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SUMMARY

In the vertebrate neural tube, a morphogen-induced
transcriptional network produces multiple molecu-
larly distinct progenitor domains, each generating
different neuronal subtypes. Using an in vitro differ-
entiation system, we defined gene expression signa-
tures of distinct progenitor populations and identified
direct gene-regulatory inputs corresponding to loca-
tions of specific transcription factor binding. Com-
bined with targeted perturbations of the network,
this revealed a mechanism in which a progenitor
identity is installed by active repression of the entire
transcriptional programs of other neural progenitor
fates. In the ventral neural tube, sonic hedgehog
(Shh) signaling, together with broadly expressed
transcriptional activators, concurrently activates the
gene expression programs of several domains. The
specific outcome is selected by repressive input pro-
vided by Shh-induced transcription factors that act
as the key nodes in the network, enabling progenitors
to adopt a single definitive identity from several
initially permitted options. Together, the data sug-
gest design principles relevant to many developing
tissues.

INTRODUCTION

Pattern formation in developing tissues relies on the cells adopt-

ing one of several alternative fates. These decisions are deter-

mined by extrinsic signals, often in the form of morphogen

gradients, and the transcriptional network that responds to

the gradients. Together these form gene-regulatory networks

(GRNs) that control gene expression and specify cell identity

(Davidson, 2010).

In the vertebrate neural tube, the pattern of neuronal subtype

generation is determined by the combinatorial activity of a set

of transcription factors (TFs) expressed in neural progenitors

(we term these transcription factors NP-TFs, and the network
Develo
NP-GRN) (Alaynick et al., 2011; Dessaud et al., 2008; Jessell,

2000) (Figure 1A). The expression of NP-TFs, organized into ste-

reotypic domains along the dorsal-ventral axis, is established

progressively in response to anti-parallel morphogen gradients.

In the ventral half of the neural tube, sonic hedgehog (Shh)

signaling is associated with activation of ventral NP-TFs and

simultaneous repression of NP-TFs characteristic of dorsal do-

mains (Briscoe et al., 2000; Dessaud et al., 2008; Oosterveen

et al., 2012, 2013; Peterson et al., 2012; Vokes et al., 2007).

ManyNP-TFs are able to act asGroucho/TLE-dependent repres-

sors (Muhr et al., 2001) andpairs ofNP-TFsexpressed in adjacent

domains cross-repress each other to form bistable switches that

select the appropriate cellular identity (Balaskas et al., 2012;Bris-

coe et al., 2000; Novitch et al., 2001; Vallstedt et al., 2001). For

example, Nkx2.2, expressed in p3 progenitors and required for

V3 interneuron and visceral motor neurons (MNs) specification

(Briscoe et al., 1999), is located ventrally to pMN progenitors,

whichexpressPax6andOlig2 (Alaynick et al., 2011) andgenerate

somatic MNs (Novitch et al., 2001). Initially, Pax6 inhibits Nkx2.2

induction, allowing rapid induction of Olig2 by Shh signaling in

presumptive p3 and pMN progenitor cells. Later, the induction

of Nkx2.2, by continued Shh signaling, inhibits the expression

of Pax6 and Olig2 in the p3 cells thereby delineating the p3/

pMN boundary (Balaskas et al., 2012; Jeong and McMahon,

2005). Theconsequence is that p3progenitors are located ventral

to pMN progenitors. Similarly, Olig2 and Irx3, as well as Nkx6.1

and Dbx2, form bistable switches that demarcate additional

boundaries in the ventral neural tube that are associated with

the dorsal limits of MN and V2 neuron generation, respectively

(Novitch et al., 2001; Sander et al., 2000; Vallstedt et al., 2001).

In this way, the combination of the cross-repression and the

response of NP-TFs to Shh signaling provide a mechanism to

establish and position the discrete boundaries of gene expres-

sion domains (Balaskas et al., 2012; Briscoe et al., 2000).

In addition to repressing adjacent progenitor identities, how-

ever, forced expression of individual NP-TFs imposes the corre-

sponding identity on progenitors throughout the neural tube

(Briscoe et al., 2000; Muhr et al., 2001). This suggests a model

in which NP-TFs repress the gene expression programs charac-

teristic not only of adjacent but also of non-adjacent progenitor

domains, in order to install the new transcriptional identity (Lee

and Pfaff, 2001; Lee et al., 2004; Muhr et al., 2001). Whether
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Figure 1. Nkx2.2, Olig2, and Nkx6.1 Bind to Loci Associated with Many of the Genes Differentially Expressed in Neural Progenitor Cells

(A) Schematic of the ventral neural tube. FP, p3, pMN, and dorsal progenitor domains are defined by the expression of Foxa2 (FP), Foxa2 and Nkx2.2 (p3), Olig2

(pMN), Pax6, Irx3, Pax7, Dbx1 (dorsal).

(B) Schematic of ESCs differentiated inmonolayer culture into neural progenitors (iNPCs). ESCswere differentiated inmonolayer inminimal N2B27media, andRA

and Shh were added at specified concentrations at the indicated times to induce FP, p3, pMN, and dorsal progenitor identities.

(C) The expression of the indicated neural progenitor transcription factors (NP-TFs) in iNPCs at day 5. Merged images are shown on the right panel. The in vitro

conditions recapitulate the in vivo expression profiles of NP-TFs in FP, p3, pMN, and a mixture of dorsal progenitor identities (p0 to pd5).

(legend continued on next page)
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this is achieved by repressing domain-specific TFs or by direct

regulation of all domain-specific genes is unclear. Our current

knowledge of the NP-GRN is based principally on genetic pertur-

bation experiments and inference from a small number of genes

and associated cis-regulatory elements (CREs) (Dessaud et al.,

2008; Oosterveen et al., 2012, 2013; Peterson et al., 2012; Vokes

et al., 2007). The pattern of genomic deployment of NP-TFs, and

their direct effects on target genes, is largely unknown.

To distinguish between direct and indirect repression of

domain-specific transcriptional programs and to determine

how repression of adjacent and non-adjacent identities contrib-

utes to progenitor type specification, we determined the gene

expression programs of progenitor cells corresponding to spe-

cific domains. Focusing on the ventral domains, we determined

the genomic distribution of three NP-TFs, Nkx2.2, Olig2, and

Nkx6.1 that collectively define the identities of p3, pMN, and

p2 progenitors (Figure 1A). We correlated the genomic occu-

pancy with the transcriptomes of defined progenitor populations

following targeted perturbations of specific NP-TFs. These data

indicate that ventral NP-TFs specify progenitor identities by

directly repressing both the transcriptional determinants and

progenitor-specific effector genes of adjacent and non-adjacent

domains. Examination of the genomic binding of the pan-neural

TF Sox2 (Bergsland et al., 2011; Oosterveen et al., 2012, 2013;

Peterson et al., 2012) and the effector of hedgehog signaling

Gli1 (Peterson et al., 2012) supports their direct involvement in

the activation of neural progenitor genes and suggests that a

substantial part of the positive input into the transcription of

the ventral genes is provided directly by Shh signaling. Thus,

the active repression of all genes specific for alternative progen-

itor identities is required to counteract wider-ranging activating

inputs provided by broadly expressed TFs and broadly active

mediators of morphogen signaling.

RESULTS

In Vitro Generation of Specific Neural Progenitor
Identities
Systematic analysis of the neural progenitor GRN has been

limited by the difficulty of isolating sufficient numbers of progen-

itor cells with defined identities. To circumvent this, we devel-

oped an in vitro system for inducing specific populations of

neural progenitor cells (iNPCs) from undifferentiated embryonic

stem cells (ESCs) (Figures 1B and 1C) (Andersson et al., 2006;

Ying et al., 2003). By varying concentrations of two morphogens

implicated in the specification of ventral neuronal subtypes, Shh

and retinoic acid (RA) (Briscoe et al., 2001; Ericson et al., 1997;

Novitch et al., 2003), we defined conditions that reproducibly

generated progenitor populations with gene expression profiles

characteristic of the floor plate (iNPC-FP) expressing Foxa2, the

visceral MN-generating p3 domain (iNPC-p3) expressing

Nkx2.2, somatic MN progenitors (iNPC-pMN) expressing Olig2
(D) Transcriptome analysis of iNPCs defines gene expression signatures for ea

progenitor types highlights the unique signature of the distinct progenitor subtyp

transmembrane or secreted molecules with known expression pattern are marke

(E) Nkx2.2, Olig2, and Nkx6.1 peaks are enriched next to genes differentially exp

with binding of the indicated NP-TFs for genes upregulated in specific iNPC popu

**p(c2) < 0.001, *p(c2) < 0.025, n.s, non-significant. See also Figure S1.
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and dorsal neural progenitor populations (iNPC-D); the latter

represent a mixture of p0 and several other dorsal cell types.

