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Abstract

Although the “adaptive” strategy used by Escherichia coli has dominated our understanding

of bacterial chemotaxis, the environmental conditions under which this strategy emerged is

still poorly understood. In this work, we study the performance of various chemotactic strate-

gies under a range of stochastic time- and space-varying attractant distributions in silico.

We describe a novel “speculator” response in which the bacterium compare the current

attractant concentration to the long-term average; if it is higher then they tumble persistently,

while if it is lower than the average, bacteria swim away in search of more favorable condi-

tions. We demonstrate how this response explains the experimental behavior of aerobically-

grown Rhodobacter sphaeroides and that under spatially complex but slowly-changing nutri-

ent conditions the speculator response is as effective as the adaptive strategy of E. coli.

Introduction

Movement of Escherichia coli consists of periods of running punctuated by tumbling events

where the bacterium randomly changes direction. This can result in successful chemotaxis

when the probability of initiating a tumble per short time interval (the tumbling rate) is a func-

tion of the concentration of attractant experienced by the bacterium. In the absence of attrac-

tant, an E. coli bacterium has a constant, basal tumbling rate. When the attractant

concentration experienced by the bacterium is increasing, tumbling events become less fre-

quent, so the bacterium has longer runs in the direction of increasing attractant. Conversely,

when the bacterium detects a decreasing attractant concentration, it tumbles more often,

shortening its runs down attractant concentration gradients. In E. coli, this mechanism

involves an excitation pathway, inhibiting tumbling, and an adaptation pathway that methyl-

ates the receptors, decreasing their sensitivity and thereby attenuating the excitation pathway

in the continued presence of attractant. This “adaptive” response allows the bacterium to locate

and stay in regions of high attractant concentration. When attractant concentration plateaus,

the tumbling rate returns to the basal rate, a phenomenon called “perfect adaptation”. A conse-

quence of perfect adaptation is that the response is independent of the absolute concentration

of attractant and depends only on differences in concentration experienced by the bacterium.
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While E. coli has been instrumental for our understanding of chemotaxis, other bacteria

show a considerable variety of chemotactic mechanisms and behaviors [1, 2]. For example,

responses have been identified which show very little adaptation, such as in certain cultures of

Rhodobacter sphaeroides [3]. Furthermore, aerotaxis in E. coli is thought to involve the Aer

receptor which lacks methylation sites [4], suggesting a lack of adaptation. In particular, some

bacteria seem to tumble more in the presence of attractant; this appears to be the case in many

mutant strains, such as aerotaxis [5] and redox taxis [6] in mutated E. coli, aerotaxis in mutated

Salmonella typhimurium [5], and phototaxis in mutated Halobacteria [7]. Interestingly, this

behavior was also found in wild-type, aerobically-grown R. sphaeroides [8]. This response

seems paradoxical, as the bacterium would tend to run in the direction of decreasing attractant

concentration and tumble more when it detects an increase in attractant concentration, lead-

ing to the accumulation of bacteria away from the attractant. In addressing these puzzling

results, Goldstein and Soyer demonstrated the chemotactic efficacy of a non-adaptive

“inverted” response [9, 10]. With this strategy, bacteria respond to the absolute attractant con-

centration, tumbling more and therefore maintaining their position in regions of higher

attractant concentration. Although less effective than the adaptive response, the inverted

response requires only low receptor sensitivity, and could function in the absence of effective

receptors by coupling to the cell metabolism [11]. As we show, there are discrepancies between

the inverted response and the response observed in aerobically-grown R. sphaeroides.
Why do different bacteria exhibit different chemotactic responses? One possible reason is

that different bacteria have evolved for different environments. For example, while E. coli
might be expected to inhabit a resource-rich environment, marine bacteria experience a harsh

environment in which attractant is localized in short-lasting patches [12] with attractant con-

centration inside patches being 3 to 6 orders of magnitude higher than outside [13]. This has

led to a number of marine-specific evolutionary adaptations such as higher running speed in

Pseudomonas haloplanktis [14] and run-and-reverse (as opposed to run-and-tumble) chemo-

taxis in over 70% of marine bacterial species [15]. Unfortunately, most experimental and theo-

retical studies to date consider chemotaxis in response to step functions or simple gradients

[16], or deterministic time-profiles providing limited insights to how chemotaxis would func-

tion in different types of environments. In particular, there have been few studies [17, 18] ana-

lyzing chemotactic strategies in stochastic environments, which are likely to be the most

important environment during the evolution of a chemotactic response.

