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The segmentation of the vertebrate body plan during embryonic development is a rhythmic and
sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling
waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of
vertebrate segmentation that captures the key principles governing the dynamic patterns of gene
expression including the effects of shortening of the oscillating tissue. We show that our theory

can quantitatively account for the key features of segmentation observed in zebrafish, in particular
the shape of the wave patterns, the period of segmentation and the segment length as a function

of time.

1. Introduction

In all vertebrate animals, the segmentation of the body plan proceeds during embryonic developmentina
process termed somitogenesis [ 1]. During somitogenesis, the elongating body axis segments rhythmically and
sequentially into somites, the precursors of vertebrae and ribs. Failure of proper segmentation, caused for
instance by mutations, can give rise to birth defects such as congenital scoliosis [2]. Somites are formed in
characteristic time intervals from an unsegmented progenitor tissue, the presomitic mesoderm (PSM)

(figure 1(A)). The temporal regularity with which somites form has provoked the idea that a biological clock
comprised of cellular oscillators coordinates the temporal progress of segmentation in the PSM. The so-called
‘clock-and-wavefront’ mechanism suggests that a wavefront at the anterior end of the PSM reads out the state of
this clock and triggers the formation of a new segment upon each completed clock cycle [3]. Indeed, patterns of
oscillating gene expression have been found in the PSM of various vertebrates such as zebrafish, chick, mouse,
frog, and snake [ 1]. These patterns resemble traveling waves sweeping through the PSM and occur as a result of
coordinated cellular oscillations in the concentration of gene products (figure 1(B)). Genetic oscillations are
proposed to occur autonomously in single cells as a result of delayed autorepression of specific genes [5, 6].
Cellular oscillators mutually couple through Delta—Notch signaling between neighboring cells, which tends to
locally synchronize their oscillatory dynamics [7—11]. Local synchronization due to coupling is important to
maintain coherent wave patterns by preventing the cellular oscillators from drifting out of phase due to noise in
gene expression [12—14]. The emergence of traveling waves at the tissue level has been linked to a gradual
slowdown of genetic oscillations in the PSM along the body axis [ 1, 13, 15, 16]. This gradual slowdown
corresponds to a spatial profile of intrinsic frequencies of the cellular oscillators.

During segmentation, the waves of gene expression emerge at the posterior of the PSM and travel towards its
anterior end, where the new segments are formed (figure 1(B)). Segment formation occurs upon arrival of a wave
at the anterior end of the PSM. This corresponds to the formation of one segment with each completed
oscillation cycle at the anterior end [4]. Segmentation is a highly dynamic process: in parallel with segment
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Figure 1. (A) Zebrafish embryo during segmentation of the body axis. (B) The same transgenic embryo as in (A) in the Her1::YFP
fluorescence channel highlighting regions of oscillatory gene expression [4]. The green arrow indicates the propagation direction of
the waves. (C) A Doppler effect occurs as the anterior end moves into the waves due to PSM shortening.

formation, the body axis elongates while at the same time PSM changes its length as cells leave the PSM at the
anterior end to form somites [4, 16]. A shortening of the PSM, as observed in Zebra fish moves relative to the
waves giving rise to a Doppler effect (figure 1(C)) [4]. The motion of the anterior end relative to the posterior tip
leads to an increase of the frequency of oscillations seen by an observer at the anterior end. Since the oscillation
frequency at the anterior end specifies the rate of segmentation, this Doppler effect contributes to a decrease of
the period of morphological segment formation. In addition to the Doppler effect, the wavelength of the pattern
dynamically changes over time. This leads to a modulation of the local frequency and contributes to an increase
of the period of segmentation. Together, both effects combine to determine the timing of segment formation.
Hence, in addition to the time scale of genetic oscillations, the rate of segment formation is regulated by the time
scale set by tissue shortening and the wavelength of the wave pattern. These observations highlight the need to
capture the effects of tissue deformation in theories of vertebrate segmentation.

In this paper, we present a minimal continuum theory of vertebrate segmentation based on coupled phase
oscillators in a dynamic medium that takes into account local growth and shortening of the oscillating tissue
during the segmentation process. In section 2, we introduce our continuum theory of vertebrate segmentation
and the key observables that can be obtained from the theory. In section 3, we illustrate the basic mechanism
of pattern formation with oscillators using a simplified scenario with constant length of the oscillating tissue.