All dorsal progenitors express Pax6 and Irx3 and subsets ex-

press Pax7 and/or Dbx1 (Figures 1A–1C). Comparison of the

transcriptomes of dorsal, p3, pMN, and FP cells identified

gene sets specifically expressed in each subset of progenitors

(Figure 1D). These correlated well with known in vivo expression

patterns (Table S1, sheet 1D) (Alaynick et al., 2011). Neural

progenitor genes specific for different domains were enriched

in TFs (18%) as well as glycoproteins, membrane-associated

and secreted molecules related to the effector functions of the

progenitor cells (54%) (Figure S1A and Table S1, sheet 1D).

NP-TF Binding Is Associated with Domain-Specific
Genes
Discrete boundaries between progenitor domains are estab-

lished by bistable switches formed by repressing pairs of NP-

TFs expressed in adjacent domains (Balaskas et al., 2012; Bris-

coe et al., 2000; Novitch et al., 2001; Vallstedt et al., 2001).

Whether the choice of corresponding cell fates involves only

reciprocal repressive interactions between domain-specific

NP-TFs or also entails the direct inhibition of all genes specific

for the other domains is unclear. To identify the direct regulatory

activities of the NP-TFs that define specific progenitor domains,

we used chromatin immunoprecipitation sequencing (ChIP-

seq) to examine the genome-wide binding profiles of Nkx2.2 (ex-

pressed in p3progenitors), Olig2 (expressed in pMN), andNkx6.1

(expressed in both p3 and pMN, ChIP performed from p3). We

identified 2,000–3,000 binding sites for each TF corresponding

to the highest signals, and de novo motif discovery (Gupta

et al., 2007; Heinz et al., 2010) within these regions recovered

consensus motifs consistent with the known sequence prefer-

ence of each TF (Figure S1B). NP-TFs bound predominantly to

distal CREs, rather than directly at gene promoters (Figures

S1C and 3I). By associating each occupied site with its neigh-

boring genes, we found a marked enrichment of NP-TF binding

not only around NP-TFs but also associated with a large fraction

of other genes that exhibited differential regulation in iNPCs (Fig-

ure 1E). This suggested a network of transcriptional interactions

more complex than required if the cross-repressive interactions

were limited to NP-TFs expressed in adjacent domains. The

broad deployment of NP-TFs next to the genes with which they

showed mutual exclusion provided evidence that progenitor

fate specification involved the direct repression of the entire tran-

scriptional program of other domains. To test this hypothesis we

first investigated the regulation of the Nkx2.2 targets.

Nkx2.2 Binds and Represses Transcriptional Programs
of Progenitors Adjacent to the p3 Domain
Nkx2.2 specifies the program of p3 progenitors (Briscoe et al.,

1999). This domain is flanked dorsally by pMN, expressing the

pMN-defining NP-TF Olig2 (Alaynick et al., 2011; Novitch et al.,
ch progenitor identity. Heatmaps of gene expression levels in the indicated

es. Transcription factors specifying the different domains are indicated in blue,

d in black. See also Table S1, sheet 1D.

ressed in iNPCs. The barchart compares the percentage of genes associated

lations with all genes or genes that do not change in expression in iNPCs (n.c).
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Figure 2. Nkx2.2 Directly Represses Genes

Expressed in Adjacent Domains

(A–D) Nkx2.2 directly represses pMN genes inde-

pendently of Olig2 downregulation. (A) Schematic of

the experimental rationale. To test whether Nkx2.2

represses both Olig2 and other pMN genes directly,

ESCswere differentiated to p3or pMN identity using

the indicated schedules of RA and Shh treatment.

Ectopic Nkx2.2 expression was induced in pMN

progenitorsby theadditionof doxycycline 12hr after

Shh was added (pMN + Nkx2.2). (B) Heatmap

comparing the time course of gene expression in

pMN and pMN + Nkx2.2 iNPCs. Genes character-

istic of pMN identity defined in Figure 1D as ‘‘pMN’’

(red) were expressed higher in pMN compared with

p3. The induction of Nkx2.2 in pMN conditions

repressed 86% of these genes. Filled gray boxes

adjacent to the heatmap indicate genes significantly

downregulated compared with pMN (padj < 0.05).

Genes with known pMN-restricted (pMN > p3)

expression are indicated. See also Table S1, sheet

2B. (C)Nkx2.2binding is associatedwithmany pMN

genes that are repressed by Nkx2.2 induction. 53%

of thepMNgenes repressedbyNkx2.2 inductionare

associated with the binding of Nkx2.2. By contrast

only 20%of all genes or genes that do not change in

expression in neural progenitors have associated

binding sites (n.c). **p(X2) < 0.001, n.s, non-signifi-

cant. (D)Median expression levels of genes induced

at early (n(genes) = 5), intermediate (n(genes) = 16)

and late (n(genes) = 17) times in pMN cells (solid

lines). The lines represent the median values of the

indicated groups of genes and the error bars

correspond to the 10th and 90th percentile values of

each group. Most genes are induced prior to Olig2

(red line), which is induced relatively late. Both the

early and intermediate classes of genes are down-

regulated (dotted lines) by the time Olig2 is fully

induced (24 hr).

(E–I) Nkx2.2 directly represses late FP genes. (E)

Schematic of experimental rationale. To test

whetherNkx2.2 inhibits theelaborationofFP identity

by repressing genes induced at late times in FP

differentiation, ESCs were induced to p3 or FP

identity. Ectopic Nkx2.2 expression was induced in

FP progenitors by doxycycline addition 9 hr after

Shh treatment. (F) Heatmap comparing the time

course of gene expression in FP and FP + Nkx2.2

iNPCs. Genes characteristic of definitive FP identity

(late FP genes) were selected by identifying genes

expressedat higher levels inFP than inp3progenitors, induced tomaximumlevelsat 60hr (FigureS3).GeneswithknownFP-restrictedexpressionare indicated. The

induction of Nkx2.2 in FP conditions repressed 74% of these genes. Filled gray boxes adjacent to the heatmap indicate genes significantly downregulated in FP +

Nkx2.2 compared with FP (padj < 0.05) at 60 hr. See also Figure S3 and Table S1, sheet 2F. (G) Nkx2.2 binding is associated with many of the FP genes that are

repressed by Nkx2.2 induction. 40%of the FP genes repressed by Nkx2.2 induction are associated with the binding of Nkx2.2. **p(c2) < 0.001, n.s, non-significant.

(H) Nkx2.2 represses the late FP marker Arx in vivo. Nkx2.2 (green) was electroporated ventrally in ovo into the chick neural tube at HH8 and the expression of Arx

(white) andFoxa2 (purple) wasanalyzed 48hr later. At the ventralmidline of experimental sample,Nkx2.2-expressing cells contained substantially lower levels of Arx

expression (arrows). (I) Nkx2.2 acts downstreamor in parallel to Foxa2 to repress late FPmarker expression in vivo. Foxa2 or Foxa2 andNkx2.2were electroporated

laterally into the chick neural tube at HH12 and the expression of Arx was analyzed 48 hr later. Foxa2 (purple) induces Arx expression (white) in intermediate/dorsal

progenitors, in a cell-autonomousmanner (arrows). By contrast, co-expression of Nkx2.2 (green) abolishes Foxa2-induced induction of Arx (arrow). The dotted lines

indicate the outlines of the neural tube.
2001); and ventrally by FP, which expresses the NP-TF Foxa2,

and later Nato3 and Arx (Mansour et al., 2014; Ribes et al.,

2010; Sasai et al., 2014). We asked whether Nkx2.2 alone was

sufficient to downregulate the expression of pMN-specific genes

and whether its effects on gene expression were mediated by

direct repression of all pMN genes or indirectly by regulating
642 Developmental Cell 36, 639–653, March 21, 2016 ª2016 The Au
Olig2 expression. For this purpose, we developed an ESC line

containing an inducible Nkx2.2 cDNA under the control of tetra-

cycline-regulatory elements (ESC-iNkx2.2; Figure S2) (Gouti and

Gavalas, 2008; Selfridge et al., 1992). Induction of Nkx2.2

expression under iNPC-pMN conditions led to the rapid downre-

gulation of 86% of pMN-specific genes, including Olig2 (Figures
thors



2B and S2, and Table S1, sheet 2B). Analysis of the genomic oc-

cupancy of Nkx2.2 in p3 cells revealed that Nkx2.2 could be de-

tected at more than 50% of these genes (Figure 2C), suggesting

that Nkx2.2 acts as a direct repressor of many pMN-specific

genes. Consistent with a direct repressive role of Nkx2.2, a large

fraction of pMN-specific genes were induced prior to onset of

Olig2 expression (ruling out an involvement of Olig2 in the activa-

tion of these genes) and repressed before Olig2was fully upregu-

lated in pMN cells (Figure 2D).