When considering the basis for a particular chemotactic response, most attention has

focused on mechanistic aspects, e.g. how the cellular components interact to produce that

response [19]. Here, we instead focus on questions of evolutionary strategies, what types of

responses would be expected to evolve in different contexts such as complex nutrient condi-

tions. We use this model to study how performance and optimal properties of various chemo-

tactic strategies vary as a function of environmental conditions. In particular, we describe a

new type of chemotactic strategy called the speculator response. It differs from the adaptive

response in that the tumbling rate increases with increasing attractant concentration; further-

more, the bacterium makes temporal comparisons of attractant concentration which distin-

guishes the strategy from the inverted response. We demonstrate that the speculator strategy

gives a remarkable match to the paradoxical response seen in wild-type, aerobically-grown R.
sphaeroides [8] under experimental conditions.

Results

To model chemotaxis, we consider a single bacterium in a one-dimensional space with peri-

odic boundary conditions and a distribution of attractant. The bacterium can run to the left or

Optimal chemotactic responses in stochastic environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0179111 June 23, 2017 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0179111


right, or tumble. α and β denote the rates at which the bacterium starts and stops tumbling.

While β is assumed to be constant, the basal rate α0 is modulated by the chemotactic response

of the bacterium to the experienced attractant concentrations, to give a time-varying α(t):

aðtÞ ¼ max 0; a0 þ

Z t

� 1

Rðt � t0ÞcðxBðt
0Þ; t0Þ dt0

� �

ð1Þ

where R(t) is the chemotactic response function and c(xB(t), t) is the attractant concentration

that the bacterium experiences at position xB(t) at time t [20]. In contrast to [20], we do not

assume deviations from α0 to be small. R(t) is represented as (A/τ + Bt/τ2) exp(−t/τ) where τ
controls the memory length, i.e. how far back in the past the bacterium “remembers” attractant

concentrations, and A and B together determine the sensitivity and the characteristics of the

response: adaptive, inverted, or speculator. In the adaptive response, A and B are constrained

such that A< 0 and B = −A. This gives rise to a response function shown in red in Fig 1a that

has a positive and a negative lobe. The red curve in Fig 1b illustrates the changes in α due to

attractant addition and removal when a response function of this type is used. When c(xB(t), t)
is increasing in time, such as when attractant is added, the negative lobe of R(t − t0)c(xB(t0), t0)
has a larger area than the positive lobe, making the integral in Eq (1) negative, leading to an α
that is smaller than α0, resulting in a decrease in tumbling, as the red curve in Fig 1b shows at

t = 50. The opposite happens when attractant is removed, resulting in an increase in tumbling

at t = 350. The constraint B = −A results in equal areas of the positive and negative lobes of R(t),
ensuring perfect adaptation and a basal tumbling rate (α = α0) for approximately 100< t< 350.

In the inverted response (Fig 1a, blue curve), A> 0 and B = 0, leading to a single-lobe response

function. This results in a higher tumbling rate in the presence of attractant and a lower rate

when attractant is absent, as the blue curve in Fig 1b shows. We also investigate a new type of

response which we name the “speculator” response for reasons explained below. In the specula-

tor response, A> 0 and B< 0, leading to a double-lobe response function (Fig 1a, green curve)

that looks roughly like the negative of the adaptive response function (Fig 1a, red curve). This

Fig 1. Illustrative examples of the response function and the corresponding timecourses of α in response to

attractant step functions. Timecourses of α in response to attractant step functions for optimized responses. a)

Illustrative examples of the response function for adaptive (red), inverted (blue) and speculator (green) response. The

parameters used are A = −20, B = 20 and τ = 5 for adaptive, A = 20, B = 0 and τ = 5 for inverted, and A = 20, B = −18 and