In section 4, we apply our theory to quantitatively describe segmentation in developing zebrafish embryo,
taking into account tissue shortening. In section 5, we discuss the factors that regulate the period of
segmentation and show how a Doppler effect and a dynamic wavelength effect emerge from the interplay of
tissue shortening and changing wave patterns. In section 6, we discuss our findings and give an outlook for
further research.

2. Continuum theory of coupled oscillators in a dynamic medium

Here we introduce a theory that aims to describe the wave patterns in the PSM and the dynamic features of
segmentation that result from these wave patterns. The wave patterns and the timing of segmentation have
previously been quantified in transgenic zebrafish embryos, in which oscillating genes have been tagged with a
fluorescent marker protein [4]. Waves can be traced by introducing a one-dimensional coordinate x along the
curved embryonic body axis and measuring the fluorescent intensity level along this axis over time (figures 1(B)
and 2(A)). Since these wave patterns are a tissue-level phenomenon and phase differences between neighboring
cellular oscillators are typically small, we here choose a coarse-grained continuum description of the oscillatory
medium. We describe the local state of oscillation by a phase field ¢ (x, ¢). Our theory combines three key
ingredients involved in pattern formation during vertebrate segmentation: (i) autonomous oscillators with a
spatial profile w (x) of intrinsic frequencies [13, 15], (ii) local oscillator coupling with strength £ [10, 13], and (i)
a cell velocity field v(x) capturing deformation and elongation of the segmenting body axis [17, 18]. The dynamic
equation for the phase field ¢ is given by [13]
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Figure 2. (A) Curved coordinate axis for the zebrafish embryo. The point x = 0 marks the posterior tip of the PSM and sets the
reference frame. (B) Shape of the profiles Uand V, equations (4) and (5).

0 ) € 0%
— —_— —_—— 1
3t+v3x w+28x2 )

The intrinsic frequency of the oscillators is described by a position-dependent frequency profile w (x). Motion of
the cellular oscillators is described by an advective term where v is the cell velocity. In previous work, we have
considered a constant velocity v. Local oscillator coupling with strength ¢ is described by a term that tends to
even out local phase differences and thus describes the oscillators’ tendency to locally synchronize [19]. We
impose open boundary conditions, (0¢/0x)|,—¢ = 0, which corresponds to the situation where there are no
oscillators beyond the posterior tip.

In order to describe a shortening PSM, we consider the simple case where the frequency and the velocity
profile are rescaled with tissue length

w= on(x/a'c(t)), )
y = voV(x/i(t)), 3)

where Uand Vare spatial profiles that are adjusted to the variant length % (¢) of the PSM, wy is the maximum
frequency at the posterior tip x = 0, and v, is a typical velocity.

Phase waves travel in an anterior direction if the frequency profile attains its maximum frequency at the
posterior tip x = 0 and decays in an anterior direction [13, 15]. For simplicity, we consider that oscillations have
ceased beyond the wavefront and therefore choose the following frequency profile

1 )1 — ek&-1 €<
c+(1—-0)——
U = 1 —e* h 4)
0 E>1,

see figure 2(B), where £ = x/X denotes a non-dimensional position coordinate and k™" is a characteristic (non-
dimensional) length scale of the profile. The function Uhas the boundary values U (0) = land U (1) = o
(figure 2(B)).

The velocity field in the segmented region can be estimated from experiments by tracking the velocity of
segment boundaries, see appendix A. Choosing the boundary condition v (0) = 0, a simple choice for the
velocity profile consistent with the quantified data is

V() =1-—e4%, )
see figure 4(B). The velocity gradient v corresponds to local growth rate with a profile 9v / Ox = (qy/%) e /%
that takes its maximum value at the posterior tip x = 0 and decays over the characteristic length scale x/q. The
choice of the functional forms for Uand V are motivated by experimental observations as they give rise to the
type of wave patterns observed in experiments with waves moving in anterior direction and slowing down as
they approach the anterior end, see section 3.