Nkx2.2 is transiently expressed in cells that become FP and

is involved in FP specification (Jeong and McMahon, 2005;

Lek et al., 2010). However, Nkx2.2 is downregulated in FP as

development proceeds (Ribes et al., 2010). Analysis of gene

expression in iNPC-FP cells identified an expression signature

characteristic of definitive FP, including the expression of

Nato3 (Mansour et al., 2014) and Arx (Ribes et al., 2010)

(Table S1, sheet 2F). This signature emerged between 36 and

60 hr, as Nkx2.2 was downregulated (Figures S3A–S3C). Artifi-

cially sustaining expression of Nkx2.2 in iNPC-FP progenitors

derived from ESC-iNkx2.2 cells abrogated the upregulation of

74% of the definitive FP genes (Figure 2F). A large fraction of

the genes inhibited by Nkx2.2 were associated with Nkx2.2-

binding events (Figure 2G), consistent with a direct repressive

activity. Thus, following the requirement for Nkx2.2 activity in

the initiation of FP differentiation, through the repression of

Pax6, Gli3, and Olig2 (Lek et al., 2010), Nkx2.2 must be downre-

gulated to allow the full elaboration of FP identity.

We confirmed the repressive effect of Nkx2.2 on induction of

genes characteristic of definitive FP using in ovo electroporation

of chick embryos. Forced continuous expression of Nkx2.2 cell

autonomously prevented upregulation of the FPmarker Arx (Fig-

ure 2H). Moreover, co-electroporation of Nkx2.2 blocked Foxa2-

dependent induction of Arx (Figure 2I), ruling out an indirect

mode-of-action of Nkx2.2 through the regulation of the FP deter-

minant Foxa2. Taken together, these data provide evidence

that, in addition to repressing the NP-TFs of adjacent domains,

Nkx2.2 directly inhibits a major fraction of the entire transcrip-

tional programs of both pMN and FP, by binding at CREs linked

to the genes expressed in these domains.

Nkx2.2 and Nkx6.1 Bind and Repress Genes Specific to
the Programs of Distant Progenitor Domains
As well as genes associated with the adjacent pMN and FP pro-

genitor domains, we noticed Nkx2.2 occupancy was enriched

around genes expressed in progenitors of non-adjacent dorsal

domains (Figure 1E). These included genes characteristic of

several distinct progenitor domains present within the iNPC-D

population (Figure 3D and Table S1, sheets 1D and 3B), sug-

gesting that Nkx2.2 may also play a direct role in the regulation

of gene expression programs of multiple non-adjacent domains.

To test whether Nkx2.2 could directly repress these genes, we

used ESC-iNkx2.2 cells to induce Nkx2.2 expression in iNPC-

D cells. In these cells, induction of Nkx2.2 strongly repressed

53% of the genes specifically expressed in dorsal progenitors

(Figure 3B). The remainder of the dorsal genes were affected

to a lesser extent.

Since Nkx6.1 is expressed with Nkx2.2 in p3 cells, as well as in

pMN and FP cells (Briscoe et al., 2000; Sander et al., 2000), we

hypothesized that it might cooperate with Nkx2.2 in the repres-
Develo
sion of dorsal gene expression programs. We constructed addi-

tional cell lines that allow the inducible expression of either

Nkx6.1 (ESC-iNkx6.1) or Nkx2.2 and Nkx6.1 together (ESC-

iNkx2.2-2A-Nkx6.1 and ESC-iNkx6.1-2A-Nkx2.2) (Figure S2).

Induction of Nkx6.1 alone in iNPC-D cells led to the downregula-

tion of a further �12% of dorsally expressed progenitor genes

(Figure 3B). By contrast, co-induction of Nkx2.2 and Nkx6.1

led not only to a more pronounced inhibition of genes that

were repressed by Nkx2.2 alone, but also to the downregulation

of an additional set of NPC-D genes (Figure 3B). This indicates

that these NP-TFs act in a complementary manner. In total,

almost 90% of the combined gene expression programs of dor-

sal domain progenitors were repressed (Figure 3B). The binding

of Nkx2.2 and Nkx6.1 was significantly enriched around genes

that were inhibited by expression of Nkx2.2 and/or Nkx6.1 (Fig-

ures 3C and 3I), in line with a direct repressive activity at these

genes. This implies that domain-specific gene expression pro-

grams are installed by a repressive mechanism directly acting

on all genes specific for alternative fates.

A corollary of this is that to protect domain-specific gene

expression, an NP-TF must repress not only the NP-TFs ex-

pressed in adjacent progenitor domains, but NP-TFs of all other

domains. Systematic analysis of the effects of forced Nkx2.2 and

Nkx6.1 expression confirmed that this is the case: in addition to

Pax6 and Olig2, Nkx2.2 together with Nkx6.1 repressed Irx3/5,

Dbx1, Pax3/7, and Msx3 NP-TFs expressed in dorsal progenitor

domains (Figure 3D) (Alaynick et al., 2011). Moreover, the repres-

sion of all transcriptional determinants prevents the indirect

upregulation of NP-TFs from non-adjacent domains that would

otherwise result from the serial repression of only the NP-TFs

in adjacent domains. Consistent with this, ectopic expression

of a subset of non-adjacent dorsally expressed NP-TFs has

been documented in the p3 domain of embryos lacking Nkx6.1

(Sander et al., 2000).

Olig2 Substitutes for Nkx2.2 in MN Progenitors
The broad repression of inappropriate-domain transcriptional

programs by NP-TFs implies that each domain-specific gene

must be repressedbyNP-TFs frommultiple domains. The repres-

sion by Nkx2.2 of genes normally restricted to dorsal neural pro-

genitors raises the question of how these genes are repressed

in the pMN domain (where Nkx2.2 is not expressed). We asked

whether the pMN NP-TF Olig2 substituted for Nkx2.2. We con-

structed a cell line that allows the inducible expression of Olig2

(ESC-iOlig2) (Figure S2). Induction of Olig2 in iNPC-D cells down-

regulated expression of 56% of dorsal genes, including genes

specific for non-adjacent dorsal domains that are repressed by

Nkx2.2 in p3 progenitors (Figure 3G). Consistent with a direct

repressive role, analysis of the genomic locations of Olig2 binding

indicated that it is associated with a large proportion of dorsal-

specific genes (Figure 3H). Despite their different DNA-binding

specificities (Figure S1B), inmany casesNkx2.2 andOlig2 appear

to occupy the same CREs to repress the dorsal genes (Table S4

and Figure 3I). Thus, to repress domain-inappropriate gene

expression programs Nkx2.2 and Olig2 appear to act in part

through shared CREs. This contrasts with Nkx6.1 and Nkx2.2,

for which only 11% of CREs associated with dorsal genes

repressed in p3 that are bound by Nkx2.2 are also occupied by

Nkx6.1 (Table S4 and Figure 3I).
pmental Cell 36, 639–653, March 21, 2016 ª2016 The Authors 643



Figure 3. Nkx2.2, Nkx6.1, and Olig2 Repress Genes of Non-adjacent Progenitors

(A–D) Nkx2.2 together with Nkx6.1 repress non-adjacent dorsal identities. (A) Schematic of the experimental rationale. To test the activity of Nkx2.2 and Nkx6.1 in

non-adjacent progenitor domains, ectopic Nkx2.2 (n22), Nkx6.1 (n61), or Nkx2.2 and Nkx6.1 (n22 + n61) were induced in iNPC-D cells and their transcriptomes

compared with iNPC-D and iNPC-p3 cells. (B) Analysis of the transcriptomes of iNPC-D cells after ectopic induction of Nkx2.2 and/or Nkx6.1 indicated the

repression of subsets of genes normally characteristic of dorsal progenitors. Genes characteristic of dorsal progenitors are defined as ‘‘dorsal’’ (blue) in Figure 1D.