τ = 5 for speculator response. b) Changes in α in response to step changes in attractant concentration for the responses

from part a). α0 = 10 for all responses. Attractant (concentration of 1) is added at t = 50 and removed at t = 350. c) Changes

in α in response to step changes in attractant concentration for adaptive (red), inverted (blue) and speculator (green)

responses optimized for T = 104 and L = 100 (α0 = 0.0084, A = −1500, B = 1500 and τ = 0.020 in the adaptive response,

α0 = 0.0063, A = 4.4, B = 0 and τ = 5.0 in the inverted response, and α0 = 0.0089, A = 74, B = −67 and τ = 33 in the

speculator response). Attractant (concentration of 1) is added at t = 50 and removed at t = 350. Note the change of scale on

the y-axis.

https://doi.org/10.1371/journal.pone.0179111.g001
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causes increased (decreased) tumbling when c(xB(t), t) is increasing (decreasing) in time (Fig

1b, green curve). The constraint of perfect adaptation is relaxed in the speculator response, so

the areas of the positive and negative lobes are unequal (Fig 1a, green curve). This allows the

steady-state α in the presence of constant attractant concentration to be different from α0, as

shown for times 100< t< 350 (Fig 1b, green curve). The double-lobe response functions of

adaptive and speculator response cause bacteria to make temporal comparisons of attractant

concentration, while the lack of perfect adaptation in the inverted and speculator responses

causes bacteria to respond to absolute attractant concentrations. Note that Fig 1a and 1b are

purely illustrative; they do not reflect real or optimized responses.

The one-dimensional virtual world in which the bacterium moves contains a stochastic

attractant distribution which varies in both time and space. Two parameters, T (correlation

time) and L (correlation length), determine the dynamics of the attractant distribution. T is the

timescale on which attractant concentrations change, while L determines the distance between

peaks of attractant concentration; the shorter L, the more numerous and narrow the peaks are

and the shorter the distances between them. The average amount of attractant available in the

world is independent of T and L. Fig 2 shows how the distribution looks at different combina-

tions of T and L. S1 Video illustrates the distribution dynamics as a function of T and L.

The framework described above allows us to assess the performance of a chemotactic

response characterized by the response parameters α0, β, A, B and τ at a chosen combination

of attractant distribution parameters T and L. Performance, or fitness, of a response, is equal to

the average cell division rate, which we approximate as the inverse of the time it takes the bac-

terium to experience a specified amount of attractant. For any chemotactic strategy in any sto-

chastic environment, we can optimize the response parameters to maximize the bacterial

fitness. Performing this optimization for different strategies (by applying appropriate con-

straints on A and B) under different combinations of T and L allows us to explore the perfor-

mance of the different strategies and how this performance varies with T and L.

Fig 3 shows the optimal fitnesses of adaptive, inverted and speculator responses as a func-

tion of T and L. Fitnesses are scaled by the fitness of a non-chemotaxing bacterium, whose fit-

ness is independent of T and L: a bacterium with a relative fitness of 4 therefore takes 4 times

less time to experience the same amount of attractant than a non-chemotaxing bacterium.

Note that our measure of fitness implicitly includes the effective robustness to nutrient fluctua-

tions on the timescale T and length scale L. In all strategies, fitness increases with increasing T
and decreasing L. As T increases, attractant concentrations change more slowly, making it

Fig 2. Examples of the stochastic attractant distribution at different combinations of T and L. Every

row corresponds to a different combination. The left (right) panels show the distribution at time t = 0 (t = 100) in

the simulation. a) T = 103, L = 100. b) T = 103, L = 20. c) T = 100, L = 100. d) T = 100, L = 20.

https://doi.org/10.1371/journal.pone.0179111.g002
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easier for bacteria to track attractant peaks. At shorter L, fitness is higher because there are

more attractant peaks and they are closer to one another. This means that if a bacterium loses

track of a peak, or a peak diminishes in amplitude over time, the bacterium only needs to travel

a short distance to reach another peak.

