-51-ssDNA filaments formed in

the presence of RFS-1/RIP-1 occurred when co-incubated with

anti-FLAG antibodies, which bind the FLAG epitope at the

RIP-1C terminus (Figure 3C). Additionally, RFS-1/RIP-1 associa-

tion with the RAD-51-ssDNA filaments was directly observed

using electron microscopy (EM), by incubating with anti-FLAG

antibodies conjugated to 20-nm gold particles (Figure 3D). Gold

particle binding to the filament was specifically observed in

the presence of RFS-1/RIP-1 (Figures 3D and 3E) and was en-

riched at the filament ends (Figure 3F), suggesting RFS-1/RIP-1

may preferentially cap filaments. No significant differences in fila-

ment lengthwere observed among gold particle-bound filaments

(RAD-51: 100 ± 31 nm; RAD-51 + RFS-1/RIP-1: 102 ± 40 nm)



Figure 3. RFS-1/RIP-1 Binds and Modulates the Properties of RAD-51-ssDNA FILAMENTS

(A) Protein-DNA complexes formed by RAD-51 and RFS-1/RIP-1 on 60-mer ssDNAwith ATP according to themixing scheme indicated resolved by native PAGE.

(B) Proteins were pre-incubated before addition of 60-mer ssDNA, and then protein-DNA complexes were crosslinked and resolved in agarose gels.

(legend continued on next page)
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(Figure 3G), suggesting RFS-1/RIP-1 does notmodulate filament

extension or disassembly. These data suggest that RFS-1/RIP-1

physically associates with RAD-51-ssDNA filaments, similar to

the budding yeast Rad55-Rad57 and Shu complexes (Liu et al.,

2011a; Sasanuma et al., 2013).

Stopped-Flow Measurements Reveal Rapid RAD-51-
ssDNA Filament Formation in Real Time
To examine the functional impact of RFS-1/RIP-1 on RAD-51-

ssDNA filaments, we employed a stopped-flow system to

monitor protein-ssDNA complex dynamics in real time by rapidly

mixing different combinations of RAD-51, RFS-1/RIP-1, and a

50-Cy3 fluorescently labeled (dT)43 oligonucleotide (Cy3-43-

mer). Equal volumes of two solutions of interest were injected

into a mixing chamber, and all concentrations quoted herein

represent the value in the final reaction mixture. By monitoring

changes in Cy3 fluorescence over time, we could quantitatively

assess changes in the biophysical properties of the fluorophore

as a proxy for changes in the nature of the protein-DNA associ-

ation (Antony et al., 2009). Although fluorescence was stable in

the absence of protein, rapid mixing of RAD-51 with the labeled

DNA in the presence of ATP resulted in an increase in fluores-

cence as a function of time (Figure 4A). Both the size and the

rate of change in fluorescence, represented as D Cy3 fluores-

cence and half-time, respectively, increased as a function of

RAD-51 concentration (Figures S4A, S4I, and S4J) and serves

as a readout for RAD-51-ssDNA filament formation. In contrast,

addition of RFS-1/RIP-1 alone did not change fluorescence of

Cy3-43-mer (Figure 4B).

RFS-1/RIP-1 Changes the Biophysical Properties of Pre-
formed RAD-51-ssDNA Filaments
Next, we examined the influence of RFS-1/RIP-1 on pre-formed

RAD-51-ssDNA filaments using the stopped-flow system.

Addition of RFS-1/RIP-1 caused a concentration-dependent

decrease in fluorescence (Figures 4C, 4F, S4B, and S4C). The

rate of fluorescence change also increased with RFS-1/RIP-1

concentration (half-time 12.40 ± 4.07 and 4.10 ± 1.87 s for 100

and 1,000 nMRFS-1/RIP-1, respectively; Figure S4B). This result

demonstrates that RFS-1/RIP-1 is able to rapidly modulate pre-

formed RAD-51-ssDNA filaments, arguing for a major activity of

RFS-1/RIP-1 at a step downstream of RAD-51 loading onto

ssDNA (Figures 3C and 3D).