These were selected using the criteria of higher expression levels in dorsal progenitors compared with p3 and pMN cells at 36 hr. The induction of Nkx2.2 alone

was sufficient to repress many of these genes; induction of Nkx6.1 repressed a smaller, partially overlapping subset of genes; the combination of Nkx2.2 and

Nkx6.1 repressed the majority of iNPC-D-specific genes. See also Table S1, sheet 3B. (C) ChIP-seq data indicate that binding of Nkx2.2 and Nkx6.1 is enriched

next to many of the iNPC-D genes repressed by Nkx2.2 and/or Nkx6.1 compared with genes that are not differentially expressed in neural progenitors. **p(c2) <

0.001. *p(c2) < 0.01. n.s, non-significant. (D) Analysis of a subset of NP-TFs specific for distinct dorsal domains (see adjacent diagram). Nkx2.2 and/or Nkx6.1

repress these NP-TFs. In some cases both Nkx2.2 and Nkx6.1 repress expression in iNPC-D cells. However, Nkx6.1 but not Nkx2.2 repress Pax3, whereas

Nkx2.2 but not Nkx6.1 repress Irx3, Irx5, and Pax6. *padj < 0.05.

(legend continued on next page)
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Repressor Activity of NP-TFs Is Sufficient for Patterning
Activity
Nkx2.2 and some of the other NP-TFs can negatively regulate

transcription through their interaction with Groucho/TLE-depen-

dent transcriptional co-repressors (Muhr et al., 2001). To test

whether repressor activity is sufficient to specify fully progenitor

identity, we constructed an ESC line that inducibly expressed

a chimeric protein consisting of the Nkx2.2 DNA-binding home-

odomain fused to a well-characterized but unrelated Groucho/

TLE-binding repressor domain (Muhr et al., 2001) (derived

from the Drosophila Engrailed protein) — ESC-iNkx2.2HD-

EnR (Figure S2). Expression of this protein in either iNPC-D or

iNPC-pMN cells was sufficient to downregulate domain-specific

programs and activate the p3 program (Figures 4B and 4C),

mimicking the effect of the full-length protein. Thus, at least in

the case of Nkx2.2, repressor function is themajor, and probably

only, activity necessary for establishing domain-specific gene

expression program.

Strikingly, however, we detected binding of Nkx2.2 associated

with genes that are expressed in the p3 domain (Figure 1E). If

Nkx2.2 acts as a repressor, why are these genes not repressed?

Due to theprogressive andasynchronousdifferentiation of neural

progenitors (Kicheva et al., 2014) this binding could correspond

to the highly dynamic genesmarking the small population of cells

in transition from progenitor to postmitotic state. Thus, a fraction

of the genes identified as ‘‘p3’’ may be actively repressed in pro-

genitors but de-repressed on neuronal differentiation. Alterna-

tively, it is possible that Nkx2.2 functions as a repressor of genes

that are expressed in p3progenitors, but this repressive activity is

overpowered by positive inputs. To investigate this, we focused

on a subset of genes that are repressed in pMN but expressed

at some level in p3 but at higher levels in FP, which at 36 hr has

reduced levels of Nkx2.2 compared with p3 (Table S1, sheet

1D, Figure S3A). As expected, ectopic induction of Nkx2.2 in

pMNmarkedly increased the level of expression of these genes,

consistent with the ability of Nkx2.2 to promote a p3 identity (Fig-

ure 5B). By contrast, however, in FP cells instead of further boost-

ing their expression, as would be expected if Nkx2.2 functioned

as an activator of these genes, induction of Nkx2.2 attenuated

the expression of almost half of these genes (44%) (Figures 5B),

and 72% of the downregulated were associated with Nkx2.2

binding (Figure 5C). This suggests Nkx2.2 represses a subset

of p3 genes, albeit incompletely, and that this repression is over-

come by activatory input in p3 cells. Consistent with weaker, but

detectable, repressive effect of Nkx2.2 on p3 genes, forced
(E–G) Olig2 represses dorsal neural progenitor genes in pMN cells. (E) Schem

repression of dorsal genes in pMN progenitors, Olig2 was ectopically induced in

progenitors. (F) Heatmap comparing the transcriptomes of iNPC-D, iNPC-pMN, an

repressed in pMNprogenitors. See also Table S1, sheet 3F. (G) Comparison of the

induced. Olig2 is sufficient to downregulate 56% of the dorsal genes normally re

(H) ChIP-seq analysis confirms that Olig2 binds next to 56% of the dorsal gene

significant.

(I) Examples of ChIP-seq tracks for Nkx2.2 (top), Nkx6.1 (middle), and Olig2 (bot

Olig2 bind to multiple intronic CREs of Gli3. Nkx2.2, Olig2, and Nkx6.1 bind to int

Two clusters of genes repressed cooperatively by Nkx2.2 and Nkx6.1 are bound

their vicinity, whereas the other NP-TFs bind further away, separated by severa

progenitors. Thus, genes repressed strongly by Nkx2.2 and weakly by Nkx6.1 see

require both Nkx2.2 and Nkx6.1 for full repression are regulated through exclus

regulatory elements controlling expression of dorsal genes. *padj < 0.05.

Develo
expression of Nkx2.2 repressed genes characteristic of FP/p3

identity to a lesser extent than genes specific of dorsal or pMN

progenitors (Figure 5D).

Analysis of Olig2 genomic occupancy also revealed binding

associated with genes expressed in the pMN domain (Figure 1E).

Even thoughOlig2 repressesdorsalandp3genes topromotepMN

gene expression (Balaskas et al., 2012; Mizuguchi et al., 2001;

Novitch et al., 2001; Zhou et al., 2001), inducing Olig2 expression

in iNPCs exposed to Shh did not increase the expression of pMN-

specific genes, asmight be expected (Figure 5F). On the contrary,

it further reduced the expression of a large fraction (63%) of genes

normally expressed in pMNprogenitors, implying that Olig2 nega-

tively regulates their expression. These included both pMN-spe-

cific genes (Figure 5F) and genes expressed in multiple ventral

domains (Figure 5G), such as Nkx6.1 and Nkx6.2. Eighty percent

of the downregulated genes were bound by Olig2 (Figure 5H).

Taken together these data suggest that the sole presence of

a repressor is not sufficient to predict whether a gene will be

repressedornot. Instead, thecombinationofpositiveandnegative

inputsmustdetermine the responseof a gene. In thisway agene is

expressed in domains where the activatory inputs dominate the

repressive ones. Moreover, the data further imply that the levels

of some NP-TFs (e.g., Olig2) must be kept under tight control to

allow for the expression of domain-specific genes. Accordingly,

Olig2 transcription has been reported to oscillate (Imayoshi

et al., 2013), providing a mechanism to yield low protein levels.