In addition to the previously studied adaptive and inverted responses, we characterize a

novel chemotactic strategy. This “speculator” response, despite its seemingly paradoxical

nature, is more fit under all studied conditions than the inverted response, although less fit

than the adaptive response. Interestingly, at T = 104, L = 20, the fitness of the speculator

response is nearly identical to the fitness of the adaptive response. To understand the mecha-

nism of the speculator response, we consider the optimal values of response parameters

(Table 1). The lack of perfect adaptation (optimal |A|> |B|) means that the bacterium will

more often start to tumble when the attractant concentration is high, as shown in green in

Fig 1c; the low value of βmeans that the bacterium will then continue tumbling, remaining in

the region of high attractant. Consequently, the speculator response, like the inverted response

(Fig 1c, blue curve), results in frequent long tumbles at high attractant concentrations. In con-

trast to the inverted response, the double-lobe response function of the speculator response

results in a tumbling rate sensitive to the rate of change of the attractant. The long memory of

the speculator response (large τ) allows sensitivity to long-term trends; this sensitivity, com-

bined with the double-lobe response function, results in two important dynamical properties.

Fig 3. Fitness of optimized adaptive (red), speculator (green) and inverted (blue) response as a

function of T and L. The two panels show different views of the same plot. For each chemotactic strategy

and combination of T and L, fitnesses are averaged over the last 600 generations of up to 3 replicate

simulations.

https://doi.org/10.1371/journal.pone.0179111.g003

Table 1. Range of optimal response parameters at T = 103, L = 50.

τ α0 β A B/A

Adaptive (0.072, 0.27) (0.012, 0.062) (10, 47) (−11000, −5700) −1

Inverted (5.6, 8.3) (0.0024, 0.0049) (0.098, 0.68) (2.0, 6.2) 0

Speculator (39, 45) (0.0030, 0.046) (0.086, 0.44) (47, 96) (−0.86, −0.82)

3 replicate simulations are run for each chemotactic strategy at T = 103, L = 50. For a given strategy and response parameter, mean values of the parameter

are calculated separately in each replicate simulation by averaging the values of the parameter over the last 600 generations. Each range in the table is

composed of the lowest and highest mean values obtained.

https://doi.org/10.1371/journal.pone.0179111.t001
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Firstly, the bacterium compares recent attractant concentrations with a long-term average,

tumbling more when the recent past is more favorable than the average, and therefore main-

taining its position in regions of higher attractant concentration. Secondly, the bacterium is

able to sense improving and worsening conditions at its current location. In particular, a

decline in the attractant concentration results in a decrease in α, allowing the bacterium to

swim away from a peak when conditions are changing for the worse. Swimming away leads to

a further decrease in α, setting a feedback loop in motion, resulting in continued swimming

until a new optimum is reached. The speculator response is therefore analogous to the behav-

ior of investors in financial markets: when the current performance is lower than the average,

or when investment values are falling, speculators seek higher returns by abandoning their

current position and investing elsewhere—hence the name “speculator” response. The behav-

ior of the speculator response, compared with the adaptive and inverted responses, is illus-

trated in S2 Video.

Significantly, the time course of α in the speculator response closely matches the time

course of probability of tumbling in aerobically-grown R. sphaeroides (see Fig 2A in [8]). Fig 4

shows a curve-fit of our model of the speculator response to the digitized data of [8]. Although

the response shown by R. sphaeroides may not be completely representative of its natural

response, since a potentially high step concentration of 1 mM is used, it is likely to be qualita-

tively correct, since these responses are obtained assuming linear response; further, any poten-

tial saturation of receptors would tend to introduce non-linear distortions to this basic linear

response behaviour, rather than a completely different qualitative behaviour. For these rea-

sons, we suggest that the closeness of the fit provides strong evidence that aerobically-grown R.
sphaeroides uses the speculator response to respond to Na–succinate. Experimental results

show that aerobically-grown R. sphaeroides performs well in swarm plates [8], demonstrating

the efficacy of this response.