We considered two interpretations for the reduction in fluores-

cence of RAD-51-ssDNA filaments induced by RFS-1/RIP-1: (1)

filament disassembly or (2) filament remodeling. We do not favor

the RAD-51-ssDNA filament disassembly model for the following

reasons: (1) EMSA data show protein-DNA complex formation is
(C) Immuno-shift analysis of native protein-DNA complexes formed by RAD-51

antibodies and resolution by agarose gel electrophoresis. Black line: cropped su

(D) Anti-FLAG-20-nm immuno-gold EM analysis of RAD-51-ssDNA filaments (b

unbound gold; red arrows: gold bound to filament ends; blue arrows: gold bound

(E) Anti-FLAG-20-nm gold binding is specifically enriched on filaments co-incuba

(F) Anti-FLAG-20-nm gold is enriched at gold-bound filament ends in the presen

(G) Gold-bound filament length is not significantly different in the presence or

indicate SD.

See also Figure S3.
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increased, not reduced, in the presence of RFS-1/RIP-1 (Figures

3A, 3B, and S3A–S3E), (2) filaments do not change in length in

EM after co-incubation with RFS-1/RIP-1 (Figures 3D–3G and

S3F), (3) RFS-1/RIP-1 stimulates RAD-51 recombinase activity

(Figures 2C and S2D), which is dependent on the RAD-51-

ssDNA filament, and (4) RFS-1/RIP-1 promotes RAD-51 focus

formation in vivo (Figure 1D). All these observations are in striking

contrast to Srs2, which disassembles Rad51-ssDNA filaments,

inhibits Rad51 recombinase activity, and antagonizes Rad51

focus formation in yeast (Burgess et al., 2009; Krejci et al.,

2003). We therefore favor the second model, in which the reduc-

tion in fluorescence is attributed to a change in the biophysical

properties (hereafter referred to as ‘‘remodeling’’) of the RAD-

51-ssDNA filaments.

Given the dramatic differences in the rates of fluorescence

change attributed to RAD-51 binding and filament remodeling

(compare half-times in Figures S4A and S4B), we asked whether

these distinct phenomena could be temporally separated by

pre-incubating RAD-51 with different concentrations of RFS-1/

RIP-1, followed by rapid mixing with Cy3-43-mer (Figure 4D).

RAD-51 alone displayed a profile of fluorescence increase with

similar kinetics to the corresponding experiment in Figure 4A

(Figures S4A and S4D). Remarkably, in the presence of RFS-1/

RIP-1, a biphasic profile of fluorescence as a function of time

was observed, with fluorescence reaching a maximum before

declining. We attribute the rapid initial increase in fluorescence,

which is only weakly influenced by RFS-1/RIP-1, to RAD-51-

ssDNA filament formation (Figures 4D, S4D, and S4E). In

contrast, after this initial rapid phase, a clear RFS-1/RIP-1 con-

centration-dependent reduction in fluorescence intensity was

observed (Figures S4D and S4F). The rate of the second phase

was comparable to the effect of RFS-1/RIP-1 on pre-formed

RAD-51-ssDNA filaments observed in Figure 4C (Figures S4B

and S4D), suggesting this slower phase represents the same

slower filament-remodeling phase. As a variant of this experi-

ment, we omitted ATP from the syringe containing the proteins

(Figure 4E) and observed amuch slower increase in fluorescence

(compare Figures 4A and 4E), suggesting that ATP binding to

RAD-51 primes it for rapid filament assembly. Notably, however,

inclusion of RFS-1/RIP-1 led to a concentration-dependent

reduction of fluorescence increase (Figures 4E, 4G, S4G, and

S4H).

Analysis of longer time courses revealed that the fluorescence

of the remodeled filaments reached equilibrium in all experi-

ments (Figures S4K–S4N). For the experiment in which filament

formation and remodeling were temporally segregated, at all

RFS-1/RIP-1 concentrations R100 nM (Figures S4D, S4F,

S4M, and S4N), a similar end point of the remodeling phase
and RFS-1/RIP-1 on 60-mer ssDNA, followed by incubation with anti-FLAG

perfluous gel lanes.

lack arrows) incubated with RFS-1/RIP-1. Scale bar, 100 nm. White arrows:

to filament body.

ted with RFS-1/RIP-1 (Fisher’s exact test; p < 0.0001).

ce of RFS-1/RIP-1 (Fisher’s exact test; p = 0.0009).

absence of RFS-1/RIP-1 (unpaired two-tailed t test; p = 0.8405). Error bars



Figure 4. RFS-1/RIP-1 Remodels the RAD-51-ssDNA Filaments

(A–G) Analysis of average normalized Cy3-43-mer fluorescence (see the Experimental Procedures for details) plotted as a function of log10(time). The arrow (inset)

indicates the components of the two syringes rapidly mixed at the 0 s time point in a stopped-flow instrument.