Repressive Activity of NP-TFs Is Integrated with Broadly
Acting Positive Inputs
If NP-specific TFs act only as repressors, how are neural progen-

itor genes activated? We focused on the expression of genes

specific for ventral domains, and asked whether morphogen

signaling, in the form of Shh-induced Gli activity, might directly

promote their expression. Using our gene expression data as a

reference (FigureS4A),we reanalyzed thebindingofGli1 in neural

progenitor cells (Peterson et al., 2012). Strikingly, direct Gli bind-

ing was detectable and highly enriched at a large fraction of

genes thatwere upregulated in p3, pMNand early FP progenitors

(Figure 6B). The directly bound genes comprised not only ventral

NP-TFs, but 73% of the genes upregulated rapidly by Shh expo-

sure and 46% of those that respond on a slower timescale. By

contrast, only 11% of dorsal domain-specific genes, which are

downregulated in response to Shh, were associated with direct

Gli binding (Figure 6B). In addition to Gli proteins, SoxB proteins,

which are expressed in all progenitor cells, have been suggested
atic of the experimental rationale. To test whether Olig2 contributed to the

iNPC-D cells and the transcriptomes of these cells compared with iNPC-pMN

d iNPC-p3 cells. Most of the dorsal genes that are repressed in p3 cells are also

transcriptomes of iNPC-D and iNPC-pMNwith iNPC-D in whichOlig2 had been

pressed in pMN at 36 hr. See also Table S1, sheet 3G.

s downregulated in pMN and repressed by Olig2. **p(c2) < 0.001. n.s., non-

tom) for the Nkx2.2 and/or Nkx6.1 and/or Olig2 repressed genes. Nkx2.2 and

ronic CRE of Scube2. Nkx6.1 binds two intergenic enhancers to repress Pax3.

by either Nkx2.2 (Hes3 and Gpr153) or Nkx6.1 (Klhl14 and 4930426D05Rik) in

l genes that are either not expressed or not differentially regulated in neural

m to be regulated through partially shared CREs (Scube2), whereas genes that

ively separate CREs (Table S4). Note also that Nkx2.2 and Olig2 often share

pmental Cell 36, 639–653, March 21, 2016 ª2016 The Authors 645



Figure 4. Regulation of Gene Expression Programs by NP-TFs Is

Mediated by Repression

(A–C) Nkx2.2 represses dorsal and pMN genes to induce p3. (A) Experimental

rationale: to test whether repression of dorsal and pMN genes by Nkx2.2 is

sufficient to allow the de-repression of p3-specific genes, a dominant inhibi-

tory version of Nkx2.2 (n22R) was induced in iNPC-D or iNPC-pMN cells and

the resulting transcriptome changes analyzed. (B) Nkx2.2HD-EnR is sufficient

to repress a large fraction of dorsal and pMN genes and to induce p3 identity.

Three groups of genes defined in Figure 1D were analyzed: ‘‘dorsal’’ genes

(blue) that were expressed higher in iNPC-D than iNPC-p3 or iNPC-pMN,

‘‘pMN’’ genes (red) that were expressed higher in iNPC-pMN than iNPC-p3,

and ‘‘p3’’ genes (green) expressed at higher levels in iNPC-p3 than iNPC-D

or iNPC-pMN, expressed in p3 only or in p3 and FP progenitors. The boxplots

correspond to the normalized expression levels of these genes in each of

the conditions. A large fraction of dorsal and pMN genes was repressed in d +

n22R and pMN + n22R cells. Conversely, a large fraction of p3 genes were

induced in these progenitors, similar to the progenitors generated by ectopic

induction of Nkx2.2 (d + n22, pMN + n22) or Nkx2.2 and Nkx6.1 (d + n22n61).

(C) Consistent with B, Nkx2.2 and Nkx2.2HD-EnR induced a p3 gene signature

when overexpressed in dorsal or pMN cells. Cross-correlation of dorsal and p3

genes (Pearson’s correlation coefficient) between iNPC-D, iNPC-p3, and

iNPC-D cells in which Nkx2.2, Nkx6.1, Nkx2.2/Nkx6.1, or Nkx2.2HD-EnR had

been induced indicate that Nkx2.2HD-EnR induces a transcriptome signature
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to act as positive regulators of neural expressed genes (Bailey

et al., 2006; Bergsland et al., 2011; Oosterveen et al., 2012,

2013; Peterson et al., 2012). Consistent with this role, we

also detected Sox2 binding next to both dorsally and ventrally

expressed genes (Figure 6C). These data suggest that Shh

signaling, togetherwith broadly expressed transcriptional activa-

tors, directly activate the bulk of the genes that comprise the

transcriptional programs of ventral progenitor domains. This in-

cludes the identity-defining NP-TFs that directly repress genes

and domain-specific TFs belonging to the alternative fates.

Consistent with this, early and intermediate pMN genes are

simultaneously activated in both p3 and pMN conditions and

then repressed in p3 by Nkx2.2 at 24 hr (Figure 6D).

To investigate how the positive input is integrated with the

repressive activity of NP-TFs we focused on several previously

tested CREs associated with ventral NP-TFs (Nkx2.2, Olig2,

Nkx6.1, Nkx6.2) (Oosterveen et al., 2012, 2013; Peterson et al.,

2012). Binding of Sox and of Gli proteins to these CREs have

been demonstrated and implicated in their activation. The

domain-restricted activity of these CREs has been attributed to

NP-TFs. Consistent with this prediction, binding of one or more

NP-TFs was observed on each of the CREs (Figures S5A–S5D)

and the binding negatively correlated with the activity of the

enhancer. Similar to other developmental systems (Barolo,

2012; Levine, 2010), both negative and positive inputs regulating

the expression of a gene appeared distributed over multiple

CREs and often redundant. Accordingly, analysis of the locations

of Gli1, Nkx2.2, Olig2, Nkx6.1, and Sox2 binding suggested that

most Shh-regulated genes (60%) were associated with three or

more distinct CREs. Despite the large fraction of Shh-induced

genes bound by Gli1 that were associated with Sox2 binding

(63%), there was only limited co-occupancy of Gli and Sox at

the same CRE (�20% of genes and CREs bound by Gli1, Fig-

ure S5A). Most (88%) of Shh-regulated genes that associate

with Sox2/Gli1 or Sox2 binding were also associated with the

binding of an NP-TF repressor. However, only 40% of the Sox2-

or Gli1-bound CREs were also bound by one or more of the NP-

TFs and only 22% of NP-TF-bound elements were associated

with activator binding (Figures S4B and S4C). Consistent with

redundant regulation, for half of genesassociatedwith thebinding

of anNP-TF therewere twoormoreCREsboundby the samepro-

tein. Taken together, therefore, these data suggest a mechanism

in which the response of a gene is determined by multiple and

probably partially redundant CREs that integrate the repressive

activity of NP-TFswith the broad activity ofmorphogenmediators

and transcriptional activators. This provides a means to interpret

morphogen input and select a single and appropriate progenitor

identity for the position in the neural tube.

DISCUSSION

The mechanistic strategies of the transcriptional network under-

lying neural progenitor differentiation have been proposed from

genetic manipulations of specific genes and CREs (Oosterveen

et al., 2012, 2013; Peterson et al., 2012). Here, by combining
similar to p3 cells. Similar cross-correlations of gene expression in pMN and

p3 progenitors indicate that the induction of Nkx2.2 and Nkx2.2HD-EnR

induce a p3 signature in iNPC-pMN.
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Figure 5. Gene Regulation Is Combinatorial

Genes are expressed where positive inputs overcome repressive inputs.

(A) Nkx2.2 directly attenuates expression of a subset of p3 genes. Nkx2.2 was induced in FP (9 hr) and pMN (12 hr) cells. The expression of genes expressed

higher in FP > p3 [ pMN/dorsal (FP/p3, green arrow and Table S1, sheet 1D) was examined at 36 hr.

(B and C) Nkx2.2 represses 44% of genes expressed higher in FP than p3 when expressed in FP cells (B) and binds in their proximity (C, 73%, **p(c2) < 0.001).

Compare FPwith FP + n22 and p3. At the same time, Nkx2.2 indirectly promotes expression of these genes when expressed in pMN cells (B). Compare pMNwith

pMN+ n22 and p3. This suggests that these genes are repressedmore efficiently by Olig2/Pax6 NP-TFs in pMN than by Nkx2.2 in p3. Replacement of Olig2/Pax6

by Nkx2.2 in p3 results in their induction by allowing the activatory inputs to dominate the repression.

(D) Nkx2.2 represses FP/p3 genes less strongly than it represses dorsal and pMN genes. The fold repression of genes defined as Nkx2.2-repressed (Figures 3B,

2B, and 5B) after the induction of Nkx2.2 in 36-hr dorsal/dorsal + Nkx2.2 (‘‘dorsal’’), 36-hr pMN/pMN+Nkx2.2 (‘‘pMN’’), 36-hr FP/FP +Nkx2.2 (FP > p3[ pMN/d

genes, ‘‘FP/p3’’). Note that FP/p3 genes are repressed to a lesser extent than the other classes.

(E) Olig2 levels must be low to allow expression of pMN genes. Ectopic expression of Olig2 results in rapid and direct downregulation of most genes induced in

pMN progenitors, including Olig2 itself, Nkx6.1 and Nkx6.2 NP-TFs.