The number of waves that simultaneously sweep through the PSM is a key observable that can be measured
in experiments [1]. In terms of the phase field ¢, the number of waves K(#) is given by

60, 1) = ¢(x(n), 1)
27 '

Hence, 27K is the total phase difference between the posterior tip x = 0 and the anterior end x = X of the PSM.
A new segment is formed after each completed oscillation cycle at the anterior end x = & [4]. Accordingly, the

K(t) = 6)

3
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Figure 3. (A) Kymograph of a numerical solution to equation (1) with constant PSM length x = %. The density plot displays

sin ¢ (x, t) (see color legend). The PSM region x < X is displayed in blue, the segmented part x > X in gray. (B) Stationary phase
profile 1, defined by equation (9), as obtained from numerical solutions of equation (1) (solid) and the approximation equation (11)
(dashed), which neglects the effects of coupling. Parameters are specified in table 1.

number of formed segments at time ¢ is given by

¢(=(), 1)

N® = 2T

@)

and the rate of segment formation is dN /d¢t. The length S of the formed segments at the time ¢ of their formation
is given by the wavelength of the pattern at the anterior end, and obeys | ¢ (%, t) — ¢ (X + S(¢), t)| = 2. Inthe
case where 0¢/0x does not vary strongly over the length S, the segment length can be approximated as

Sty ~— 2" (8)

‘ g¢ (x(t), t)‘

X

3. Time-periodic patterns

We first discuss time-periodic patterns to illustrate how the properties of the wave pattern depend on the
parameters of our theory. Such patterns occur for constant PSM length, % (t) = X,. Figure 3(A) shows a
kymograph of a time-periodic solution to equation (1). Starting with ¢ (x, t = 0) = 0, the system attains a time-
periodic state after transient dynamics. This time-periodic state can be expressed in the form [13, 19]

P (x, 1) = Qt + P (x), ©

where 2 is the collective frequency and the spatiotemporal pattern sin ¢ (x, t) is fully characterized by the time-
independent phase profile 1 (x). The rate of segment formation dN /dt, defined through equation (7), is given
by dN/dt = Q /27 and hence given by the collective frequency. Using the time-periodic ansatz equation (9) in
equation (1), the phase profile 1) obeys the ordinary differential equation

Q+w =w+ %W (10)

with boundary condition 1’ (0) = 0. Itis instructive to consider the case of weak coupling, in which the coupling
term provides only a minor correction to the collective frequency and the phase profile (figure 3(B)). Neglecting
(e/2)%" in equation (10), we find the collective frequency €2 ~ wy, the maximum of the frequency profile at the
posterior tip. The phase profile ¢ can then be approximated as

4
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Figure 4. (A) Time evolution of the average PSM length X, from experimental data (dots) and the analytical fit function equation (14)
(black curve) with parameters given in table 1. Dots show averages over 18 embroys, error bars indicate standard deviation. Data from
[4]. (B) Velocities of segment boundaries as a function of the average boundary position (appendix A). Dots show experimental data,
curves show functions v, equation (3). Dark green: velocities during formation of segments 10-17, v, = 0.87 zzm min~ ',

q/% = 0.008 pm (dark) and vy = 0.44 ym min "', g/% = 0.01 ym, segments 18-22 (bright).

~ w(x)f ,
b (x) f o ', (11)

Figure 3(B) shows the approximation equation (11) together with the phase profile obtained from a numerical
solution of equation (1) including the effects of coupling. The number of waves that simultaneously sweep
through the PSM is given by K = |1 (Xp)|/27. The length S of formed segments is constant and given by
equation (8) as

=2y, (12)

‘ Y’ (?E 0 ) |

where we have approximated v (£y) ~ v and defined the collective period T = 27 /). This relationship is well-
known from the clock-and-wavefront model [3, 13]. Note that in the case of a velocity profile it only holds
approximately and only for time-periodic solutions. The phase velocity # = dx./dt of the waves can be
obtained as the velocity of a point x,, with constant phase, ¢ (x4 (t), t) = ¢, [20]. Differentiating this relation
with respect to time yields the phase velocity ¥ = —(0¢/0t)/(0¢/0x) |x=x, ), which exists at any position x.
Using equations (9) and (11), we obtain

oy ~ — (13)
1 — w(x)/wo
The phase velocity 7(x) is always positive and larger than v(x) because 0 < w(x) < wy. This implies that the
waves move in anterior direction and faster than the underlying medium moves away from the tip.