(A) Indicated concentrations of RAD-51 mixed with 15 nM Cy3-43-mer (both +ATP) (n = 8–9).

(B) Indicated concentrations of RFS-1/RIP-1 mixed with 15 nM Cy3-43-mer (both +ATP) (n = 5–6).

(C) RAD-51-ssDNA filaments pre-formed with 1 mM RAD-51 + 15 nM Cy3-43-mer for 10 min and then mixed with the indicated concentrations of RFS-1/RIP-1

(both +ATP) (n = 6–9).

(D) 1 mM RAD-51 pre-incubated with indicated concentrations of RFS-1/RIP-1 for 10 min and then mixed with 15 nM Cy3-43-mer (both +ATP) (n = 5–7).

(E) As in (D), except proteins were not pre-incubated with ATP (n = 6–9).

(F andG)Graphsof averageDCy3fluorescenceas a function ofRFS-1/RIP-1 concentration for the data presented in (C) and (E), respectively. Error bars indicateSD.

See also Figure S4.
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Figure 5. RFS-1/RIP-1 Stabilizes RAD-51-ssDNA Filaments in a Nuclease-Sensitive Conformation

(A–E) Analysis of average normalized Cy3-43-mer fluorescence (see the Experimental Procedures for details) plotted as a function of time. The arrow (inset)

indicates the components of the two syringes rapidly mixed at the 0 s time point in a stopped-flow instrument in the presence of ATP.

(legend continued on next page)
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was attained that was intermediate to naked DNA and unremod-

eled filaments, demonstrating sub-stoichiometric quantities of

RFS-1/RIP-1 are sufficient to drive RAD-51 filament remodeling.

We also verified that RFS-1/RIP-1 stimulates D loop formation at

the same RAD-51-to-ssDNA ratio as was used in the stopped-

flow experiments (Figure S2E), confirming the relevance of these

observations to themechanismof RAD-51 recombinase stimula-

tion by RFS-1/RIP-1.

RFS-1/RIP-1 Stabilizes RAD-51-ssDNA Filaments
To determine whether RAD-51-ssDNA filament stability is influ-

enced by RFS-1/RIP-1, we challenged RAD-51-ssDNA filaments

pre-formed on Cy3-43-mer in the presence or absence of RFS-1/

RIP-1 with a 100-fold excess of unlabeled, matched competitor

43-mer in the stopped-flow system. In the absence of RFS-1/

RIP-1, fluorescence declined as a function of time, consistent

with the ability of unlabeled competitor DNA to bind RAD-51

dissociated from the labeled DNA (Figure 5A). In contrast, addi-

tion of as little as 300-fold less RFS-1/RIP-1 (3.3 nM) reduced

the extent of the change in fluorescence in a concentration-

dependent manner (Figures 5B, S5A, and S5B), suggesting that

RFS-1/RIP-1 stabilizes RAD-51 binding to ssDNA at sub-stoi-

chiometric ratios. We verified this observation using half the

amount of RAD-51 pre-bound to an oligonucleotide of approxi-

mately half the length (23-mer) (Figures 5C, S5C, and S5D). We

also monitored filament stability directly by EMSA upon titration

of unlabeled scavenger DNA. The levels of labeled free DNA liber-

ated by RAD-51 turnover from the filament were reduced in the

presence of RFS-1/RIP-1 (Figure 5D), verifying that the remod-

eled filaments are more stable. Interestingly, filaments formed

in the presence of an excess of RAD-51 tended to aggregate

and could not be resolved in agarose gels after crosslinking.

This aggregation was reduced by RFS-1/RIP-1, while retaining

a large population of resolved filaments (Figure 5D). Together,

these data argue that RFS-1/RIP-1 remodels RAD-51-ssDNA

filaments to a form in which RAD-51 is more stably associated

with ssDNA and the filaments are less prone to aggregation after

crosslinking, suggesting filament remodeling may reflect a

conformational change in the pre-synaptic complex.