As Fig 3 shows, at T = 104, L = 20, fitnesses of the adaptive and speculator responses are

very similar despite the different mechanisms behind their chemotactic strategies. To better

Fig 4. Curve-fit of our model of the speculator response (green curve) to the digitized data of

[8] (black circles). The response is described by the following response parameters: α0 = 0.074 s−1,

β = 0.034 s−1, A = 1300 mM−1 s−1, B = −1000 mM−1 s−1 and τ = 71 s. Attractant concentration is set to 1 mM in

correspondence to [8]. The curve-fit is obtained by optimizing the response parameters of the speculator

response to minimize the least-squares fit between the model and the digitized data. The data are digitized in

MATLAB using the function imfindcircles [21].

https://doi.org/10.1371/journal.pone.0179111.g004
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understand these strategies, we create a simple attractant distribution which consists of two

Gaussians (at positions 25 and 75 in a world with a length of 100) oscillating in amplitude out

of phase with each other: when one Gaussian is at full amplitude, the other has amplitude of

zero. Amplitude, period of oscillation and width of the Gaussians are roughly matched to

T = 104, L = 20 of the stochastic attractant distribution. For each of the two chemotactic strate-

gies, we take a bacterium optimized for T = 104, L = 20 of the stochastic attractant distribution

and simulate its movement in the virtual world with the two Gaussians. Fig 5 shows the

mean position of the bacteria as a function of θ, the phase of the oscillations. Between θ = 0

and θ = 1250 (the period is 5000) the left Gaussian at position 25 is higher than the right Gauss-

ian at position 75, but is decreasing. In the adaptive response (red curve), the bacterium

is close to the top of this Gaussian during this period. The bacterium shows little movement

toward the right Gaussian at position 75 until the right Gaussian is significantly higher i.e.

θ> 1250. In the speculator response (green curve), the bacterium cannot track the top of the

Gaussian as well as in the adaptive response, as evidenced by the large standard deviation

around position 25 (green shading). However, the bacterium more quickly adapts to the

changing attractant levels, leaving the declining left Gaussian and moving towards the growing

right Gaussian sooner.

The strengths of the adaptive and speculator responses therefore lie in exploitation and

exploration, respectively. In the adaptive response, the bacterium can track the top of a peak

efficiently while in the speculator response, the bacterium is better at leaving the declining

peak and finding the increasing peak. The exploitation behavior of the adaptive response is

analogous to a hill-climbing algorithm, which efficiently finds, but may get stuck at, a local

optimum. The exploration behavior of the speculator response is more analogous to a Monte

Carlo search algorithm in that the bacterium may leave a peak in search of a higher peak at the

cost of its ability to track the peak top efficiently. This explains the trend in Fig 3: for large L,

the number of attractant peaks is small, and exploiting a given peak is more important than

exploring new peaks. Under these conditions, the adaptive response is significantly more effec-

tive than the speculator response. At short L, there are multiple peaks in the environment,

each of which has a different amplitude. Under such conditions, the exploration behavior of

the speculator response allows the bacterium to locate higher peaks, while the exploitation

Fig 5. Mean position of bacteria performing adaptive (red curve) or speculator (green curve) response

as a function of θ, the phase of the oscillations. Shading shows the standard deviation of the position. The

Gaussians are centered at positions 25 (dashed gold line) and 75 (dashed turquoise line) and have a standard

deviation of 3. Amplitudes of the Gaussians (not to scale, maximum amplitude is 1) are shown as a function of

θ in the bottom part of the figure for the Gaussian at position 25 (gold curve) and 75 (turquoise curve). The

parameters used are α0 = 0.0084, β = 54, A = −1526 and τ = 0.020 for the adaptive and α0 = 0.0089, β = 0.056,

A = 74, B = −67 and τ = 33 for the speculator response.

https://doi.org/10.1371/journal.pone.0179111.g005
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behavior of the adaptive response may lead to the bacterium tracking a suboptimal peak. At

T = 104, L = 20, the two strategies are approximately equally effective, giving rise to very similar

fitnesses (Fig 3).