4. Dynamic patterns in a shortening tissue

We now consider the more realistic situation where the oscillating tissue changes its length as is the case for the
PSM in developing vertebrate embryos. Here we focus on the spatiotemporal pattern of the oscillating gene
Herl. The patterns of this gene product can be observed in vivo by a fluorescent label that is introduced in the
transgenic zebrafish line Looping [4]. In zebrafish, the PSM substantially shortens during segmentation [4]. The
time dependence of the PSM length X (¢) can be well captured by the function [4]

x(t) = x¢ + x tanhn(t— f). (14)

Figure 4(A) shows this function with parameters given in table 1 together with experimental data points from
[4]. Here, t = 0 corresponds to the formation time of the 7th segment. We now discuss our model taking into
account this time dependence of the PSM length.

Figure 5(A) shows a kymograph of a numerical solution to equations (1)—(3) using equation (14). The
experimentally obtained phase profile from [4] is shown in figure 5(B) for comparison. Comparison of
figures 5(A) and (B) show that the theoretical and experimental wave patterns qualitatively agree. Parameters
were chosen such that the theory captures the features of the experimentally obtained wave patterns: the velocity
Vo in the segmented region was obtained from quantification of segment boundary positions as a function of
time (figure 4(B)), see appendix A. The remaining parameters were obtained from fits of the theoretical phase
profile to the experimental wave pattern shown in figure 5(B) (for fit procedures see appendix B). An alternative

5
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Table 1. Parameters used for the phase model equation (1) to describe segmentation of the transgenic zebra-
fishline Loopingat23.5 °C.

Param. Value Description Source
wo 0.15 rad min~! Maximum frequency [4]
Yo 0.87 um min~! Maximum velocity Quantified (appendix A)
€ 7 ppm? min~! Coupling strength [14,19]
2.07 Frequency profile shape parameter Fit (appendix B)
o 0.34 Frequency profile shape parameter Fit (appendix B)
q 1.80 Velocity profile shape parameter Fit (appendix B)
to —256 min Initial time Fit (appendix B)
Xo 417 pm Parameters of the time-dep. [4]
X, 202 pm PSM length equation (14)
n —5.09 x 10~ min~!
3 192 min
A 0
100
= 200
€ 300
400
500
100 200 300 400 500 600
B 0
100
< 200
€ 300
400
500

100 200 300 400 500 600
x(um) -

Figure 5. (A) Kymograph of a numerical solution to equation (1) with time-dependent PSM length X (t), equation (14). Color code as
in figure 3. Parameters are specified in table 1. (B) Kymograph of the experimentally obtained average phase patterns in transgenic
zebrafish embryos from [4].

way to display the wave pattern is to introduce the time-dependent phase profile

1?(96 t) = ¢(x> t) - ¢>(0, t)) (15)

see figure 6(A). Note that for time-periodic solutions this becomes the time-independent phase profile defined
in equation (9). Figure 6(A) reveals that the wavelength of pattern decreases over time as wave peaks are moving
closer together. Furthermore, it can be seen that the number of waves in the PSM decreases over time as the
anterior end cuts off one wave peak while the PSM is shortening. The fact that the number of waves in the PSM
changes over time shows that the phase profile does not simply scale with the PSM length. Figure 6(B) shows the
number of waves as a function of the number of formed segments both from numerical solutions of the phase
model and from experiments as presented in [4]. The number of waves substantially decreases during
segmentation, which is captured well by the theory (figure 6(B)). The discrepancy between the solid line in
figure 6(B) and the experimental data for segments N > 18 suggests that the scaling frequency and velocity
profiles, equations (2) and (3), are too simple to capture the wave patterns at late times.