RFS-1/RIP-1 Sensitizes ssDNAwithin RAD-51 Filaments
to DNaseI Digestion
To directly probe for potential structural changes associated

with remodeling of RAD-51-ssDNA filaments by RFS-1/RIP-1,

we attempted to perform three-dimensional reconstructions

from electron micrographs (Figure S3F). Averaged power
(A) RAD-51-ssDNA filaments pre-formedwith 1 mMRAD-51 + 15 nMCy3-43-mer f

43-mer (n = 4–6).

(B) RAD-51-ssDNA filaments pre-formed with 1 mM RAD-51 + 15 nM Cy3-43-me

100-fold excess unlabeled 43-mer (n = 4–6).

(C) RAD-51-ssDNA filaments pre-formed with 500 nMRAD-51 + 15 nM Cy3-23-m

100-fold excess unlabeled 23-mer (n = 5–8).

(D) Proteins were pre-incubated before addition of radiolabeled 60-mer ssDNA

60-mer for a further 10 min. Protein-DNA complexes were crosslinked and resol

(E) DNaseI protection assay on protein-DNA complexes formed by RAD-51 and

indicates the extent of protection by comparison with EMSA data in Figure S3B

See also Figure S5.
spectra revealed that the pitch of the filament helix (�90 Å)

was unaltered with and without RFS-1/RIP-1 (Figure S3F).

However, under the conditions used, the filaments were

highly heterogeneous due to binding of RFS-1/RIP-1, precluding

the generation of high-resolution reconstructions of filament

architecture.

We reasoned that a change in the structural properties of

the filaments could alter the accessibility of the ssDNA to degra-

dation by nucleases (Zaitsev and Kowalczykowski, 1999). Using

a nuclease protection assay to monitor the sensitivity of pre-

formed protein-DNA complexes to DNaseI, we observed that

the addition of sub-stoichiometric quantities of RFS-1/RIP-1 to

RAD-51 caused a dramatic and unexpected increase in the

DNaseI sensitivity of the protein-DNA complexes (Figure 5E).

We verified these observations under similar buffer conditions

to D loop formation and on the 60-mer oligonucleotide used in

EMSA (Figures S5E–S5G), demonstrating that the effect is

robust, independent of oligonucleotide properties, and relevant

to the stimulation of RAD-51 recombinase activity.

Since RAD-51-ssDNA filaments are more stable in the pres-

ence of RFS-1/RIP-1 (Figure 5B–5D), de-protection is unlikely

due to increased treadmilling by RAD-51 on ssDNA. To verify

this, we performed the nuclease protection assay under condi-

tions in which RAD-51 turnover from ssDNA is impaired. Since

RAD-51-ssDNA filament disassembly is dependent on ATP

hydrolysis by RAD-51 within the filament, we performed assays

in the presence of a peptide of C. elegans BRC-2 that stabilizes

RAD-51-ssDNA filaments by inhibiting RAD-51 ATP hydrolysis

(Figure S5H) (Petalcorin et al., 2007). RFS-1/RIP-1 still conferred

DNaseI sensitization, confirming this assay reflects a change

to a more ‘‘open’’ filament conformation, rather than filament

disassembly.

Walker Box Mutations in RFS-1 Compromise Mediator
Activity and Filament Remodeling
The Walker motifs of Rad51 paralogs are important for resis-

tance to DNA-damaging agents in vivo (French et al., 2003; Gru-

ver et al., 2005; Wiese et al., 2006; Yamada et al., 2004), but

the biochemical function of these motifs is unclear. To examine

the functional importance of the Walker motifs in RFS-1 for the

activity of RFS-1/RIP-1, we purified single-point mutants in

conserved residues in either the Walker A (K56A) or the Walker

B (E138A) box of RFS-1 (Figure 6A). Bothmutants were defective

for stimulation of D loop formation by RAD-51 (Figure 6B). At the

same time, neither mutant was able to remodel the RAD-51-

ssDNA filaments to a nuclease-sensitive conformation (Figures
or 10min and thenmixedwith (black) or without (red) 100-fold excess unlabeled

r and indicated concentrations of RFS-1/RIP-1 for 10 min and then mixed with

er and indicated concentrations of RFS-1/RIP-1 for 10 min and thenmixed with

for 10 min and then challenged with the indicated molar excess of unlabeled

ved in agarose gels.

