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SUMMARY

Transcript regulation is essential for cell function,
and misregulation can lead to disease. Despite tech-
nologies to survey the transcriptome, we lack a
comprehensive understanding of transcript kinetics,
which limits quantitative biology. This is an acute
challenge in embryonic development, where rapid
changes in gene expression dictate cell fate deci-
sions. By ultra-high-frequency sampling of Xenopus
embryos and absolute normalization of sequence
reads, we present smooth gene expression trajec-
tories in absolute transcript numbers. During a devel-
opmental period approximating the first 8 weeks of
human gestation, transcript kinetics vary by eight
orders of magnitude. Ordering genes by expression
dynamics, we find that ‘‘temporal synexpression’’
predicts common gene function. Remarkably, a
single parameter, the characteristic timescale, can
classify transcript kinetics globally and distinguish
genes regulating development from those involved
in cellular metabolism. Overall, our analysis provides
unprecedented insight into the reorganization of
maternal and embryonic transcripts and redefines
our ability to perform quantitative biology.
INTRODUCTION

Gene expression is dynamic and tightly regulated. To build a

quantitative understanding of gene regulation, direct measure-

ment of transcript kinetics is necessary. Transcript kinetics

describe the rate of change of transcript copy numbers with

time. In developing systems such as the embryo, dynamic tran-

script expression precisely coordinates a sequence of stereo-
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typical events that occur in rapid succession. A quantitative

understanding of the transcriptome during embryogenesis will

have important applications for congenital malformation re-

search and regenerative medicine (Fakhro et al., 2011; Tebben-

kamp et al., 2014; Zaidi et al., 2013). With the ability to measure

global transcript kinetics, we can effectively study the impact of

different transcript regulation strategies on gene expression;

for example, dynamics of chromatin modifications, utilization

of cis-regulatory sequences, kinetics of transcription factor bind-

ing, and transcript stability. Because the study of gene regulatory

networks is limited by the lack of genome-wide kinetic data (Kar-

lebach and Shamir, 2008), a kinetic transcriptome dataset will be

transformative to build and test gene regulatory network models

in development.

The measurement of transcript kinetics has two requirements:

(1) measurements of gene expression in absolute numbers of

transcripts per cell or embryo and (2) sampling at a sufficiently

high temporal resolution to properly calculate rates of change

of transcript numbers. While there is great potential to use

RNA sequencing (RNA-seq) to study transcript kinetics, the da-

tasets that are currently available lack one or both of these attri-

butes, and suitable methodologies have yet to be developed

(Stegle et al., 2015). In most datasets, sampling time points are

too widely spaced. Data points are effectively isolated ‘‘snap-

shots’’ in developmental time, and analysis is restricted to

pairwise comparisons of differences in relative gene expression

(Aanes et al., 2011; Fang et al., 2010; Kalinka et al., 2010;

Paranjpe et al., 2013; Spencer et al., 2011; Tan et al., 2013; Ves-

terlund et al., 2011; Wang et al., 2004; Yanai et al., 2011). In addi-

tion, in each of these datasets, relative normalization precludes

kinetic calculations. Relative normalization is ubiquitous within

the field and provides expression levels in arbitrary units related

to the number of reads that map to a transcript relative to the to-

tal number of reads from the library. These relative values do not

relate directly to transcript numbers and are not reliable indica-

tors of either the magnitude or the direction of change in gene

expression between samples when RNA content changes. For
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example, as the total amount of RNA increases in the developing

embryo, transcripts with a constant copy number will appear to

decrease in expression under relative normalization. Therefore,

even in those studies in which sampling rates are high (Collart

et al., 2014; Tomancak et al., 2002), relative normalization com-

bined with varying total mRNA levels confound comparisons so

that kinetic calculations cannot be made even in simple fold

change terms.

Absolute transcript measurements can be achieved by spiking

in RNAs at known abundances for use as quantification stan-

dards. Native transcripts are calibrated against RNA standards

to calculate absolute transcript copy number estimates. Previ-

ous reports have used spike-ins to normalize for sequencing

depth, to control for technical variability, and to calculate esti-

mates of absolute transcript numbers (Brennecke et al., 2013;

Islam et al., 2014; Junker et al., 2014; Risso et al., 2014). How-

ever, recent reports have suggested that such a direct absolute

normalization with currently available RNA standards is infea-

sible due to significant sequencing biases (Risso et al., 2014;

SEQC/MAQC-III Consortium, 2014). To date, a few RNA-seq da-

tasets have been calibrated indirectly, where a small number of

transcripts are first quantified using a non-sequencing technol-

ogy that, in turn, is used to normalize RNA-seq data (Marguerat

et al., 2012; Tu et al., 2014). Here, we show that direct absolute

quantification using sequence data alone is feasible and yields

accurate measurements of embryo RNA content.

Using RNA-seq and spike-in RNAs for absolute normalization,

we created a genome-wide dataset to precisely measure tran-

script kinetics, which can be linked to biological processes

occurring during embryogenesis (i.e., gastrulation or organogen-

esis such as for eye, muscle, and heart). To accomplish this, we

sampled rapidly developing embryos at such high temporal res-

olution that data from neighboring time points were found to be

as similar as biological replicates, ensuring that we captured pre-

cise transcript dynamics.

This rich dataset enables the visualization of gene dynamics of

the entire transcriptome over an extended developmental

period. In the following text, we outline a number of discoveries

enabled by combining absolute normalization and high temporal

resolution sampling.

RESULTS

Data Collection, Quality, and Overview of Analysis
To profile gene expression at high time resolution in the human

disease model, Xenopus tropicalis, we collected eggs (time 0)

and then synchronously developing embryos from an in vitro
Figure 1. Data Generation, mRNA Content of the Embryo, and Gene E

(A) Experimental design and sample collection.

(B) Left: eef1a1o and ERCC-00171 abundance in relative normalization (TPM), C

zation of left panel. Red line indicates ERCC-00171 transcripts added based on

abundance.

(C) Total mRNA (poly(A)+ and rdRNA) in the embryo in nanograms with time. Gray

(CI) and median of Clutches A and B poly(A)+ data.

(D) Dynamics of gene expression of poly(A)+ RNA in transcripts per embryo. Circle

axis marks time (bottom) and Nieuwkoop and Faber (NF) developmental stage (t

See also Figures S1 and S2.
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fertilization at 30-min intervals for the first 24 hr of development,

followed by hourly sampling thereafter to 66 hr (Figure 1A). We

sampled RNA from two crosses collected in parallel (Figure 1A),

Clutch A and Clutch B. For Clutch A, we sequenced poly(A)+

RNA for the full 66 hr and also total RNA depleted of rRNA

(rdRNA), containing both poly(A)+ and poly(A)� RNAs, for the

first 24 hr. For Clutch B, we sequenced poly(A)+ RNA for the first

24 hr only.