These simulations were performed in a 1D stochastic environment, but the question

remains as to the effectiveness of the speculator strategy in 2D or 3D space, as in a 1D environ-

ment a bacterium following this strategy will always encounter another peak eventually. We do

not believe this would have a major impact on our findings as an isotropic and randomly dis-

tributed attractant in two or three dimensions will, by symmetry, look the same in all direc-

tions. To address this we ran simulations of the bacterium performing a random re-

orientation every time it has traversed a distance 2ℓ in a 3D stochastic nutrient distribution

which has the same correlation length in each dimension, where ℓ is the length of the each

dimension in the virtual world. The results in Fig 6 show that the effective correlation length,

experienced by the bacterium, is essentially unchanged compared to a 1D environment, con-

firming that our 1D simulations should be representative of simulations in a 3D nutrient

environment.

We next consider the optimal values of the response parameters. In the adaptive response,

τ (the memory length) is very short (Table 1), allowing the bacterium to quickly adjust to small

displacements from attractant optima. β, the rate at which the bacterium stops tumbling, is

quite large, corresponding to short-lasting tumbles characteristic of chemotaxis in E. coli [22].

High sensitivity (large |A| and |B|) is necessary for the bacterium to respond to small differ-

ences in attractant concentration characteristic of small displacements from the top of an

attractant peak. High sensitivity is responsible for the high α when the attractant is removed at

t = 350 in Fig 1c (red curve). Optimal α0, the tumbling rate in the absence of attractant (or

under constant attractant in case of perfect adaptation), is very low in all strategies, as is evi-

dent from Fig 1c. Low α0 enables bacteria to run persistently in order to find regions with

more favorable conditions more quickly. The near-zero value of α0 removes the possibility of

α going below α0, eliminating the response to increasing attractant in the adaptive response

(Fig 1c, red curve, t = 50).

In the inverted response, the bacterium tumbles more at higher concentrations of attractant

(Fig 1c, blue curve). τ is longer than for the adaptive response, allowing the bacterium to inte-

grate over short-term fluctuations. In both inverted and speculator responses, β is much lower

Fig 6. The effect of a bacterium navigating a 3D stochastic environment with a correlation length L = 20. a) 3D stochastic attractant distribution

generated by Eq 4; b) attractant experienced by a bacterium running for a length 2ℓ followed by a random re-orientation; c) autocorrelation function showing

that the statistical properties as experienced by the bacterium in a 3D environment is essentially the same as that experienced by a bacterium in a 1D

attractant distribution.

https://doi.org/10.1371/journal.pone.0179111.g006
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than in the adaptive response, resulting in significantly longer tumbles. This is central to the

strategies, as it is the persistence of position when tumbling that allows bacteria to stay in

regions of high attractant concentration. The sensitivity is lower than in the adaptive response,

in agreement with simple models showing that the inverted response is optimized by lower

sensitivity [10]. Sensitivity needs to be tailored to the range of attractant concentrations the

bacterium experiences: if it is too low, the bacterium will run past high concentrations of

attractant; if it is too high, the bacterium will tumble at low concentrations of attractant, never

reaching higher concentrations.

Discussion

In this work we describe a new chemotactic strategy, termed the speculator response, in which

the bacterium compares the current attractant concentration with a long-term average; if the

current concentration is higher than the long-term average, the bacterium tumbles persistently

to maintain its position. On the other hand, declines in the current concentration will increase

the probability that the bacterium will swim away to a higher peak. By considering stochastic

attractant distributions, we show that under slowly-changing but spatially complex attractant

concentrations (large T, small L), the speculator response is almost as efficient at co-localizing

with attractant as the adaptive response of E. coli (Fig 3). While the adaptive response achieves

high fitness by accurately tracking the top of an attractant peak, the speculator response enables

the bacterium to explore its environment and find higher peaks more efficiently (Fig 5).

The speculator response closely matches the response observed in wild-type, aerobically-

grown R. sphaeroides (Fig 4). The optimized response parameters from our simulations are in

arbitrary units, and cannot be directly compared with those obtained by the fit to the wild-type

response (Fig 4). Interestingly, however, the ratio of B to A which quantifies the extent of

departure from perfect adaptation (B/A = −1 corresponds to perfect adaptation) is similar

between the optimized values obtained from the simulations and the response observed in aer-

obically-grown R. sphaeroides (−0.86 and −0.82, respectively). Furthermore, we can acquire a

rough estimate of the ratio of τS/τA (where τS and τA are the values of τ in the speculator and