RFS-1/RIP-1 on ssDNA with ATP. Error bars indicate SD (n = 4). The chart

relative to RAD-51 alone.
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6C and 6D) nor reduce the fluorescence of pre-formed RAD-51-

ssDNA filaments on Cy3-labeled DNA in stopped-flow experi-

ments (Figures 6E, 6F, and S6C). Furthermore, the filaments

formed in the presence of these mutants were not stabilized

against scavenger DNA (Figure 6G, 6H, and S6D), in contrast

to the wild-type complex.

Although bothmutant complexes bound to RAD-51-ssDNA fil-

aments similarly to wild-type RFS-1/RIP-1 in EMSA (Figures S6A

and S6B), they exhibited increased ssDNA affinity (Figure S6B)

and formed abnormal protein-ssDNA complexes with RAD-51

after crosslinking (Figure S6A). We also assessed the effect of

mutating these residues on the RFS-1/RIP-1/RAD-51 interaction

network in yeast two-hybrid and discovered that the RFS-1/

RAD-51 interaction was impaired (Figure S6E). Co-expression

of RIP-1 in the RFS-1/RAD-51 yeast two-hybrid strains impaired

the RFS-1/RAD-51 interaction, suggesting RAD-51 and RIP-1

compete for a common binding surface on RAD-51 in the

absence of DNA, but this inhibition was defective in the context

of the RFS-1Walker box mutations (Figure S6F). Together, these

observations suggest K56A and E138A mutant complexes

interact abnormally with ssDNA, RAD-51, and RAD-51-ssDNA

filaments. Crucially, these findings reveal that filament remodel-

ing is intrinsic to the RFS-1/RIP-1 complex, required for its

mediator activity, and dependent on the intact Walker boxes of

RFS-1.

RFS-1/RIP-1 Converts RAD-51-ssDNA Filaments to a
More Flexible Conformation
To probe the nature of the conformational change induced in

the pre-synaptic complex by RFS-1/RIP-1, we performed sin-

gle-molecule FRET (smFRET) experiments. Filament properties

were monitored by measuring FRET efficiency between a Cy3

donor and a Cy5 acceptor fluorophore, separated by seven nu-

cleotides in surface-immobilized ssDNA constructs (Figure 7A).

RAD-51 binding to ssDNA results in a dramatic decrease from

0.92 ± 0.01 (naked DNA; Figure 7A) to 0.47 ± 0.01 (DNA +

RAD-51; Figure 7B) in mean FRET (x0), due to both ssDNA

stretching within the filament and a reduction in molecular flexi-

bility relative to naked ssDNA. Co-incubation of RAD-51 with

RFS-1/RIP-1 induces a striking increase to 0.64 ± 0.01 (Figures

7C and 7F) in mean FRET, relative to RAD-51 alone, as well as

a broadening of the FRET distribution, indicated by the distribu-

tion width (s), from s = 0.20 ± 0.01 (DNA + RAD-51; Figure 7B) to

s = 0.25 ± 0.01 (DNA + RAD-51 + RFS-1/RIP-1; Figure 7C). In

contrast, the majority of the DNA molecules bound by RFS-1/

RIP-1 yield a mean FRET of 0.87 ± 0.01, similar to naked DNA

(Figure S7A). These results were verified by binning the average
Figure 6. Walker Box Mutations in RFS-1 Prevent Filament Remodelin

(A) Purification of recombinant RFS-1(K56A)/RIP-1 and RFS-1(E138A)/RIP-1 from

(B) RFS-1/RIP-1 mutants have impaired stimulation of D loop formation by RAD-

(C and D) RFS-1(K56A)/RIP-1 (C) and RFS-1(E138A)/RIP-1 (D) mutants do not rem

indicate SD (n = 3).

(E and F) RFS-1(K56A)/RIP-1 (E) and RFS-1(E138A)/RIP-1 (F) mutants do not redu

same stopped-flow experimental setup as in Figure 4C (n = 6–8). For clarity, trac

(G and H) RFS-1(K56A)/RIP-1 (G) and RFS-1(E138A)/RIP-1 (H) mutants do not rem

flow experimental setup as in Figure 5B (n = 5–8). For clarity, traces for Wt and R

See also Figure S6.
FRET value of each trajectory independently (Figures S7D–S7G),

instead of time binning each trajectory (Figures 7A–7C and S7A).