To calculate absolute transcript numbers and kinetics, we

calibrated read counts of all transcripts using spike-in RNAs

as quantification standards. After embryo homogenization and

prior to RNA extraction, we added a known amount of spike-in

RNAs per embryo to each sample independently. This ensured

that RNA standards underwent the same variations in recovery

as the endogenous embryonic transcripts during RNA purifi-

cation, library preparation, and sequencing. To Clutch A and

Clutch B, we added the 92 synthetic RNAs available from the

External RNA Control Consortium (ERCC) (Baker et al., 2005).

In addition, we independently added three of the E. coli-derived

ArrayControl spike-ins to Clutch B.

We aligned reads to the X. tropicalis genome, known off-

genome expressed sequence tags (ESTs) sequences and spike

RNA sequences, and calculated relative transcript abundances

of an augmented version of X. tropicalis v7.2 models in tran-

scripts per million (TPM). The overall quality of our datasets

was excellent, according to a number of metrics (Figures S1A

and S1B). Importantly, for capturing transcript kinetics, tran-

scriptome-wide comparisons of neighboring time points were

as correlated as biological replicates, as measured by transcrip-

tome-wide Spearman correlation (Figure S1A). Four time points

(among 139) and one RNA standard that performed poorly

(Qing et al., 2013; SEQC/MAQC-III Consortium, 2014) were

excluded from all subsequent analysis (Figures S1C–S1E; Sup-

plemental Experimental Procedures). We also found that a small

fraction of non-rRNA transcripts are depleted in the rdRNA data-

set (Figure S2F; Table S2), indicating that our ribosomal-deple-

tion protocol may have a small number of off-target effects.

Commonly, in large-scale genomics studies, unsupervised

machine learning tools such as clustering methods (e.g.,

weighted correlation network analysis; WGCNA) (Langfelder

and Horvath, 2008) or dimensionality reduction methods (e.g.,

principal-component analysis; PCA) (Jolliffe, 2002) can discover

relationshipswithin the data. In our case, PCA confirmed a strong

temporal correlation inherent in our experimental design (Fig-

ure1A; FigureS1F). Therefore,weopted for adataanalysis frame-

work that can explicitly describe these temporal correlations.

Gaussian processes are used commonly in the physical sciences
xpression Dynamics

lutch A poly(A)+. RNA standard decreases with time. Right: absolute normali-

the manufacturer’s data sheet. The RNA standard is constant at the correct

region and line, respectively, mark Gaussian process 95% confidence intervals

s mark Clutch A poly(A)+, and triangles mark Clutch B poly(A)+. The horizontal

op). Shaded regions mark Gaussian process 95% CIs of the data.



and have received significant attention as general tools for ma-

chine learning (Rasmussen and Williams, 2006). They offer a

statistical framework for representing and examining the strong

temporal correlations present in our data. Gaussian processes

have been successfully applied to a range of biological data

(Äijö et al., 2014;Heinonenetal., 2014;Honkelaet al., 2010;Stegle

et al., 2010; wa Maina et al., 2014). Here, Gaussian processes

allow us to address multiple topics within a single framework to

elucidate transcript dynamics. We use them in absolute normali-

zation, regression, estimation of confidence intervals, identifica-

tion of differential expression, and the calculation of kinetics.

Direct Absolute Normalization of RNA-Seq Data
We achieved absolute normalization with a two-step procedure.

Our first step is relative normalization for sequencing depth, re-

sulting in transcript abundances in TPM.We note that the relative

normalized abundances of our RNA standards decreased with

time due to accumulating RNA in the embryo (Figure 1B left; Fig-

ure S2A). In our second step, we transformed these RNA stan-

dard abundances to be constant with time at the known amount

spiked into each sample. To minimize the effects of technical

noise of the RNA standards, we use Gaussian processes to learn

a function that varies smoothly with time to transform the RNA

standards. This smooth mapping is critical, as it ensures that

absolute normalized copy numbers are not contaminated by

sample-to-sample technical noise in the RNA standards.

Recent work has demonstrated that ERCC spikes exhibit sig-

nificant sequencing biases, and their appropriateness for direct

absolute normalization in RNA-seq has been questioned (Risso

et al., 2014; SEQC/MAQC-III Consortium, 2014). To investigate

these concerns, we evaluated the consistency of our proposed

absolute normalization on our three datasets independently:

Clutch A poly(A)+, Clutch A rdRNA, and Clutch B poly(A)+ (Fig-

ure S2B). In agreement with previous observations (Qing et al.,

2013; Risso et al., 2014; SEQC/MAQC-III Consortium, 2014),

we find that (1) ERCC spikes perform poorly in poly(A)+ seq-

uencing when compared to rdRNA sequencing (Figures S1F

and S2B), (2) spike-in variation between the two independently

spiked poly(A)+ datasets (Clutches A and B) is smaller than

between Clutch A poly(A)+ and Clutch A rdRNA (Figure S2B),

and (3) spike-in performance varies across spike-in species

but is consistent over replicates (Figure S2C). We apply correc-

tions for the first two sources of variation (Figure S2B; Supple-

mental Experimental Procedures) and then calculate absolute

transcripts per embryo for native transcripts and RNA standards.

We capture the Clutch A/B variation and the spike-in species

sequencing biases in a single uncertainty model for the absolute

normalization (Figure S2D). Our absolute normalization performs

well with R2 = 0.97–0.98 (Figure S2C) and has a 1.11- to1.25-fold

error when comparing the ERCC and ArrayControl spike-ins

that were added independently to Clutch B samples (Fig-

ure S2C). We discuss the limitations of this normalization, the

validity of our Gaussian process models, and influences of

gene model quality in Supplemental Experimental Procedures

and Table S2.

The detection limit, which is the number of transcripts required

to produce a single read on average, increases with time as

mRNA accumulates in the embryo (Figure S2E). Averaged over
C

all samples, the detection limit is�1,300 transcripts per embryo,

which is less than 1 transcript per cell once the embryo has at-

tained the cell number present in the blastula.

Total mRNA Content of the Embryo Validates Absolute
Normalization
We investigated the levels of total mRNA in the embryo during

development. We summed the absolute abundance of all tran-

scriptsmeasured to derive the total mRNA in nanograms per em-

bryo at each time point for both poly(A)+ and rdRNA (Figure 1C).