adaptive responses) by comparing the values of τ in aerobically-grown R. sphaeroides (Fig 4)

and wild-type E. coli [23]. This ratio (71/1 = 71) is of similar order of magnitude to the ratio

for the optimized simulated responses (43/0.20 = 215), despite the multitude of differences

between wild-type R. sphaeroides and E. coli. The small value of τA is necessary for the adaptive

strategy to minimise overshooting of an attractant peak and maintain a close position around

the peak in order to maximise attractant uptake. This is true even for large correlation lengths,

where it might be expected that a longer memory length would be advantageous in being able

to detect and climb shallow attractant gradients, as found in previous studies [24–26]. How-

ever, our measure of fitness encompasses both the effective velocity up gradients, as well as the

bacterium’s ability to maximise exploitation of a peak in a changing stochastic fashion, so our

findings suggest that overall the latter dominates fitness, resulting in a smaller τ for the adap-

tive strategy.

The optimized adaptive response possesses high sensitivity (large |A| and |B|; Table 1) con-

sistent with experimental results from E. coli [27]. Furthermore, β, the rate at which the bacte-

rium stops tumbling, is high, which is in line with the short tumbles observed in real bacteria

[22]. In contrast to real bacteria, the optimized bacteria have a lower α0, and thus tumble less

than real bacteria when attractant concentration is increasing (Fig 1c, red curve, t = 50). This

may be an artifact of modeling chemotaxis in a one-dimensional environment: in a three-

dimensional environment, tumbling may assist the bacterium in finding even steeper paths to

attractant optima.
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Our model does not take into account the motility-associated energy costs of the different

chemotactic strategies. For instance, R. sphaeroides does not actively tumble, but rather stops

running and lets rotational diffusion generate the re-orientation, reducing the costs of strate-

gies that involve longer tumbles [28]. The speculator response therefore might have emerged

partly because R. sphaeroides uses rotational diffusion to achieve tumbling. Alternatively, rota-

tional diffusion might have emerged in response to the bacterium using a strategy that involves

long tumbles. In addition, by necessity we are confined to a relatively small range of T and L;

other conditions might exist (such as larger T and smaller L) that would favor the speculator

response even more.

Our approach differs from that of other studies in that we consider realistic attractant distri-

butions and extended tumbling times. The latter is essential for the speculator response to

work as it allows bacteria to maintain their position in regions of high attractant concentration.

Previous studies [20, 29, 30] modeled tumbles as instantaneous after chemotaxis in E. coli [22],

however, experimental evidence from other bacterial species shows longer tumbling times [31,

32]. Our results add to the growing body of evidence that extended tumbles allow for emer-

gence of other modes of chemotaxis [9, 10, 33].

Most studies to date considered chemotaxis in response to step functions or simple gradi-

ents [16]. While this is important for our understanding of the basic mechanisms of chemo-

taxis, we should recognize that chemotactic strategies were inevitably shaped by the

environments the bacteria inhabited. For example, studies in marine bacteria unearthed spe-

cific adaptations to marine environments [14, 15, 17], highlighting the need to study chemo-

taxis in the context of realistic attractant distributions. Here, we propose a model of a

stochastic attractant distribution which allows us to compare the performance of various che-

motactic strategies under different environments and study how optimal properties of chemo-

tactic responses change as a function of environmental conditions. This can also help us

characterize the environmental conditions based on the strategies that have evolved. Further

characterization of natural environments [12] will allow theorists to construct more detailed

attractant distributions and advances in microfluidics technologies will enable these environ-

ments to be reconstructed in laboratory settings [16].

Finally, although our results relate to the chemotaxis of bacteria, as search problems in tem-

porally and spatially heterogeneous environments are very common, these results could have

very broad application to fields outside of microbiology. For example in ecology, foraging ani-

mals face a similar dilemma of whether to exploit a currently available food source or prey or

abandon it in hope of a more abundant opportunity in the future [34], or in general in optimi-

sation, where memory of past solutions tried may inform the local search strategy.