Given that the filament helical pitch is equivalent in the presence

and absence of RFS-1/RIP-1 (Figure S3F), this increase in FRET

is unlikely due to filament compression. Instead, these results

suggest that in the presence of RFS-1/RIP-1 the filaments adopt

a substantially more flexible and less rigid conformation.

We also tested the effect of the K56A and E138A mutants of

RFS-1 on filament flexibility by smFRET (Figures 7D, 7E, S7H,

and S7I). Similar to wild-type RFS-1/RIP-1, neither mutant com-

plex alone significantly altered FRET relative to naked DNA (Fig-

ures S3B and S3C). However, in the presence of RAD-51, we

observed a bimodal FRET distribution of the molecules, which

is not observed with wild-type RFS-1/RIP-1. The high FRET pop-

ulations (mean FRET 0.74 ± 0.01 and 0.62 ± 0.01 for K56A and

E138A, respectively) were similar to those observed for RAD-

51 filaments co-incubated with wild-type RFS-1/RIP-1 (Figures

7F–7H), suggesting some filaments become flexible in the pres-

ence of the mutant RFS-1/RIP-1 complexes. In contrast, the low

FRET populations (mean FRET 0.25 ± 0.01 and 0.22 ± 0.01 for

K56A and E138A, respectively) exhibit lower mean FRET values

than that observed for RAD-51 alone (Figures 7G and 7H), which

may represent a more rigid intermediate state in the remodeling

process, not observed in the presence of the RFS-1/RIP-1

mutant complexes alone (Figures S7B and S7C). These results

establish that RFS-1/RIP-1 K56A and E138A mutant complexes

are compromised for inducing or maintaining the filament in a

flexible high FRET state, consistent with their defects in filament

remodeling and mediator activity in ensemble experiments

(Figure 6).

DISCUSSION

Rad51 Paralogs Remodel Rad51 Filaments to a
Conformation More Proficient to Strand Exchange
In this study, we identify a biochemically tractable Rad51 paralog

complex, RFS-1/RIP-1, which binds to and strongly stimulates

the recombinase activity of RAD-51. Our biochemical and bio-

physical analysis reveals that the stimulatory activity of this

Rad51 paralog complex on HR is due to its ability to induce a

conformational change in the pre-synaptic filament. In contrast

to BRCA2, RFS-1/RIP-1 does not primarily act to nucleate or

extend RAD-51-ssDNA filaments. Instead, RFS-1/RIP-1 struc-

turally remodels the pre-synaptic filament to a more ‘‘open,’’

flexible, and stable conformation. Importantly, RAD-51-ssDNA

filament remodeling is an intrinsic property of RFS-1/RIP-1

that is dependent on the Walker boxes of RFS-1. Since the
g and Stimulation of Strand Exchange

yeast cells by FLAG immunoprecipitation.

51. Error bars indicate SD (n = 3).

odel RAD-51-ssDNA filaments to a DNaseI-sensitive conformation. Error bars

ce the fluorescence of RAD-51-ssDNA filaments on Cy3-43-mer ssDNA in the

es for wild-type (Wt) and RAD-51 alone are duplicated in (E) and (F).

odel RAD-51-ssDNA filaments to a stable conformation in the same stopped-

AD-51 alone are duplicated in (G) and (H).
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Figure 7. Remodeled RAD-51-ssDNA Filaments Are More Flexible

(A–E) smFRET analysis of (A) DNA alone, (B) DNA + RAD-51, (C) DNA + RAD-51 + RFS-1/RIP-1 (Wt), (D) DNA + RAD-51 + RFS-1(K56A)/RIP-1, and (E) DNA +

RAD-51 + RFS-1(E138A)/RIP-1. Top to bottom: cartoon schematic of the smFRET experiment indicating FRET between Cy3 and Cy5 (7-nt separation) attached

to biotinylated DNA constructs immobilized on a streptavidin-coated biotin-PEG surface; donor (blue) and acceptor (red) intensity trajectories are anti-correlated

until single-step photobleaching of the acceptor; FRET trajectories (black) between Cy3 and Cy5 exhibit a sharp drop to zero FRET when the acceptor

(legend continued on next page)
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Walker box mutants in RFS-1 are also deficient for stimulation

of RAD-51 strand exchange activity, we propose that filament

remodeling is a crucial molecular switch through which the

Rad51 paralogs stimulate HR. Thus, our study provides mecha-

nistic insights into the functional importance of theWalker boxes

in Rad51 paralogs in resisting DNA damage in cells.