Although there is a notable wave between 0 and 10 hours post-

fertilization (hpf) (discussed later), the total amount of poly(A)+

mRNA increases with time from 10–15 ng of mRNA per embryo

at fertilization to 30–50 ng of mRNA per embryo at 66 hpf (swim-

ming tadpole, stage 42). These values validate our absolute

normalization, as they agree well with total RNA yields after

tissue homogenization (�1.3 mg per embryo and �2.4 mg per

embryo at the earliest and latest stages of our time course,

respectively), where �1%–2% of total RNA is polyadenylated

(Davidson, 1986). As further validation of the absolute normaliza-

tion, we compare our X. tropicalis mRNA predictions to experi-

mentally measured poly(A)+ mRNA yields from X. laevis (Sagata

et al., 1980). Accounting for the uncertainty in our absolute

normalization, the mean ratio between these X. laevis mRNA

yields and our data is 3.38 ± 0.02 (mean ± SD) (Figure 1C).

This is in good agreement with the ratio in volume between

X. laevis and X. tropicalis eggs; their respective diameters are

1.19 ± 0.07mmand 0.80 ± 0.05mm (Crowder et al., 2015), giving

a volume ratio of 3.31 ± 0.76. Therefore, our absolute quantifica-

tion agrees well with measurements of in vivo mRNA levels

determined by an independent experimental method.

Transcript Dynamics in the Developing Embryo
Examining the expression of individual genes, we observe

smooth transitions in gene expression (Figure 1D). Our sampling

rate is sufficient to capture the dynamics of the expressed genes

(see timescale analysis given later, Figure 7). We find genes

whose expression peaks at different times in development,

demonstrating transcript kinetics that are highly dynamic and

suggesting specific roles for these genes during defined devel-

opmental periods (Figure 1D). For example, in the case ofmuscle

induction, a series of genes critical for mesoderm and then so-

mite specification accumulate and extinguish at different times

as development progresses (Figure S3A). The temporal expres-

sion profiles of these genes agree with RNA detection by in situ

hybridization in whole-mount embryos (Figure S3A). We further

examined genes expressed later in development, which also

correlated with in situ hybridization data (Figures S3B and S3C).

There is utility in identifying geneswith constant expression, as

these may serve as optimal loading controls in various experi-

mental regimens (Figure S4). We found 109 genes (<0.7%) in

poly(A)+ (0–66 hpf) and 1,078 genes (6.9%) in rdRNA (0–24 hpf)

that had less than a 2-fold change (Figure S4A; Table S3).

Commonly used loading controls (gapdh, odc1, eef1a1) have

more variable expression (Figure S4B). Our data would suggest

that the RNA helicase ddx3x has the best loading control perfor-

mance across developmental time and RNA-seq preparations

(Figure S4C).
ell Reports 14, 632–647, January 26, 2016 ª2016 The Authors 635



Differential Expression between Biologically
Independent Replicates Reveals Precise Regulation of
Transcripts
Our dense temporal sampling offers a unique ability to detect

differential expression over the entire time course. We began by

exploring differential expression between our Clutch A/B

biological replicates (Figure 2; Supplemental Experimental Proce-

dures). We found that 12,062 of 16,914 genes (71%) had identical

expression dynamics between the two clutches. Additionally,

4,561 genes (27%) showed differential expression with a small

statistical effect (Figures 2A and 2B); their expression profiles

show only minor differences (Figure 2C). Thus, expression dy-

namics of 98%of the transcriptomeare similar between two inde-

pendent biological replicates. This highlights both the high degree

of reproducibility in our dataset and the exceptionally robust con-

trol of gene expression during development. The remaining 291

genes (1.7%) had a large statistical effect, indicating strongdiffer-

ential expression. The majority of these genes have differential

maternal expression, but most Clutch A and Clutch B differences

converge by 10–12 hpf, displaying identical expression later in

development (e.g., dhx32; Figure 2D). Interestingly, this set of

genes is enriched for GeneOntology (GO) terms relating to cell di-

vision (Table S4), suggesting roles in the rapid cell division of the

early embryo. Notably, a smaller number of genes have expres-

sion profiles that are divergent between replicates (Figure 2D).

From these data, we conclude that gene expression is tightly

regulated throughout embryogenesis and highly reproducible

when measured using high-throughput sequencing.

Differential Expression and Switching of Transcript
Isoforms during Development
Next, we analyzed the differential expression of alternative tran-

script isoforms. We can classify differential isoform expression

as either ‘‘differential abundance’’ or ‘‘differential temporal

dynamics.’’ Transcripts are defined as having differential abun-

dance if one transcript is expressed at a different level than the

other, with a constant ratio between them, or as having differen-

tial dynamics if the ratio varies with time (Figure S5). Here,

we restrict our attention to those isoforms that have differential

temporal dynamics (Figure 3; Figure S5). We found 761 genes

with isoforms showing differential dynamics, with differences in

promoters, exons, and 30 UTRs. Isoform expression profiles for

147 genes show a switchpoint where their expression profiles

cross, marking a change in which isoform is most abundant

(Figure 3A). The timing of these switchpoints was not evenly

distributed over development; two thirds are transitions from a

maternal to a zygotic isoform concentrated around 10 hpf (Fig-

ure 3A). Interestingly, we found examples of isoform switching

due to post-transcriptional regulation; two maternal isoforms of

bicd2 exhibit differential polyadenylation (Figure 3B). One iso-

form bicd2(1) has a long 30 UTR and is polyadenylated upon

fertilization, the other bicd2(2) has a short 30 UTR and is deade-

nylated upon fertilization (Figure 3C). The 30 UTR of bicd2(1)must

contain control elements to remain deadenylated during oocyte

maturation and become polyadenylated after fertilization.

We predicted that isoforms with different temporal dynamics

may show different spatial as well as temporal expression,

implying different function. We selected three genes where the
636 Cell Reports 14, 632–647, January 26, 2016 ª2016 The Authors
sequence differences between isoforms were long enough to

generate effective in situ hybridization probes. Remarkably, all

three showed different spatial expression domains (Figure 3D).

This demonstrates the biological importance of isoform dy-

namics during embryogenesis and suggests specific mecha-

nisms to regulate isoforms in different tissues. Moreover, we

demonstrate the power of high-resolution sampling for transcript

discovery and gene modeling. The small fragment sizes associ-

ated with high-throughput sequencing present challenges for

identifying the co-expression of distant exons in long transcripts.

The temporal statistics here can aid in the resolution of long-

range order; distant exons that are expressed in the same iso-

form will exhibit related temporal dynamics (Figure 3C).