(F) High levels of Olig2 repress pMN genes. Olig2 expression was induced in p3 cells at 12 hr and the expression of pMN-specific genes (genes expressed higher

in pMN compared with both p3 and dorsal, pMN > d, red arrow and Table S1, sheet 1D) were analyzed at 24 hr. Compare p3 with p3 + o2. 64% of the genes were

downregulated by Olig2, the majority (75%) was associated with Olig2 binding (H, **p(c2) < 0.001).

(G) Olig2 expression was induced in p3 cells at 12 hr and the expression of genes induced by Shh in both p3 and pMN was analyzed at 24 hr. 62% of the ventral

genes were downregulated by Olig2, the majority (82%) were associated with Olig2 binding (H, **p(c2) < 0.001).
genome-wide RNA-seq and ChIP-seq analyses with targeted

perturbation experiments, we test these ideas and provide evi-

dence for a ‘‘selection by exclusion’’ mechanism that specifies

a particular progenitor subtype identity from multiple permitted

choices. This confirms and extends previous proposals (Bailey

et al., 2006; Bergsland et al., 2011; Lee and Pfaff, 2001; Lee

et al., 2004; Muhr et al., 2001; Oosterveen et al., 2012, 2013; Pe-

terson et al., 2012) and is consistent with recent results reported

in a parallel study (Nishi et al., 2015). Together the data reveal

four design features of the GRN. First, activating inputs in the

network are promiscuous, with broadly active morphogen medi-

ators and transcriptional activators promoting the transcriptional

programs of multiple progenitor domains (Figure 6) (Bailey et al.,

2006; Bergsland et al., 2011; Oosterveen et al., 2012, 2013; Pe-

terson et al., 2012). Second, specific cell identity is determined
Develo
by a network of transcriptional repressors, which form a densely

connected network, assuring that cells select a single definitive

identity by repressing all inappropriate cell fates (Figures 2, 3,

and 4) (Bailey et al., 2006; Lee and Pfaff, 2001; Lee et al.,

2004; Muhr et al., 2001; Novershtern et al., 2011; Oosterveen

et al., 2012, 2013; Peterson et al., 2012). Third, specification of

identity requires not only repression of the ‘‘master regulator’’

TFs (NP-TFs) of other progenitor domains but also the direct

repression of the ‘‘effector’’ genes expressed in other progenitor

domains. Finally, the regulatory input into many target genes ap-

pears highly combinatorial and distributed over multiple CREs.

Activators Are Broad-Ranging and Promiscuous
In several developmental systems, transcriptional determinants

have been identified that provide a tissue-specific platform for
pmental Cell 36, 639–653, March 21, 2016 ª2016 The Authors 647



Figure 6. Shh via Gli and Sox2 Provide Direct Positive Input Into the

Expression of Ventral Genes

(A) Experimental rationale: to test whether Shh directly provided the positive

input into the transcription of ventral genes, Gli1 binding (Peterson et al., 2012)

was analyzed with respect to genes induced and repressed by Shh signaling.

To test whether the pan-neural TF Sox2 provided direct input into transcription

of neural progenitor genes, Sox2 binding was analyzed with respect to genes

expressed in ventral and dorsal domains.

(B) 73% of the genes upregulated by Shh at 12 hr and 46% of those upre-

gulated at 24 hr in ventral progenitors (Figure S4A and Table S1, sheet S4)

are associated with binding of Gli1. By contrast, few of the dorsal genes,

repressed by Shh signaling, in p3 and/or pMN are associated withGli1 binding.

**p(c2) < 0.001, n.s, non-significant.

(C) Sox2 binds close to the majority of both ventral (induced by Shh in p3 or

pMN at 12 or 24 hr) and dorsal (repressed by Shh in p3 or pMN at 24 hr) genes.

**p(c2) < 0.001, *p(c2) < 0.005. See also Figures S4B and S4C.

(D) Median expression levels of early and intermediate pMN genes (genes

expressed higher in pMN than p3, see Figure 2D) in pMN cells (red line) and p3

cells (green dotted line). The lines represent the median values of the indicated

groups of genes and the error bars correspond to the 10th and 90th percentile

values of each group. Note that the pMN genes are induced in both pMN and

p3 cells simultaneously and they are only repressed in p3 later, at the time
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the binding of signal mediators that activate cell type-specific

gene expression programs (Heinz et al., 2010; Mullen et al.,

2011; Trompouki et al., 2011). In neural progenitors, the com-

bined binding of Sox TFs together with morphogen effectors

have been proposed to activate expression of neural specific

CREs and associated genes (Bailey et al., 2006; Oosterveen

et al., 2012, 2013; Peterson et al., 2012; Wijgerde et al., 2002).

We found that in addition to ventral NP-TFs, Sox2, and Gli1

(Peterson et al., 2012) were associated with most genes ex-

pressed in specific ventral domains. These included genes

with ‘‘effector’’ functions, such as cell adhesion molecules and

secreted factors. This suggests that Shh signaling together

with broadly expressed activators directly activates the entire

ventral progenitor programs (Bailey et al., 2006; Oosterveen

et al., 2013). Sox2, but not Gli1, also bound to many of the genes

characteristic of dorsal and intermediate progenitor domains,

consistent with the idea that Sox2 provides a direct pan-neural

activating input that regulates these genes in combination with

other morphogen effectors (Bailey et al., 2006; Bergsland

et al., 2011; Oosterveen et al., 2012, 2013). Thus, pan-neural

TFs and morphogen effectors appear to directly activate the

entire gene repertoire of neural progenitor domains by binding

most genes expressed in specific progenitor subtypes. How-

ever, in contrast to predictions from in silico approaches (Oos-

terveen et al., 2013), we observe only partial overlap between

Gli1 and Sox binding indicating that the two TFs might function

through independent CREs to activate gene expression.

Both NP-TFs and Effector Genes Are Directly Repressed
The positioning of morphogen sources provides a spatial and

temporal bias that influences neural tube patterning. Neverthe-

less, the precise arrangement and allocation of progenitor iden-

tity is dependent on the cross-repressive activity of NP-TFs

expressed in adjacent domains (Balaskas et al., 2012; Briscoe

et al., 2000; Cohen et al., 2014; Ericson et al., 1997; Sander

et al., 2000; Vallstedt et al., 2001). Here we provide evidence

that, in addition to cross-repressive activity between transcrip-

tional determinants of adjacent progenitor domains, all genes

corresponding to the alternative fate must be repressed (Fig-

ure 6E). Thus, to install the p3 program in progenitor cells,

Nkx2.2 acting exclusively as a repressor (Figures 4A–4C) (Muhr

et al., 2001), binds and inhibits genes encoding both NP-TFs

and ‘‘effector’’ genes specific to alternative progenitor identities.

This repressive activity is necessary to counter-balance the acti-

vatory function provided by broadly expressed activators and
Nkx2.2 (gray dotted line) is activated at 24 hr. This suggests the common

activatory inputs in p3 and pMN domains. 56% of intermediate genes are

induced by Shh and 67% of them are bound by Gli1.

(E)Model summary. Four design features of the neural tube GRN. First, broadly

expressed and promiscuous activating inputs frommorphogen mediators and

other transcriptional activators promote the transcriptional programs of mul-

tiple progenitor domains (A, B, C). Second, specific cell identity is determined

by a network of transcriptional repressors (TF-A, TF-B, TF-C), these ensure

cells select a single identity by repressing all inappropriate cell fates. Third, the

repressors directly inhibit the expression of not only other repressors, but all

the ‘‘effector’’ genes specific for other progenitor domains. This counteracts

the direct positive inputs into all genes. Finally, the regulatory input into target

genes is combinatorial and it is the integration of multiple, sometimes con-

flicting, inputs that determines cell identity.
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mediators of morphogen signaling that bind to the same genes

(Lee and Pfaff, 2001; Lee et al., 2004; Muhr et al., 2001; Oos-

terveen et al., 2012, 2013; Peterson et al., 2012). The segregation

of repressor and activator functions negates the requirement for

an NP-TF to act simultaneously as an activator for genes in its

own domain and a repressor of adjacent domain genes.

The idea that NP-TFs act solely, or predominantly, as repres-

sors is supported by the induction of a subset of pMN genes pre-

ceding the expression of Olig2, thus excluding a role for the

pMN-defining NP-TF in activating these genes. Moreover, the

pMN genes induced at early times are induced in both p3 and

pMN cells and only later repressed in p3 by Nkx2.2, supporting

the involvement of a common p3-pMN activators in their in-

duction. Finally, Nkx2.2 and Olig2 bind and negatively regulate

the expression of a subset of the genes expressed in their own

domains. Although counter-intuitive, this suggests that NP-TFs

decrease the expression of some of the genes with which they

are coexpressed (see below).