Biological Importance of Rad51 Filament Remodeling to
HR
rfs-1 and rip-1 mutant animals are defective for RAD-51 focus

formation at stalled replication forks, and we propose this likely

reflects a failure to remodel and stabilize RAD-51-ssDNA fila-

ments. Although RAD-51 would be loaded onto chromatin nor-

mally in the absence of rfs-1 or rip-1, its turnover would be

more rapid, preventing detection of RAD-51 foci. Since Rad51

focus formation after damage is also defective in Rad51 paralog

mutants from other eukaryotic organisms (Gasior et al., 1998),

the filament remodeling function of RFS-1/RIP-1 to a stable

conformation is likely to be conserved. This result is also consis-

tent with the suppression of the DNA damage sensitivity and HR

defects of yeast rad55D and rad57Dmutants by amutant form of

Rad51 (I345T) that binds DNA more stably (Fortin and Syming-

ton, 2002).

A requirement for Rad51 paralogs in preventing filament

disruption by Srs2 at DSBs (Liu et al., 2011a) is likely dispensable

in nematodes as they lack a Srs2 ortholog. Although rfs-1 and

rip-1 animals are sensitive to both IR and nitrogen mustard,

but only defective in RAD-51 focus formation in response to

the latter, this likely reflects the additional function for RFS-1/

RIP-1 in late stages of meiotic DSB repair (Ward et al., 2010).

Furthermore, the sensitivity of rfs-1 animals to IR is relatively

weak compared to deficiency in the core HR component

BRC-1, whereas sensitivity of rfs-1 and brc-1 animals to cross-

linking agents is virtually indistinguishable, in support of the

greater specificity of RFS-1/RIP-1 toward stalled replication

fork substrates (Ward et al., 2007).

Implications of Rad51 Filament Remodeling for the
Homology Search
Structural remodeling of RAD-51-ssDNA filaments by RFS-1/

RIP-1 to an ‘‘open,’’ flexible, and stabilized conformation also

has implications for the efficiency of the homology search. The

structural transitions undergone by Rad51 filaments during ho-

mology sampling, template unwinding, strand exchange, and

conversion of Rad51-ssDNA to Rad51-dsDNA filaments are

extremely challenging to study due to their dynamic nature.

Atomic resolution models of the RecA-ssDNA filament show

that each nucleotide triplet associated with each RecA protomer

adopts a local B-DNA conformation, but the DNA is stretched

and underwound from one triplet to the next, resulting in a global

underwound DNA conformation. This stretching may facilitate
photobleaches; histogram of FRET values collected from all molecules with a Gau

and c2 quantifies the quality of the fit.

(F–H) Superimposed histograms from (A)–(E) showing the differences between

(Student’s t test; p < 0.0005).

(I) Model for the proposed function of Rad51 paralogs in Rad51 filament remode

See also Figure S7.
disruption of base pairing and stacking in the template duplex

upon binding by the filament (Chen et al., 2008; Danilowicz

et al., 2014). The DNaseI sensitivity of the remodeled filament in-

dicates that the ssDNA is more accessible, and it is therefore

possible that the remodeling induced by Rad51 paralogs ex-

poses the ssDNA to facilitate homology probing after filament

binding to and disruption of the donor duplex. A recent study

demonstrated that Rad51 only stably captures template dsDNA

harboring at least eight nucleotides of homology, reducing

search complexity, and argued that physical discontinuities or

gaps within the pre-synaptic complex could further limit search

complexity by segregating the Rad51-ssDNA filament into

non-overlapping functional search units (Qi et al., 2015). The

binding of RFS-1/RIP-1 to or within the pre-synaptic filament

could define such search unit boundaries. Alternatively, it is

possible that the DNaseI sensitivity of the remodeled filament

arises due to flexing of the protomers transiently, exposing

naked ssDNA, or due to limited turnover of individual protomers

within the filament (without complete filament disassembly),

which could also introduce pre-synaptic complex discontinuities

to facilitate homology searching.

It has also been known for many years that homology search-

ing by RecA proceeds primarily by a processive 3D search pro-

cess, facilitated by transient contacts with heterologous dsDNA

to enhance the probability of locating homologous sequences

(Forget and Kowalczykowski, 2012; Gonda and Radding, 1983,

1986; Honigberg et al., 1986; Tsang et al., 1985). The increased

flexibility of the remodeled filament induced by RFS-1/RIP-1 in

3D space could aid such a 3D homology search mechanism.