Temporal Synexpression Predicts Common Gene
Function
To explore the expression dynamics of the entire dataset, we

created a heatmap of transcripts organized according to a hier-

archical clustering of their normalized expression profiles (Fig-

ure 4A). The heatmap is ordered so that nearest neighbors

have similar expression profiles, which we term ‘‘temporal syn-

expression.’’ Synexpression suggests that genes are controlled

by shared regulatory networks and may have common function

(Niehrs and Pollet, 1999). To investigate temporal synexpres-

sion, we used a sliding window to assess local GO enrichment

across the heatmap (Figure S6A; Table S4). Interestingly, we

found many blocks of genes enriched for specific functions

ranging from cellular biology to developmental patterning events

(Figure 4A). In the set of genes showing early transient expres-

sion, we found GO terms associated with early developmental

steps, including germ layer specification, mesoderm/endoderm

development, and axis patterning (Figure 4A, right, top of heat-

map). Genes transiently expressed later in development are

enriched forGO termsassociatedwith organogenesis (Figure 4A,

right, bottom of heatmap). Therefore, proximity within the heat-

map enriches for GO terms that are consistent with develop-

mental events, demonstrating that temporal synexpression is a

powerful predictor of gene function (see below).

While exploring temporal synexpression, we found two distinct

sets of genes (S1 andS2 in Figures 4A and 4B, left; Supplemental

Experimental Procedures) that have similar oscillatory behaviors

between 34 and 66 hr of development. These sets are not imme-

diately adjacent in the overall heatmap due to different expres-

sion prior to 34 hr. Postulating that there may be more genes

across the heatmap with similar oscillations and, hence, similar

function, we used one of these genes, ckb (Figure 3D, right), as

a ‘‘seed’’ to identify other similarly oscillating genes and discov-

ered a much larger set (Table S5, 150 genes). To determine

whether this local temporal synexpression identified common

functions, we examined spatial expression patterns. Our seed

gene, ckb, has pronounced expression in the somitic mesoderm

and lies within a block of genes enriched for muscle contraction

GO terms. Remarkably, our larger local temporal synexpression

set also has significant enrichment in somitic mesoderm. 38 of

these genes have expression patterns available in public data-

bases (Bowes et al., 2010), and 34/38 (89%) have somitic expres-

sion (FigureS6B). Thesegenesappear tooscillatewith aperiodof

approximately 20 hr, which is significantly longer than the somitic
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Figure 2. Clutch A versus Clutch B Poly(A)+ Differential Expression

(A) Clutch A versus Clutch B histogram of differential expression scores as measured by the Bayesian information criterion (BIC); larger scores indicate greater

differential expression (Supplemental Experimental Procedures). Three regions marked: (1) no differential expression, BIC % 0; (2) differential expression small

effect, 0 < BIC % 60, and (3) differential expression large effect, BIC > 60. See (B) for explanation of thresholds.

(B) Differential expression effect size as measured by the log10 mean overlap between Clutch A and Clutch B Gaussian process models (Supplemental

Experimental Procedures). Mean overlap decreases with increasing BIC. Thresholds at BIC = 0, 60 in addition to mean overlaps of 60%, 10%, and 2.5% are

marked. At BIC = 60, approximately all genes have less than 10% overlap, and all genes with less than 2.5% overlap have a BIC > 60.

(C) Differential expression examples with decreasing BIC (top right). Genes on the boundary for strong differential expression have highly correlated expression

profiles in (A) and (B). Vertical lines mark convergences (red) or divergences (black).

(D) Left: examples of convergence (dhx32) and divergence (Xetro.K05169). Right: histogram of convergence and divergence times.

See also Supplemental Experimental Procedures.
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Figure 3. Isoform Differential Expression in Clutch A

(A) Isoform switching event examples: maternal to maternal; maternal to zygotic; and zygotic to zygotic switching events (left). Histogram of isoform switching

events by category and time (right).

(B) bicd2 isoforms switch in poly(A)+ data (circles) but do not switch in rdRNA data (squares), indicating differential polyadenylation. Poly(A)+ and rdRNA

abundances agree within uncertainty of the absolute normalization (Supplemental Experimental Procedures).

(C) Normalized read depth on bicd2 locus in Clutch A poly(A)+ between 0 and 4.5 hpf. Note temporal dynamics shared by the final three bicd2(1) exons. Heatmap

and depth of pile-ups corrected for changing total mRNA.

(D) Spatial expression of three geneswith isoformswith differential dynamics. All isoforms showdifferent temporal and spatial expression domains. Gray lines and

points mark total expression for each gene (sum of the red and blue isoforms).

See also Figure S5 and Supplemental Experimental Procedures.
clock (Pourquié, 2003) and more reminiscent of the circadian

rhythm. Interestingly, a few circadian clock genes are expressed

in the somites (Curran et al., 2008, 2014), and our analysis indi-

cates that there may be additional unexplored links between

clock genes and somite regulatory networks.

In another case, we found two sets of genes (V1 and V2; Sup-

plemental Experimental Procedures) with similar temporal
638 Cell Reports 14, 632–647, January 26, 2016 ª2016 The Authors
expression patterns from 40 to 66 hpf that enrich for visual

perception (GO: 0007601). With the exception of tmem145, all

V1 and V2 genes are well characterized as having roles in rod

and cone cells and are associated with human retinal diseases

(Table S5). Therefore, we predicted that the uncharacterized

tmem145 also plays a role in vision; and, indeed, tmem145

does have spatial expression in the eye (XDB3 [Bowes et al.,
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Figure 4. Temporal Synexpression in Clutch A Poly(A)+

(A) Temporal map of the transcriptome: an enumeration of all gene expression dynamics in the embryo. Heatmaps display all genes normalized by maximum

expression and ordered by similarity. Inset (right) expands on genes transiently expressed with early onset. Vertical bars mark GO enrichment (colors correspond

to GO terms), numbers appended to GO bars indicate the number of genes of given category. All reported GO blocks are enriched with p < 2 3 10�4 (Fisher’s

exact test) for entire block. S1, S2, V1, and V2mark the locations of somite and vision temporal synexpression genes, respectively, in (B). ‘‘Transcription Factors*’’

labels an annotation of transcription factors separate to GO (Supplemental Experimental Procedures).

(B) Somite (left) and vision (right) synexpression groups.

See also Figure S6 and Supplemental Experimental Procedures.
2010] and XGC EST database [Klein et al., 2002; Morin et al.,

2006]).

We conclude that temporal synexpression can be used

effectively to predict gene function and predictions can be

refined depending on the local developmental period of

interest. Remarkably, we uncovered a large cohort of genes

expressed in the somites, simply by ranking their similarity

in expression to a gene with known somite expression. We
C

anticipate that future investigations of temporal synexpression

in this data may be able to assign putative functions to many

of the 5,718 genes (�28%) that remain unnamed.