Our theory can also quantitatively account for the features of morphological segment formation.
Figures 6(C) and (D) show a comparison of our theory to experiments for the formation time and segment
length as a function of the segment number N, respectively (for details see appendix A). The segment length S
shows a non-monotonic behavior with largest segments being formed around the 12-segment mark, a behavior
also found in wildtype zebrafish [21]. This demonstrates that our theory can quantitatively account for the
dynamic features of vertebrate segmentation.
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Figure 6. (A) Kymograph of the phase profile 1 (x, t), equation (15) of the same numerical solution of the theory as shown in

figure 5(A). (B) Number of waves K, equation (6), as a function of the segment number N from experiments (blue dots) and theory
(black curve). (C) Formation time ¢ of segment number N from experiments (green dots) and from theory (black curve), equation (7).
Experimental data points are averages over 18 embryos. (D) Segment length S at time of segment formation from experiments (red
dots) and from theory (black curve), equation (8). Experimental data points are averages over ten embryos. Error bars in both plots
indicate the standard deviation.

5. Doppler and dynamic wavelength effect

5.1. Period of segmentation

A fundamental feature of segmentation is that segments are formed rhythmically and sequentially. Which
factors determine the period of morphological segment formation? From the definition equation (7) of the
segment number N, it follows that the rate of segmentation is given by the local frequency at the moving anterior
end, dN/dt = Q, /27, where

d /_
Op = Eqﬁ(x(t), t). (16)
Hence, the rate of segment formation is generally time-dependent. We now show how the wave pattern
influences €24. To this end, we decompose €2, into different contributions [4]

Q= Qp + Op + Qw, (17)

where (p is the posterior frequency, () is a Doppler contribution and €2y is a ‘dynamic wavelength’
contribution. These frequencies are defined by

QP = ?9_?(0’ t),
_ o s
W= ox FO 1)
oY [
Qw = E(x(t), t), (18)

where the phase profile ¢ is defined in equation (15). The contribution (2p is the local frequency at the posterior
tip of the tissue at x = 0. The contribution €2, results from a Doppler effect where dx/dr is the speed of the
moving observer (the anterior end) traveling into a wave with wavelength 27 (9%/9x)~!. The contribution Qyy
is caused by the change of the phase profile 1) over time, which corresponds to a dynamic change of the
wavelength.

Using our theory, we can derive an explicit relation between €2, and §2p for the simple case of linear
shortening of the PSM, dx/dt = —7, see appendix C. We find

O =~ (1 + i)(l — Ay, (19)

Vo
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Figure 7. Distribution of frequency values over the entire range of time (500 min): anterior frequency €2, (blue), equation (17), and its
contributions, equation (18): the posterior frequency 2p (purple), the Doppler contribution {2, (red), and the dynamic wavelength
contribution Qyy (green), for the theoretical and experimental systems displayed in figure 5. Boxes show the total range of values over
time with the horizontal line indicating the median (see schematic outset plot). The dashed blue line indicates the approximation
equation (19) in the time interval between 150 and 300 min where PSM shortening is approximately linear with # = 1.03 ym min—},
see figure 4(A). Experimental data from [4].

where

! /vy w(§)
A= de. (20)
fo (1+ v€/m) wo

In equation (19), the factor 1 + 7 /v, describes the Doppler effect with the speed ¥ of the moving observer (the
anterior end) and the cell velocity vo. The factor I — A describes the effects caused by changing phase profile due
to the shortening of the frequency profile with the PSM length. Hence, this term describes the dynamic
wavelength effect. Because A > 0, this factor opposes the Doppler effect.

Figure 7 displays theoretical and experimental results for the anterior frequency €2, and the contributions
Qp, O, and Qyy, together with the approximation equation (19) for 2. The Doppler effect yields a positive
contribution (2p > 0), the dynamic wavelength yields a negative contribution (2 < 0) with the Doppler
effect having larger magnitude, consistent with experiments [4]. The average anterior frequency €1, is thus larger
than the posterior frequency {2p.

The Doppler effect and the dynamic wavelength effect can be discussed in the context of classical wave
physics.