The increased stability of the remodeled Rad51 filament may

also increase the lifetime of the homology search and provide

more opportunities to locate the correct dsDNA template.

Hence, all three altered properties of the remodeled filament

are predicted to facilitate homology search during HR, and re-

modeling could therefore have a very important function in vivo

in locating the correct dsDNA template.

Conclusions
Our observations, together with previously reported findings,

suggest that Rad51 paralogs perform two distinct functions to

promote HR: they protect Rad51-ssDNA filaments against

disruption by antirecombinases (Liu et al., 2011a) and directly

stimulate the intrinsic recombinase activity of Rad51 by remod-

eling pre-synaptic filaments to an active, ‘‘open,’’ flexible, and

stable conformation primed for homology search and strand in-

vasion. Importantly, the mechanism we have discovered for the

Rad51 paralogs in stimulating HR is distinct from that proposed

for other positive regulators of HR, which are epistatic to Rad51

paralogs, including BRCA2 andRad54 (Chun et al., 2013; Jensen

et al., 2010, 2013; Liu et al., 2010; Solinger et al., 2002; Thorslund

et al., 2010). We therefore propose a model (Figure 7I) for HR, in
ssian fit are shown in red, where x0 is themean FRET, s is the distribution width,

the populations. Differences in the mean FRET are statistically significant

ling within the HR mechanism.
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which Rad51-ssDNA filaments are first nucleated by BRCA2,

displacing RPA from ssDNA. Rad51 paralogs subsequently

switch the filament to a more ‘‘open’’ and flexible structure,

which is also less prone to disassembly. The altered properties

of this remodeled pre-synaptic filament likely facilitate homology

probing of the template and strand invasion to stimulate HR.

EXPERIMENTAL PROCEDURES

RFS-1/RIP-1 complex was co-expressed in yeast cells and purified by FLAG

immunoprecipitation. RAD-51 was purified using the pET-SUMO system and

the SUMO tag cleaved with Ulp1 SUMO protease to yield native protein

followed by MonoQ ion-exchange chromatography. For EMSA, protein-DNA

complexes were assembled on 32P-labeled 60-mer ssDNA in the presence

of ATP (10 min) and then resolved by native PAGE or crosslinked with

0.25% glutaraldehyde and resolved in agarose gels. In immuno-shift experi-

ments, protein-DNA complexes assembled on fluorescently labeled 60-mer

ssDNA were incubated with anti-FLAG antibody (Sigma F3165; 5 min) and

resolved in agarose gels. Immuno-gold EM was performed by incubating

RAD-51, RFS-1/RIP-1, and linearized PhiX ssDNA (10min) and then incubating

with anti-FLAG antibody conjugated to 20-nm gold particles (30 min), staining

with uranyl acetate (2 min), and imaging. For nuclease protection assays, pro-

tein-DNA complexes were assembled on fluorescently labeled 135-mer

ssDNA (10 min) before challenging with DNaseI (20 min), deproteinizing, and

resolving DNA products by PAGE. D loop formation was performed by pre-

incubating proteins and fluorescently labeled 90-mer ssDNA (15 min) before

addition of pBluescript plasmid DNA (15 min), after which time reactions

were deproteinized and resolved in agarose gels. Stopped-flow experiments

were performed by rapidly mixing equal volumes of the indicated components

and monitoring Cy3 fluorescence for 1 min using the following measurement

protocol: (1) every 0.00005 s from 0–0.05 s, (2) every 0.0005 s from 0.05–

0.56 s, and (3) every 0.02 s from 0.56–60.54 s. Raw data sets were normalized

as follows: for binding and remodeling experiments (Figures 4, 6E, and 6F),

data sets were normalized to the same starting value for Cy3 fluorescence,

and for competition experiments (Figures 5A–5C, 6G, and 6H), data sets

were normalized to the same value for Cy3 fluorescence at the 2.01998 s

time point and truncated before this. Yeast two-hybrid and nematode genetic

analysis were performed as previously described (Boulton et al., 2002; Ward

et al., 2007, 2010). Full materials and methods, including details of stopped-

flow data analysis and smFRET, are available in the Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.cell.2015.06.015.
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