The Reorganization of Maternal and Zygotic
Transcriptomes
In our analysis of total mRNA during development (Figure 1C), we

notedadifferencebetween total rdRNA levelsandpoly(A)+mRNA
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Figure 5. Transcript Copy Numbers and Kinetics per Embryo in Clutch A

(A) Transcript copy number histogram in poly(A)+ sequencing at time 0.0 (egg), 4.5 hpf (early stage 9, blastula), 10 hpf (stage 12.5, end of gastrulation), and 66 hpf

(tadpole stage 42). Detection limits give number of transcripts required to generate a single read averaged over all transcript lengths (Figure S2E). Transcript copy

number distributions transition smoothly between these time points (data not shown).

(B) Histogram ofmaximum rates of increase in transcripts per hour between any consecutive measurement points calculated fromGaussian processmedians for

each gene. Blue indicates poly(A)+ 0–23.5 hpf; red indicates rdRNA 0–23.5 hpf; green indicates poly(A)+ 24–66 hpf. Vertical lines mark the gene with maximum

rate of increase for each category.

(C) As in (B), but in kilobases per hour.

(D) Maximum rate of increase in transcripts per hour (left) and kilobases per hour (right) for 0–3.5 hpf and 4–23.5 hpf time intervals. Poly(A)+ and rdRNA distri-

butions are discrepant for 0–3.5 hpf, reflecting polyadenylation of maternal RNAs. Distributions are identical over 4–23.5 hpf.

See also Figure S2E.
levels prior to 4.5 hpf (early stage9 blastula), thepoint atwhich zy-

gotic transcription becomes widespread. From 0 to 4.5 hpf, there

is an increase in poly(A)+ transcripts, while rdRNA levels show lit-

tle change, reflecting the polyadenylation of maternal transcripts

(Collart et al., 2014). Then, from 4.5 to 10 hpf, both poly(A)+ and

rdRNA levels fall, as the clearance of maternal mRNA exceeds

nascent zygotic transcription. The fall in RNA constitutes an

�20% loss of the embryo’smRNA content, supporting the notion

that very early embryonic development relies heavily on mater-

nally stored transcripts. By 10 hpf (late gastrula stage 12), those
640 Cell Reports 14, 632–647, January 26, 2016 ª2016 The Authors
maternal mRNAs targeted for clearance are largely extinguished

(see top left, Figure 4A), and zygotic transcription causes mRNA

levels to increase for the remainder of our time course.

To examine these transitionsmore closely, we considered the

distribution of the number of transcripts per gene at different

time points (Figure 5A). Initially, in the egg, the distribution has

a broad peak at �100,000 transcripts, which changes dramat-

ically at 4.5 hpf into a bimodal distribution with amarked peak at

�600,000 transcripts. This change in distribution reflects the

rapid increase in polyadenylated maternal transcripts. The



distribution is again reorganized at 10 hpf, losing the bimodal

appearance and shifting leftward toward fewer transcripts as

maternal transcripts are eliminated. By the end of our time

course, the peak at �600,000 transcripts is re-established

without the bimodal appearance seen at 4.5 hpf. The coinci-

dence of a mode at �600,000 transcripts at 4.5 hpf and 66

hpf is unexpected. The tadpole at 66 hpf has twice the mRNA

content and is considerably more complex than the 4.5 hpf

blastula-stage embryo. Therefore, the doubling of the RNA con-

tent is achieved by having roughly twice as many genes with at

least �600,000 transcripts per embryo rather than simply shift-

ing the entire distribution (rightward) so that there is twice the

copy number of each gene overall.

Transcript Kinetics Reveal a Rapid Deployment of
Maternal Transcripts
To examine these changes in the distribution of transcript

numbers in more detail, we calculated transcript kinetics. We

determined the maximum rate of increase (per embryo) in tran-

scripts per hour and kilobases per hour and examined the dis-

tributions of all genes (Figures 5B and 5C). We compared these

maximum rate distributions between rdRNA and poly(A)+ over

0–24 hpf and then between rdRNA and poly(A)+ over 24–66

hpf. Strikingly, the maximum rates of accumulation vary over

eight orders of magnitude, suggesting varied mechanisms for

the regulation of transcript accumulation. The distributions for

transcripts per hour and kilobases per hour are similar, indi-

cating that the rate distribution is not influenced by transcript

length (Pearson correlation of 0.28 betweenmaximum accumu-

lation rate and transcript length in Clutch A poly(A)+). Both the

distributions for transcripts per hour and kilobases per hour

are negatively skewed, producing the sharp rise on the right

tail of the distribution. This indicates that many genes experi-

ence a rate of accumulation that is close to the maximal and

that most genes experience a rate of accumulation that is

greater than the mean.

Interestingly, genes measured from 0 to 24 hpf in poly(A)+

preparations show faster rates (blue line shifted rightward, Fig-

ures 5B and 5C) than in both 0–24 hpf rdRNA and 24–66 hpf

poly(A)+, which are aligned. Given the reorganization of tran-

scripts from 0 to 4.5 hpf (Figure 5A), we compared maximum

accumulation rates in poly(A)+ and rdRNA at this time interval.

At 0–3.5 hpf, the maximum accumulation rates for poly(A)+ are

faster than for the rdRNA; in contrast, this difference is lost at

4–24 hpf, where the poly(A)+ and rdRNA distributions are coinci-

dent (Figure 5D). We conclude that the polyadenylation of

maternal transcripts offers the cleavage-stage embryo a mech-

anism by which a large number of transcripts can be deployed

for translation very rapidly, overcoming the embryo’s limited ca-

pacity for transcription (due to very rapid cell cycling and rela-

tively few nuclei per embryo).

Rapid Kinetics of pri-mir427 and the Clearance of
Maternal Transcripts
The clearance ofmaternal RNAs is one of themajor embryo-wide

transcriptome changes, resulting in a net loss of�20% of the to-

tal mRNA content (Figure 1D). Themir427/430 family, in Xenopus

and zebrafish, respectively, plays a critical role in clearing
C

maternal RNAs at the onset of zygotic transcription (Giraldez

et al., 2006; Lund et al., 2009). Early embryonic phenotypes

due to the loss of dicer—and, therefore, all miRNAs—can be

rescued in zebrafish embryos by mir430, highlighting the impor-

tance of this microRNA (Giraldez et al., 2005). Interestingly, we

find that the pri-mir427 transcript has the fastest kinetics of

any transcript in the early frog embryo, at 7 3 108 kb/hr per em-

bryo (Figure 5C), an order of magnitude faster than the very

abundantly expressed ef1a1 (Figure 5C). In addition, we found

pri-mir427 transcripts to be ubiquitously expressed, and we first

detected their transcription at the eight-cell stage (2 hpf), signif-

icantly earlier than the previously identified onset of nodals 3, 5,

and 6 and well before the classic midblastula transition (Fig-

ure 6A, inset; Figure S7) (Kimelman et al., 1987; Newport and

Kirschner, 1982; Skirkanich et al., 2011; Yang et al., 2002).