5.2. Doppler effect
Consider a wave equation in one-dimension
2 2
8_14 _ CZa_u =0, (21)
or? Ox?

where u (x, t) is the amplitude of the wave and c is the wave propagation speed. We consider a wave-emitting
source with frequency w and amplitude 1 at x = 0 through the boundary condition

u(0, t) = ug sin wt. (22)
Furthermore, we impose the zero initial conditions
u(x, 0) = 0. (23)
A simple solution to equation (21) satisfying the boundary and initial conditions (22) and (23) is
u(x, t) = ug sin(wt — 2wx/N), (24)

aplane wave with wavelength A = 27¢/w. The phase pattern of this wave s ¢ (x, 1) = wt — gx. An observer
with position X () moving with constant velocity dx/dt = —7 observes the frequency 2 = d¢/dt with

¢ (t) = ¢(x(t), t). Using
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X

Figure 8. (A) Kymograph of the plane wave u (x, ), equation (24). The semi-transparent white lines indicate an observer at rest
(dashed) and an observer in motion (solid) having constant velocity d¥/d¢ = —7. The numbers indicate the wave peaks that the
respective observer crosses. (B) Kymograph of the wave u (x, ) in a medium with time-dependent refractive index, equation (30). The
semi-transparent white lines indicate two observers at rest with different positions. Parametersare w = 1,c=1, up = 1,

r =5 x 107* The color code is the same as in figure 5. In panel (B), the color code has been rescaled to the minimum and maximum
values of u.

do oo} 0 d:‘c)
Rty o o e it 25
dt ( ot " Ox dt )|, _: ¢ @
we have
Q=w + QD, (26)
where
_dx 0¢
o = 5 -(50. 1), (27)

which corresponds to €, in equation (18). Note that Q = (1 + 7/c)w, which is the usual expression for the
Doppler effect of a moving observer [22]. The wave pattern described by equation (24) is shown as a
kymograph in figure 8(A). This pattern can be used to illustrate the Doppler effect by considering an observer at
rest (dashed white line) compared to an observer moving towards the source (solid white line). The moving
observer crosses more wave peaks as compared to the observer at rest during the same time interval and hence
observes a higher frequency.

5.3. Dynamic wavelength effect
A dynamic wavelength effect, i.e., a time-dependent change of the wavelength at a fixed point in space, can occur
if waves propagate in a medium with a time-dependent index of refraction # (). In this case, the dynamic

equation for the waves is given by
0%u ¢t 0%u

o2 n():ox:

To illustrate how the dynamic wavelength effect emerges, we here consider for simplicity

0, (28)

n(t) = rt?, (29)

For this case, a solution to equation (28) with the boundary and initial conditions (22) and (23) is given by

u(x, t) = Mo(l + 1xt) sin w—tr (30
c 1+ —xt

c

In this case, the phase profile is given by ¢ (x, t) = wt /(1 + rxt/c). The prefactor ug (1 + rxt/c) describes a
position and time-dependent wave amplitude. Equation (30) describes waves which propagates with a phase
velocity ¥ = —(0¢/0t)/(0p/0x) = ¢/n(t). Thelocal wavelength A = 27 /|0¢/0x|at position x and time ¢ is
given by

27 c)
Ax, t) = —(rx—i— —) . (31)
rew t

Hence, at a fixed position x, the wavelength decreases over time, even though the source emits waves with a
constant frequency w. The phase pattern becomes stationary for large times because A (x, ¢) becomes time-
independent in the large-time limit. The frequency 2 = 9¢ /0t seen by an observer at rest with position x is
given by
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w

Q= ———,
(1 + rxt/c)? (32)

which depends on position and time. For x > 0and ¢t > 0, 2 = w + Qy, where Oy < 0. The wave pattern
described by equation (30) is shown as a kymograph in figure 8(B). This pattern can be used to illustrate the
dynamic wavelength effect by considering two observers at rest with different positions. An observer at rest that
is more distant from the source (solid white line) crosses a smaller number of wave peaks compared to an
observer closer to the source (dashed white line). Hence, the observer more distant from the source observes a
smaller frequency.

Doppler effects are commonly found in wave physics. However, the dynamic wavelength effect is more
unconventional. A time-dependent index of refraction as illustrated here occurs, e.g., in gases ionized by laser
pulses due to a spatially and temporally inhomogeneous distribution of free electrons [23, 24].