The GRNs of other morphogen-patterned tissues appear to

operate with similar principles. For example, to pattern the ante-

rior-posterior axis of the Drosophila blastoderm, the graded TF

Bicoid together with broadly expressed TF activators such as

Zelda and STAT92E (Tsurumi et al., 2011; Xu et al., 2014) provide

positive input to many target genes. Combinations of Gap-gene

TFs selectively and directly repress subsets of these target

genes to restrict expression to the appropriate domains (Chen

et al., 2012; Surkova et al., 2008). Similarly along the dorsal-

ventral axis of the blastoderm widely expressed activators

and repressors, combined with domain-specific transcriptional

determinants, are responsible for generating and positioning

boundaries (Liang et al., 2012; Ozdemir et al., 2014; Reeves

et al., 2012; Rushlow and Shvartsman, 2012). Hence combining

broadly acting transcriptional determinants with a selective

repressor-driven transcriptional network appears to be a com-

mon strategy for the allocation of cell identity in developing

tissues.

Combinatorial and Direct Repression of Multiple Cell
Identities
The presence of broadly expressed activators inducing multiple

distinct progenitor programs, implies that specific NP-TFs must

repress several inappropriate cellular identities. Accordingly, we

provide evidence that the p3 determinants Nkx2.2 and Nkx6.1

directly repress not only the adjacent pMN identity but also

non-adjacent intermediate/dorsal transcriptional programs.

This prevents the indirect induction of any discordant gene

expression that would otherwise result from repressive interac-

tions solely between NP-TFs of adjacent domains. For example,

Olig2 represses Irx3 to define the pMN/v2 boundary (Mizuguchi

et al., 2001; Novitch et al., 2001) and, even though Nkx2.2 re-

presses Olig2 to define the p3/pMN boundary (Novitch et al.,

2001), Irx3 remains repressed in the p3 domain (Alaynick et al.,

2011; Lovrics et al., 2014). Consistent with the direct repression

of Irx3 by Nkx2.2 (Table S4), Irx3 expression expands ventrally in

theOlig1/Olig2mutant but does not cross the dorsal boundary of

the p3 domain (Zhou and Anderson, 2002).

The NP-TFs expressed in a domain appear to act combinato-

rially to repress alternative fates. For example, ectopic expres-

sion of non-adjacent dorsally expressed NP-TFs, notably Dbx2
Develo
and Gsh1 (Gsx1), has been documented in the p3 domain of em-

bryos lacking Nkx6.1 (Sander et al., 2000) despite the continued

expression of Nkx2.2 in p3 cells. This indicates that Nkx6.1 alone

or in combination with Nkx2.2, represses Dbx2 and Gsh1.

Conversely, genes specific for alternative fates are repressed

independently in each domain by the combination of NP-TFs ex-

pressed in the specific progenitors. In the pMN domain, Olig2

appears to substitute for the repressor function of Nkx2.2;

it binds and inhibits expression of many dorsal genes that are

repressed in both pMN and p3 domains. Dbx2 and Gsh1 are

not induced in pMNof Nkx6.1mutants, suggesting Olig2-repres-

sive activity alone is sufficient to block their expression (Sander

et al., 2000). Similarly, analysis of a CRE associated with the

Nkx6.1 gene, the activity of which is normally restricted to ventral

p3-p2 domains, indicates it is independently repressed in the

adjacent p1 domain by Dbx family members and in non-adjacent

dorsal domains bymembers of theMsx family (Oosterveen et al.,

2012). These factors bind to separate sites within the element

(Oosterveen et al., 2012).

The combinatorial and independent nature of the gene-regula-

tory mechanism is emphasized by the observation that the

NP-TFs bind and negatively regulate expression of many genes

with which they are coexpressed. This seemingly paradoxical

observation suggests that Boolean models that rely solely on

the presence or absence of a repressor or activator will not

be sufficient to fully describe developmental gene regulation.

Instead the response of a gene must depend on the number

and function of activators (both ubiquitous andmorphogen regu-

lated) and repressors (ubiquitous and NP-TFs), their respective

arrangement and interactions within a CRE, as well as the num-

ber, function, and configuration of CREs associated with the

gene. For example, Nkx2.2 binds close to and represses a sub-

stantial number of genes that are induced in p3 (Figures 5B and

5C). Nevertheless, when expressed in pMN cells, Nkx2.2 pro-

motes the expression of these genes. This apparently contradic-

tory result can be explained if the pMN determinants Olig2/Pax6

repress p3 genes more efficiently than Nkx2.2. Hence, the

absence of Olig2 and Pax6 in p3 results in the induction of p3

genes by allowing activatory inputs to dominate the weaker

repression provided by Nkx2.2. It is notable that Nkx2.2 and

Olig2 appear to use different molecular mechanisms to repress

gene expression: Nkx2.2 acts as Groucho-dependent repressor,

but Olig2 lacks the Groucho-interacting domain (Lee and Pfaff,

2001). This difference, combined with the partially distinct sub-

sets of CREs regulating these genes, could contribute to the dif-

ference in the target genes repressed in the two progenitor cell

types.

In this view, the NP-TFs together with the positive inputs form

a densely interconnected network (Novershtern et al., 2011) that

determines the response of a gene. In progenitors in which a

gene is expressed, the activatory inputs must dominate the

negative inputs provided by the transcriptional repressors pre-

sent in a cell. Each gene is likely to employ a different combina-

tion of strategies to overcome repression and a gene active in

multiple domains might employ different strategies in each

domain to escape repression by different sets of repressors.

This is illustrated by the activity of two CREs associated with

the Nkx6.1 gene (Figure S5). The gene is expressed broadly

throughout the fourmost ventral domains, but the two enhancers
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(�540 and �140 kb) are active only in distinct subsets of these

domains depending on the nature of NP-TF bound to the partic-

ular element (Peterson et al., 2012). This mechanism, relying on

gene-specific escape from repression (and therefore abrogating

the need for domain-specific activation), has the potential to

provide flexibility to the system. It might allow fine-tuning of

the level of target gene expression and hence the possibility

of generating more than one discrete level of expression (as

observed for genes expressed in multiple progenitor domains).

Mechanisms constructed with broad activation and densely

connected networks of specific cross-repression readily pro-

duce the multistability necessary for stripes of gene expression.

The non-contiguous stripes of reporter activity produced by

Nkx6.1 –140-kb enhancer that integrates broad activatory inputs

and domain-specific repression illustrates this (Figure S5). More-

over, the mechanism could offer a way to modify the GRN during

the course of evolution (Wittkopp and Kalay, 2012) in order to

interpret different combinations of extracellular signals or to

introduce or eliminate specific cell identities.

Regulation Is Distributed over Multiple CREs
Despite the broad correlation between TF binding and CRE

activity, single CREs rarely fully reflect the activity of a spe-

cific gene (Barolo, 2012; Levine, 2010). The identification of

‘‘shadow’’ enhancers (Hong et al., 2008) and data from chro-

matin interactome analyses suggest that multiple CREs often

regulate expression of a single gene (Cannavò et al., 2016;

Ghavi-Helm et al., 2014; Sanyal et al., 2012; Zhang et al.,

2013). Analysis of the data from neural progenitors supports

this view. Multiple distal CREs are found associated with most

target genes. Moreover the inputs that control the expression

of a gene in a specific progenitor type often appear to operate

through distinct CREs. Thus, for example, Nkx6.1 which acts

together with Nkx2.2 to repress genes discordant with p3 iden-

tity, shares only �11% of its CREs with Nkx2.2 even though

61% of the genes associated with Nkx2.2 occupancy are also

bound by Nkx6.1.

By contrast, Olig2 and Nkx2.2, which are not expressed in

the same progenitor types, share a substantial number of

CREs. This is especially evident with dorsal genes repressed in

both p3 and pMN domains; in these cases 53% of Nkx2.2 bind-

ing coincided with Olig2 binding. Thus, Nkx2.2 and Olig2 use a

set of common CREs to maintain the exclusion of inappropriate

gene expression. Hence during the progressive establishment of

pattern in the ventral neural tube (Dessaud et al., 2007; Jeong

and McMahon, 2005), the induction of Nkx2.2, which represses

Olig2, will be accompanied by the replacement of Nkx2.2 on

CREs previously occupied by Olig2. The two TFs favor distinct

DNA-binding motifs (Figure S1B), and in the majority of shared

CREs these motifs are not in close proximity. Thus, the two

TFs would, in principle, be able to bind simultaneously to the

same CREs and thus ensure the continued repression of inap-

propriate gene expression during the transition in cell identity.