Therefore, pri-mir427 is not only transcribed at a prodigious

rate but is also the earliest detected zygotic transcript in

Xenopus.

As pri-mir427 is expressed during a period when precise cell

numbers are known, we can calculate the average rate of tran-

scription per allele from rdRNA data (Supplemental Experimental

Procedures). Themir427 locus contains numerous copies of the

mir427 hairpin covering �55 kb of transcribed genome (Fig-

ure 6D; Data S2). Here, we report the aggregate RNA abundance

and accumulation over the entire locus.

The abundance of pri-mir427 transcripts per cell peaks at 4.4

hpf (130 Mb per cell), with the peak accumulation rate per allele

occurring at 4.2 hpf (2.6 Mb/min per allele; Figures 6B and 6C).

Performingasimilar analysis for other early transcribedgenes (Fig-

ure S7B), we found that pri-mir427 accumulates nearly 1,000-fold

more rapidly. We demonstrate that it is the size of the mir427

locus combined with ubiquitous expression that renders such a

dramatic accumulation rate possible. We note that pri-mir427 is

RNA polymerase II (pol II) transcribed (Lund et al., 2009). The

maximum RNA pol II elongation rate has been estimated at

�4 kb/min (Ardehali and Lis, 2009). At this elongation rate, the lo-

cus requiresapolymerasedensity of 11–12pol II/kb toachieve the

measured 2,560 (95%CI: 2,280 to 2,840) kb/min per allele. This is

in good agreement with the maximum polymerase densities of

�10 pol II/kb observed on rapidly transcribed genes of amphibian

oocyte lampbrush chromosomes (Miller and Hamkalo, 1972).

Corroborating this prediction, we examined published

X. tropicalis blastula stage 9 RNA pol II chromatin immunoprecip-

itation sequencing (ChIP-seq) data (van Heeringen et al., 2014)

and found high RNA pol II occupancy over themir427 locus (Fig-

ure S7A). In summary, we conclude that the pri-mir427 achieves

the highest known rate of transcript production during the very

early rapid cell divisions of the frog embryo. To achieve this brisk

rate, the size of the locus and the ubiquitous expression (sup-

ported by its spatial expression) are essential; however, the RNA

pol II density and transcription rate need not have extraordinary

values. This does imply that pri-mir427 is transcribed

homogenously by all cells; any significant heterogeneity would

require some cells to transcribe at rates beyond what has been

observed.

We speculate that numerous copies are present in

Xenopus and zebrafish to maximize production of mature

miR-427/miR-430 microRNAs during the rapid development of
ell Reports 14, 632–647, January 26, 2016 ª2016 The Authors 641
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Figure 6. Accumulation Kinetics of pri-mir427 per Allele in Clutch A rdRNA
(A) pri-mir427 expression over first 12 hpf in rdRNA data and in situ hybridizations. pri-mir427 show ubiquitous expression matching RNA-seq

temporal data. Examples of most abundant transcripts shown for comparison. Inset: first detection of pri-mir427 above detection limit at 2.0 hpf (8- to 16-cell

transition).

(B) pri-mir427 abundance in kilobases per cell. Line marks Gaussian process median; error bar indicates 95%CI (Supplemental Experimental Procedures). Peak

per cell abundance occurs after 11th division at 4.4 hpf.

(C) pri-mir427 accumulation rate in kilobases per minute per allele with time. Line indicates median of differential of Gaussian process; error bar indicates 95%CI

(Supplemental Experimental Procedures). Peak accumulation rate is achieved at 4.2 hpf just after tenth cell division.

(D) Organization of pri-mir427 locus on X. tropicalis chromosome 3 (X. tropicalis v8 genome; Supplemental Experimental Procedures). Clusters ofmir427 hairpins

appear in tandem with a repeated sequence arranged symmetrically on opposite strands around a gap in the genome assembly.

See also Figure S7 and Supplemental Experimental Procedures.
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these organisms. Interestingly, the mammalian member of the

family,mir302, is present in far fewer copies on the genome, pre-

sumably because mammalian development is dramatically

slower and the embryos are smaller (with less maternal

mRNA), and thus there is ample time to generate sufficient

amounts of mir302 to clear maternal transcripts.

Interestingly, the earliest detection of pri-mir427 occurs at the

eight-cell stage, when its accumulating transcript breaks our

detection limit. The next transcriptional events we detect are

from loci that are, on average, 19 times smaller: nodal3/5/6

and siamois1/2 break our detection limit at 32- to 256-cell em-

bryos (Figure S7B), which contain 4- to 32-fold more copies of

these loci than eight-cell embryos. It is possible that these

shorter loci may be transcribed from the eight-cell stage or

earlier, but our expression measurements are insufficiently sen-

sitive to detect this early transcription. Together, we conclude

that we are able to detect the onset of zygotic transcription vastly

earlier than previously thought.

In principle, the approach taken to quantify pri-mir427 tran-

script kinetics can be applied to any gene during any time interval

in our time course, once the numbers of expressing cells per em-

bryo are ascertained.

Characteristic Timescale of Gene Expression Classifies
Developmental Gene Function
While the rate of accumulation of pri-mir427 is remarkable, tran-

script accumulation rates may not be optimal for identifying

potent developmental regulatory genes, where small changes

in transcript levelsmay be sufficient to alter cell fate andmorpho-

genesis. We note that the distribution of maximum transcript

accumulation rates does not differentiate transcription factors

from all genes (Figure 7A), whereas ribosome-related genes

accumulate significantly faster. We postulated that developmen-

tally regulated genes would not necessarily be transcribed at

maximal rates but would be tightly regulated and transiently ex-

pressed, reflecting changing biological events (i.e., their expres-

sion would turn on and off rapidly). Using Gaussian processes,

we calculate a parameter to quantify such behavior, a character-

istic timescale (t) for each gene.

Formally, the timescale parameterizes the Gaussian process

covariance function for each gene (Supplemental Experimental

Procedures). The covariance function describes the covariance

between a gene’s transcript levels at two time points (Figure 7B).

Measurements of a gene’s expression that are closer in time will

share a greater covariance (be more correlated) than those

further apart in time. The timescale reflects how rapidly the

covariance decays when considering expression at increasing

time intervals (Figure 7B). Genes with rapidly changing expres-

sion kinetics lose covariance quickly and have short timescales

(Figures 7B and 7C, left). Conversely, genes with expression ki-

netics that vary more smoothly and gradually have covariances

that persist in time and are described by long timescales (Figures

7B and 7C, right).