6. Discussion

In this paper, we have introduced a continuum model of coupled phase oscillators in a dynamic medium to
capture the dynamics of vertebrate segmentation. For simplicity, we have considered frequency and velocity
profiles that scale with the time-dependent PSM length. Note that the phase profile itself does not scale in
contrast to an earlier proposal [25]. Extending previous work [3, 13, 15, 19, 26], our approach takes into account
tissue deformation due to growth of the embryonic body axis and the change of the PSM length over time. This
enables us to quantitatively account for the morphological features of segmentation such as the timing of
segment formation and the length of newly formed segments as observed in developing zebrafish embryos. The
frequency and velocity profiles that scale with PSM length capture well the time-dependence of the
experimentally observed wave patterns. The parameters obtained from the fit to the experimental data suggest
that the frequency profile at the anterior end jumps from a finite value to zero. Such a behavior could, e.g., be
caused by a Hopf bifurcation. Indeed, if the cellular oscillations pass a Hopf bifurcation from the oscillating state
to the non-oscillating state when reaching the anterior end of the PSM, this would give rise to a frequency jump.
Moreover, our theory describes the experimentally observed Doppler and dynamic wavelength effects, which
regulate the timing of segment formation [4]. In particular, our results imply that the rate of segmentation in
zebrafish is faster than the fastest local oscillation frequency found anywhere in the system. This remarkable
behavior is due to the interplay of wave patterns and tissue shortening. The Doppler and dynamic wavelength
effects observed in zebrafish are a result of the shortening of the PSM and the corresponding decrease in the local
wavelength of the wave pattern. We predict these effects in general to occur also in other species. However, the
signs and their role during different developmental stages could vary. The signaling pathways and the cellular
processes that regulate and mediate the shortening of the PSM, the elongation of the body axis, and the
specification of the frequency profile are as yet unknown and remain open challenges for future experimental
and theoretical research.
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Appendix A. Quantification of segmentation dynamics from time-lapse microscopy
movies

We use the time-dependent phase profiles of the transgenic zebrafish reporter line Looping determined
previously [4]. In embryos of the same transgenic line, we quantified the cell velocity field in the segmented
region and the length of segments at the time of formation from brightfield movies. These embryos developed at
atemperature of 23.5 °C. For each frame of the movie, we defined a curved coordinate axis according to

figure 2(A). We obtain the intensity values along this axis for each frame using FIJI image analysis software [27].
This procedure yields the kymograph figure A1 (A), which shows the profile of intensity values along the body
axis as a function of time. In figure A1(A), dark gray lines indicate the segment boundaries. The slopes of these
lines correspond to the speed of the segment boundaries relative to the posterior tip and thus carry information
about the velocity field in the segmented region. To track the motion of the segment boundaries systematically, a
peak-finding and tracking algorithm for the intensity level was developed and applied to a contrast-enhanced
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Figure Al. (A) Intensity kymograph obtained from a time-lapse microscopy movie of zebrafish segmentation. The x-axis marks the
distance along the coordinate system defined in figure 1(D). (B) Algorithmically determined point set of local intensity minima
indicating the position of segment boundaries. (C) Sets of adjacent points were algorithmically grouped to obtain separate traces for
each segment boundary (different colors indicate different boundaries).

Figure A2. Measurement of the segment length at time of formation from brightfield microscopy time-lapse movies. Quantification
procedure adapted from [21].

version of figure A1(A) smoothened with a moving average of width 12 pixels. Subsequently, the local intensity
minima, which correspond to the positions of the segment boundaries, are determined with a peak-finding
algorithm. The result is shown in figure A1(B). In the next step, nearby points are connected to obtain time series
of the segment boundaries’ positions. The resulting traces are shown in figure A1(C). For each segment
boundary, we perform linear fits of the boundary position at early and late times to determine its velocity. To
obtain a velocity profile, we compute the average position of each segment boundary and assign the velocity of
the corresponding boundary to it (figure 4(B)). The velocity profile within the PSM is inaccessible with the
available dataset.

The segment length at the time of segment formation (figure 6(D)) was determined from these time-lapse
microscopy movies following the procedure described in [21]. Specifically, the segment length was obtained by
determining the distance between two successive indentations of the PSM at the anterior end of the tissue
(figure A2).