The NP-GRN and Interpretation of Signaling Gradients
The independent repression of progenitor-specific transcrip-

tional programs by multiple NP-TFs specific for alternative fates

is consistent with the instructive role of the transcriptional

network in establishing the differential response of genes to
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morphogen signaling (Balaskas et al., 2012; Cohen et al., 2014).

In this model, it is the combinatorial action of NP-TF repressors

present in a cell at a given time that determines the spatial-tem-

poral response of ventral target genes to Shh. This mechanism

also provides an explanation for how cells interpret the tempo-

rally changing levels of Gli activity to produce the observed dy-

namics of neural tube patterning (Balaskas et al., 2012; Cohen

et al., 2014). Initially, Shh blocks the processing of Gli3 into

its repressor form, thus removing this repressive activity from

ventral genes. Later it provides direct positive input to overcome

the repressive activity of NP-TFs. Consequently, in the case of

some genes, such as Ptch1, Nkx6.1, and Nkx6.2, the removal

of the repressor form of Gli3 is sufficient and these genes are

induced rapidly and by low levels of Shh (Litingtung and Chiang,

2000; Persson et al., 2002; Wijgerde et al., 2002). The absence of

Gli repressor in the CREs of these genes is presumably sufficient

to allow Sox2 and perhaps other pan-neural transactivators to

induce the expression (Oosterveen et al., 2012). The dorsal limits

of Nkx6.1 andNkx6.2 are restricted to p1 andp2, respectively, by

repression from Dbx and Msx NP-TFs in the intermediate and

dorsal neural tube (Oosterveen et al., 2012; Vallstedt et al.,

2001). Olig2, which has to overcome repression from both

Gli3R and Irx3 (Novitch et al., 2001; Persson et al., 2002; Sasai

et al., 2014), is induced later and restricted to more ventral do-

mains receiving higher morphogen activity. Olig2 induction is

then followed by Nkx2.2. In the case of Nkx2.2, higher levels

and longer durationsofShh signaling are required toproduce suf-

ficient Gli activator to overcome the repression by Irx3, Pax6, and

Olig2 (which replaces Irx3) (Oosterveen et al., 2012; Balaskas

et al., 2012; Jeong andMcMahon, 2005). A similar rationale could

explain the differential timing of induction of the non-NP-TF pMN

genes (Figure 2D): the genes induced by Shh at 12 hr are acti-

vated following the reduction in Gli3R, whereas genes induced

at 24 hr require induction of Olig2 to repress Irx3.

Taken together, our findings shed light on themolecular mech-

anism and design features of the transcriptional network that

establishes the pattern in the vertebrate neural tube. The regula-

tory links between the repressors in the transcriptional network

provide a mechanism to interpret the dynamic morphogen input

and select the appropriate transcriptional identity for the position

along thepatterning axes (Balaskas et al., 2012;Chenet al., 2012;

Cohen et al., 2014; Manu et al., 2009). Given the similarity in the

operating principles of this system with other developmental

systems, this suggests a general architecture for morphogen-

controlled GRNs that is likely to be relevant for other tissues.

EXPERIMENTAL PROCEDURES

Cell Lines and Neural Progenitor Differentiation

The HPRT locus of EStet-ON cell line was targeted with Tet-responsive trans-

genes allowing inducible expression of mouse Nkx2.2, Nkx6.1, Nkx2.2-2A-

Nkx6.1, Nkx6.1-2A-Nkx2.2, Nkx2.2HD-EnR, and Olig2 cDNAs as described

(Gouti and Gavalas, 2008; Selfridge et al., 1992). EStet-ON-derived cell lines

were maintained on feeders in leukemia inhibitory factor-supplemented me-

dium, containing 15% fetal calf serum. Sox1-GFP ESCs (Ying et al., 2003)

(a gift from A. Smith) were maintained feeder free on gelatin-coated dishes,

in the samemedium. Themonolayer differentiation ismodified fromAndersson

et al. (2006) and Ying et al. (2003) and described in Sasai et al. (2014). For dor-

sal (30RA) or dorsal (300RA) differentiation, 30 or 300 nM RA (Sigma R2526),

respectively, was added to N2B27 medium at day 3. For pMN differentiation,

in addition to 300 nM RA, 1 mg/ml recombinant Shh was added from day 3.5.
thors



For p3 differentiation, in addition to 30 nM RA, 2 mg/ml recombinant Shh was

added from day 3.5. FP progenitors were generated by adding 2 mg/ml Shh

to the N2B27 medium from day 3.5. To induce the expression of NP-TF-Rs,

1 mg/ml doxycycline (Sigma) was added to medium as described in the text.

From day 3, the medium was replaced every 12 hr.

In Ovo Chick Electroporation

In ovo chick electroporation was performed as described. RCAS-Nkx2.2

construct (Briscoe et al., 2000) was used for ventral electroporation of

Nkx2.2. For lateral electroporation of Foxa2 or Foxa2 and Nkx2.2, pCAGGS

expression constructs with full-length mouse Foxa2 (Sasai et al., 2014)

and full length chick Nkx2.2 (Muhr et al., 2001) proteins were used. All animal

experiments were performed under a UK Home Office project license (PPL80/

2528) within the conditions of the Animals (Scientific Procedures) Act 1986 and

approved by the AnimalWelfare and Ethical ReviewPanel of theMRC-National

Institute for Medical Research.

Immunohistochemistry

Immunohistochemistry on neural progenitors and chick sections was per-

formed as described (Sasai et al., 2014). For the list of antibodies, see Supple-

mental Experimental Procedures.

ChIP-Seq

ChIP was performed as described (Kutejova et al., 2008). Briefly, 1–3 3 108

neural progenitor cells (derived from Sox1-GFP line) were crosslinked for

23 min at 4�C with 1% formaldehyde at day 5 (36 hr) of differentiation. Chro-

matin was sonicated using a Bioruptor (Diagenode) to 200- to 500-bp frag-

ments and incubated with 6 mg of rabbit anti-Nkx2.2, rabbit anti-Nkx6.1

(this manuscript), rabbit anti-Olig2 (Millipore AB9610), or goat anti-Sox2

(Santa Cruz sc-17320X) antibodies per 2 3 107 cells, overnight. Immunopre-

cipitated chromatin fragments were purified using protein A or G-coupled

Dynabeads (Life Technologies). The libraries were prepared using standard

Illumina protocols and sequenced on a GAIIx Illumina platform (GeneCore,

EMBL). Following sequencing, 36-bp single-end reads were aligned to

GRCm38 genome assembly using Bowtie (Langmead et al., 2009). MACS

(Zhang et al., 2008) was used to call peaks. Peaks were associated with the

closest genes using CisGenome (Ji et al., 2008). De novo motif search was

performed using Homer (Heinz et al., 2010) and TomTom (Gupta et al.,

2007) was used to search for similar motifs in known datasets. For additional

information, see Supplemental Experimental Procedures and Table S4. The

accession number for the raw sequence data reported in this paper is ENA:

PRJEB7682 (Table S2).

RNA-Seq

Neural progenitors were lysed in Trizol (Life Technologies) at times indicated in

the text and total RNA was purified using RNeasy purification kit (Life Technol-

ogies). The libraries were prepared using Illumina’s TruSeq RNA Sample Prep-

aration Kit v2 and sequenced on Illumina HiSeq 2000. Paired-end reads were

aligned to GRCm38 genome using TopHat (Trapnell et al., 2009), and the num-

ber of reads per feature in Ensembl Genes 77 GTF table were counted using

HTSeq (Anders et al., 2015). The pairwise differential expression analysis

was performed using DESeq (Anders and Huber, 2010). For additional infor-

mation, see Supplemental Experimental Procedures and Tables S1, S3, and

S5, which contain details of gene lists and replicate samples used to generate

specific figure panels. The accession number for the raw sequence data

reported in this paper is ENA: PRJEB7682 (Table S2)
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