To explore the characteristic timescales relevant to develop-

ment, we plotted the distribution of timescales over all genes

(Figure 7C). We found the mass of the timescale distribution

to be slower than our detection limit (Supplemental Experi-

mental Procedures); in fact, our sampling rate is sufficient to
C

reliably detect very short timescales (for example, pri-mir427

with t = 1.8 hr) (Figure 7C, upper left panel). We investigated

the timescale distribution by GO (Figure 7C). Remarkably, GO

term enrichments segregated between short and long time-

scales (Table S4). At short timescales, there was a striking

enrichment of genes associated with cell signaling and devel-

opmental processes; these genes are involved in rapid,

spatially restricted patterning events during embryogenesis.

At long timescales, we found enrichment in genes necessary

for cellular metabolism, many of which correlate in expression

with the changes in total mRNA in the developing embryo.

We conclude that timescales are a powerful metric for investi-

gating gene function and that they are able to classify novel

genes whose kinetics are similar to those with developmental

or cell signaling roles or unidentified roles in cellular

metabolism.

DISCUSSION

We present a rich array of findings on transcript kinetics from

our ultra-high temporal resolution expression profiling of Xeno-

pus. To establish these biological observations, we overcame

the challenges of direct absolute normalization of RNA-seq

data using ERCC spikes (SEQC/MAQC-III Consortium, 2014).

In this study, we show the following: (1) It is essential to spike

RNA standards at a constant ratio to embryo/cell numbers

directly into homogenates prior to RNA extraction. (2) Relative

normalized spikes exhibit a clear decreasing trend that was

the result of increasing RNA in the embryo with time. This

demonstrated that the ERCC spikes were of suitable fidelity

for absolute normalization and identified our absolute normali-

zation strategy. (3) It is necessary to sequence the same RNA

by multiple protocols—in this case, poly(A)+ and rdRNA—so

that protocol-specific biases can be understood and mini-

mized. (4) It is essential to estimate the error, or uncertainty,

in the measurement of the RNA standards (Figures S2B–S2D)

and then average over this uncertainty when making absolute

transcript number predictions. We have achieved this latter

point using Gaussian processes, and in doing so, we have

ensured that our absolute normalization of native transcripts

is not unduly influenced by technical noise or sequencing

biases of the RNA standards (Figure S2D). (5) Finally, we note

that high-resolution temporal sampling has a significant advan-

tage over multiple replicates of a low temporal sampling. With

high-frequency sampling, neighboring time points are still as

similar as biological replicates, providing the necessary infor-

mation on reproducibility, but, importantly, we also capture

the transcript dynamics and so obtain more information for

the same number of samples.

We have demonstrated that direct absolute normalization of

RNA-seq data is feasible; the quality of the RNA standards and

the understanding of their sequencing biases are the largest fac-

tors limiting progress in the absolute quantification of gene

expression data and the accuracy of our predictions (see uncer-

tainty CIs in Figure S2D). Currently, the ERCC spikes are the pre-

dominant RNA standards; they are manufactured to log-scale

precision and exhibit significant sequencing biases. With log-

scale precision, the error is proportional to abundance and
ell Reports 14, 632–647, January 26, 2016 ª2016 The Authors 643
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(A) Distribution of maximum rate of increase of all transcripts (gray) (as in Figure 5), transcription factors (blue), and ribosomal proteins rps* and rpl* (red).

(B) Theoretical covariance (Matérncovariance function;Supplemental ExperimentalProcedures)between twomeasurementsby time interval for examplegenes in (C).

(C) Histogram of characteristic timescale over all genes in in Clutch A poly(A)+. Top row annotates example genes (timescale inset); fast/short timescales are on

the left, and slow/long timescales on the right. Gaussian process 95%CI (gray) and median (blue) are marked. Bars below indicate GO enrichment (calculated as

in Figure 2; Figure S6A) of histogram, and numbers indicate total genes with given category. All enrichments have p < 2.6 3 10�5 (Table S4). ‘‘Transcription

Factors*’’ labels an annotation of transcription factors separate to GO (Supplemental Experimental Procedures).

See also Figure S6A, Table S4, and Supplemental Experimental Procedures.
doubles for every doubling of target transcript copy numbers.

Clearly, transcripts are under much tighter regulation in the em-

bryo, and the log-scale precision in RNA standard concentra-
644 Cell Reports 14, 632–647, January 26, 2016 ª2016 The Authors
tions is far from ideal. The need for improved RNA quantification

standards to advance future absolute quantification efforts is

clear.



We demonstrate that high-frequency sampling is critical to

define smooth expression trajectories and properly examine

transcript dynamics. With such data, we can identify cohorts of

temporally co-regulated genes and make accurate predictions

on spatial expression and gene function. Our case studies of

somite and vision temporal synexpression (Figure 4B) demon-

strate the potential of this dataset not only for characterizing

genes of unknown function but also for uncovering new temporal

phenomena in gene expression. High-frequency sampling

combined with Gaussian process analysis is a powerful tool for

capturing the temporal evolution of differential expression,

including identifying convergence and divergence points. Impor-

tantly, our analysis of timescales confirmed that our sampling

rate was sufficient to capture the transcript behavior for

even the most dynamic genes. The concept of the characteristic

timescale will be critical for future transcriptome time series

studies to ensure that dynamic behaviors are not missed or

misinterpreted.

We also analyzed the global properties and kinetics of the

transcriptome during our 66-hr time course. Interestingly, we

found that much of the transcriptome accumulates to

�600,000 transcripts per embryo at different developmental

stages. Examinations of transcript kinetics revealed that

different kinetic signatures can be associated with the accumu-

lation of transcripts via polyadenylation or transcription. We

expect that further examination of kinetics may reveal addi-

tional signatures associated with different mechanisms of

mRNA regulation.

The maternal-to-zygotic transition constitutes the most dra-

matic change in the transcriptome that we observe in our time

course. It begins with the polyadenylation of maternal tran-

scripts, followed by the onset of zygotic transcription and the

clearance of maternal transcripts. The absolute nature of our

data provides new quantitative insights into this period. For

example, zygotic transcription starts early during the cleavage

stages with the activation of pri-mir427, which plays an impor-

tant role in maternal RNA clearance. The reduction in maternal

mRNA exceeds transcription as the cleavage stages are com-

pleted (blastula stage 9; 4.5 hpf) and mRNA levels fall until the

end of gastrulation (stage 12.5; 10 hpf). During this time window,

the majority of transcript-level differences between Clutch A and

Clutch B converge (Figure 2D), and many zygotic isoforms are

activated whose abundance will exceed their maternal counter-

part by �10 hpf (Figure 3A).