Appendix B. Fits of theoretical phase profiles to experimental data

We use the shape parameters o, k, and g of the frequency and velocity profiles as fit parameters. To generate
dynamic patterns in our theory, we start the system at time 5 < 0 with ¢ (x, ty) = 0 to create initial conditions
att=0. We fit the calculated patterns ¢ (x, t) for t > 0 to the experimental data, using o, k, ¢, and #, as fit
parameters. The time t = 0 corresponds to the formation time of the 7th segment. The experimental phase map

11
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is obtained as an average over 18 embryos as described in [4]. Fits are performed by minimizing the squared
average difference

R= Ltﬁnal dtf(;i(t) dx (¢(x, f - zl)exp(x, t))z (B.1)

between the theoretical and the experimental time-dependent phase profiles 1) and t/y,,. Here, X (¢) is the time-
dependent PSM length, equation (14). We minimize equation (B.1) using a stochastic optimization process.
Starting from an initial parameter choice, a random parameter set is created by adding numbers from Gaussian
distributions with zero mean and specified variance to the reference parameter set. We only consider parameter
sets for which the initial number of waves matches the observed one within 10% of the standard deviation (first
data point in figure 7(B)). If such a random parameter set leads to a reduction of R, equation (B.1), itis chosen as
anew reference parameter set. The algorithm converges to an optimal parameter region which can be refined by
reducing the variances of the Gaussian distribution.

Appendix C. Tissue shortening at constant velocity

We determine a relationship between the anterior and posterior frequencies in the limit of small coupling
strength € and constant velocity profile v (x) = . Hence, we simplify equation (1) by

Do d¢ )
S 06 D v ) = wOU(x/x(t)), (C.1)

where % (¢) is the time-dependent PSM length and U is the profile function given by equation (4). The general
solution to this equation is given by

wy x!
, 1) = t— + — Ul ——— | dx/, C.2
o6 1) = ot — xm) Vofo e (C2)
Yo
where the function ¢ (1) can be determined as follows. The partial derivatives of this solution are given by
99 .
S, = p(t = x/m) — wol(x, 1), (C.3)
v08—¢(x, t) = —g'a(t - x/vo) + wol(x, t) + wOU(x/oE(t)), (C.4)
Ox
where ¢ = dy/du, and
. x—x
) . x|t — , ,
A, 1) = — f X' oLy X dx, (C.5)
Vo Y0

1\? /
X — X _ X — X
( Yo ) Yo

with & = d%/dt and U’ = dU/d&. The explicit form of ¢ (1) can now be found using initial and boundary
conditions. We evaluate equation (C.4) at x = 0 using open boundary conditions, (0¢/0x)|c—o = 0 to obtain

() = wo. (C.6)
for u > 0. Using the initial condition ¢ |,—q = 0 and evaluating equation (C.2) at t = 0, we can likewise find the
solution for ¢ for u < 0. According to equation (C.2), u > 0 describes the solution at positions x < vyt.

We are interested in the behavior of the anterior frequency at large times, for which x (¢) < vyt, and thus
only consider ¢ (1) for u > 0. Using equation (C.6) in equations (C.3) and (C.4), we find the anterior frequency

U = (d/dt) o (x(2), t)as

Op = [(1 - i)(l - A(a?(t), t)) + ?U(l)]wo (C.7)
0

Vo

This expression holds for arbitrary time-dependence X (t). We now consider linear tissue shortening at constant

velocity ¥ = —7. Using this relation in equation (C.5), we find
x(t) 0Ox X
Alx@), t) = — U’( ]dx, (C.8)
(x ) j; [(1 + Bx () — ﬂx]z 1+ B)x (1) — Px
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where
B=7/v (C.9)

and % (t) = Xy — vt. Using the variable transform & = x/[(1 + 3)%(¢t) — [x]revealsthat A(X(t), t) = Ay
with
S

No=— . WU (&) d¢§

=A— r— b U(D), (C.10)

+ 6

is time-independent. In the second line of equation (C.10), we have integrated by parts and introduced A given
by equation (20). Using the result (C.10) and X = —# in equation (C.7), we finally obtain

Q=1+ B — A)wy. (C.11)

The posterior frequency (2p =(0¢/0t)|—o can be obtained using equations (C.3) and (C.6), which yields
Qp = wy. Thus, we can interpret equation (C.11) as a relation between €24 and €2p. This completes the derivation
of equation (19).
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