Our data demonstrate that transcript levels during embry-

onic development are exquisitely controlled, with only 2% of

transcripts showing large differences in expression between

replicates. Although the biological importance of these differ-

ences is not certain, these 2% of genes are, nevertheless,

tightly regulated within the embryos of each clutch. This differ-

ential expression appears to be interesting and worthy of

further exploration. Tight control over gene expression occurs

at multiple levels, including chromatin modifications, cis-regu-

latory elements, transcription factors, and transcript stability.

Our experimental approach can be used to investigate the

effects of perturbation of these regulatory processes on

transcript kinetics, which is particularly difficult without mea-

surements of absolute transcript levels. Such real measure-
C

ments have the potential to transform our understanding of

the transcriptional control that is fundamental to gene re-

gulatory networks. Our approach affords many opportunities

to build gene regulatory networks whose foundation lies on

much-needed quantitative data. The potential for using

Gaussian processes with time series expression data for

uncovering gene regulatory interactions has been demon-

strated (Honkela et al., 2010). Combining these approaches

with our time course data holds exciting prospects for the

elucidation of gene regulatory networks in early vertebrate

development.

A major goal in developmental biology is to determine the

temporal and spatial expression patterns of all genes during

development. Our work is a step toward that goal. By

combining absolute normalization and high-frequency sam-

pling with the recent advances in RNA tomography (Junker

et al., 2014) and/or the spatial reconstruction of single-cell

RNA-seq data (Satija et al., 2015), there is an exciting opportu-

nity to create a four-dimensional (4D) atlas of developmental

gene expression, especially in vertebrate human disease

models such as Xenopus.

EXPERIMENTAL PROCEDURES

Embryo Collection

X. tropicalis were housed and cared for in our aquatics facility according to

established protocols that were approved by the Yale Institutional Animal

Care and Use Committee (IACUC) (Khokha et al., 2002). To obtain RNA sam-

ples for RNA-seq, we performed two parallel in vitro fertilizations of siblings

of 12th-generation inbred Nigerian Xenopus tropicalis. All fertilizations and

subsequent culturing of embryos were performed in a temperature-controlled

roommaintained at�24�C, with fluctuations ±1�C over the entire time course.

All samples are reported in hpf and developmental stages. Mapping from hpf

to the Nieuwkoop and Faber (NF) stage is given in Table S1. We labeled the

progeny of the two crosses Clutch A and Clutch B. All collections from the

two clutches occurred concurrently.

RNA Isolation and Spike-Ins

For most samples, ten embryos per time point were homogenized in 200 ml Tri-

zol and frozen at�80�C, with the exception of egg, 0.5, 1, 1.5, 2, 2.5, and 3 hpf

time points, which were sampled at 25, 30, 20, 20, 20, 15, and 15 embryos,

respectively. ERCC RNA Spike-In Mix 1 (Thermo Fisher Scientific) was added

on a per-embryo basis to Clutch A samples. For the Clutch B time course,

ERCCRNA Spike-In Mix 1 was also added, along with the independent adding

of Ambion ArrayControl RNA Spikes (Thermo Fisher Scientific). See Supple-

mental Experimental Procedures for additional details.

Data Analysis

All libraries were sequenced with 76-bp paired-ends on an Illumina HiSeq

2000. Read pairs were aligned using TopHat v2.0.10 (Trapnell et al., 2009)

to the X. tropicalis version 7.1 genome (Hellsten et al., 2010; Karpinka

et al., 2015), along with our ERCC and ArrayControl exogenous spike se-

quences and known off-assembly gene sequences used in a previous study

(Collart et al., 2014). Alignment was guided by the v7.2 X. tropicalis gene

models, to which we made improvements and corrections (Data S1). We

estimated the relative abundance of all transcripts in fragments per kilobase

per million (FPKM) with Cufflinks v2.1.1 (Trapnell et al., 2010) and converted

to TPM. Absolute normalization was achieved by calibrating relative normal-

ized transcript abundances against spikes to achieve absolute normaliza-

tion. Corrections for poly(A)+ bias and Clutch A/B variation were applied

to absolute normalization of native transcripts. All subsequent analysis

used Gaussian processes. See Supplemental Experimental Procedures

for details.
ell Reports 14, 632–647, January 26, 2016 ª2016 The Authors 645



ACCESSION NUMBERS

The accession number for the data reported in this paper is GEO: GSE65785.

Gene expression profiles may be visualized at http://genomics.crick.ac.uk/

apps/profiles/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, seven tables, and two data files and can be found with this

article online at http://dx.doi.org/10.1016/j.celrep.2015.12.050.

AUTHOR CONTRIBUTIONS

I.L.B. and M.K.K. collected the embryos for the time course, and I.L.B. pre-

pared all RNAs. J.D.O. supervised and provided critical expertise on RNA-

seq at the Yale Center for Genome Analysis. N.D.L.O. performed all of the

bioinformatics analysis. M.A.L. did all of the in situ hybridizations. I.P. built

the gene expression visualization website. N.D.L.O., I.L.B., M.J.G.,

K.W.Y.C., and M.K.K. conceived the work, designed the experiments, and in-

terpreted all experimental data. All authors contributed to the writing of the

manuscript.

ACKNOWLEDGMENTS

We thank Sarah Kubek and Michael Slocum for animal husbandry. We are

indebted to the support and sequencing at the Yale Center for Genome Anal-

ysis, especially the assistance of Shrikant Mane. The authors also thank Joe

Gall and Margaret Fish for stimulating discussions. The authors thank James

Noonan, Xiaohui Xie, Sarah Teichmann, and George Gentsch and the mem-

bers of the M.J.G., M.K.K., and K.W.Y.C. labs for helpful discussion of the

manuscript. This work was supported by NIH/NIGMS grant 5R01GM099149

to M.J.G., K.W.Y.C., and M.K.K. M.K.K. is a Mallinckrodt Scholar. This work

was supported in part by the Francis Crick Institute, which receives its core

funding from Cancer Research UK, the UK Medical Research Council, and

the Wellcome Trust.

Received: June 25, 2015

Revised: November 2, 2015

Accepted: December 7, 2015

Published: January 7, 2016

REFERENCES

Aanes, H., Winata, C.L., Lin, C.H., Chen, J.P., Srinivasan, K.G., Lee, S.G., Lim,

A.Y., Hajan, H.S., Collas, P., Bourque, G., et al. (2011). Zebrafish mRNA

sequencing deciphers novelties in transcriptome dynamics during maternal

to zygotic transition. Genome Res. 21, 1328–1338.
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