Methods

Stochastic attractant distribution

We generate our stochastic attractant distribution by summing over cosine and sine modes

with different mode numbers p so that the concentration at position x and time t along the vir-

tual world is calculated as

cðx; tÞ ¼ max 0;
Xp
�

p¼1

fXpðtÞ cosxpðxÞ þ YpðtÞ sinxpðxÞg

 !

ð2Þ

where Xp(t) and Yp(t) are stochastic weights, ℓ is the length of the one-dimensional virtual

world (ℓ = 100), ξp(x) = 2πpx/ℓ and p� = ℓ/L is the largest mode included in the sum above.
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Xp(0) = Yp(0) = 0 for all ps, and are updated at intervals of Δtc = T/100 according to:

Xpðt þ DtcÞ ¼ XpðtÞð1 � Dtc=TÞ þ ZpðtÞ

ffiffiffiffiffiffiffiffiffi
2Dtc
Tp�

s

ð3Þ

where ηp(t) is a white noise Gaussian random process (hηp(t)ηq(t0)i = δ(t − t0)δpq), generated by

a random number sampled from a normal distribution with mean 0 and variance 1. A similar

expression is used for Yp(t + Δtc). By construction, this results in a Markov process with corre-

lation time T and approximate correlation length L = ℓ/p�.
To investigate the effect navigation in 3D stochastic environments would have on the ability

for a bacterium to find attractant compared to 1D (Fig 6), we create a static attractant environ-

ment analogous to Eq 2, but in 3D:

cðx; y; zÞ ¼
Xp
�

p;q;r

fXpqr cos ðxpðxÞ þ xqðyÞ þ xrðzÞÞ þ iYpqr sin ðxpðxÞ þ xqðyÞ þ xrðzÞÞg

�
�
�
�
�

�
�
�
�
�
ð4Þ

where ξp(x) = 2πpx/ℓ, ξq(y) = 2πqy/ℓ, and ξr(z) = 2πrz/ℓ, Xpqr and Ypqr are independent

Gaussian random variables for each combination of the integers p, q, r (hXpqrXp0q0r0i =

δpp0δqq0δrr0, hYpqrYp0q0r0i = δpp0δqq0δrr0 and hXpqrYpqri = 0) and i ¼
ffiffiffiffiffiffiffi
� 1
p

is the unit imaginary

number. This gives by construction a random isotropic attractant distribution with the same

correlation length in each dimension Lx = Ly = Lz = L = ℓ/p�.

Chemotaxis

The attractant distribution is equilibrated for a period of at least T. Before a bacterium is intro-

duced, α is initialized based on the equilibrated attractant distribution. The bacterium is then

released and the state of the bacterium (whether it is running or tumbling) is updated every

ΔtB = min(T, L/v, τ/20) where v is the speed of the bacterium when running (v = 1). A Monte

Carlo scheme is used to decide whether the bacterium starts tumbling (running) given that it

was running (tumbling) previously, assuming first-order dynamics of a 2-state system. When

the bacterium stops tumbling, it starts running left or right with equal probability.

Optimization

Mutagenesis followed by selection constitute one generation of the optimization. In the first

generation, all response parameters are initialized randomly from a uniform distribution

between 0 and 1 (but see below). In the adaptive response, only B is initialized and mutated,

A is set to −B (at T = 104, B is initialized between 1 and 10). In the speculator response, B is

initialized randomly between 0 and −1. In every generation, one response parameter is

chosen at random and mutated. Parameters are mutated on a log scale by a transformation

exp(loge(a) + r) where a is the parameter being mutated and r is a random number sampled

from a uniform distribution between −0.2 and 0.2. Further constraints on response parame-

ter values are imposed for reasons of computational tractability: α0 > 10−3 in adaptive and

inverted response, A> exp(−1) and |B| > exp(−1) in speculator response, τ> 0.01 in adap-

tive response.

After mutagenesis, the fitnesses of responses described by the wild-type and mutant

response parameters are determined. This is achieved by letting 10 identical wild-type and 10

identical mutant bacteria explore the virtual world with the stochastic attractant distribution.

Each of the 10 wild-type bacteria is subjected to an attractant distribution initialized with a dif-

ferent random seed; the attractant distributions are then re-used for the 10 mutants. (As the
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attractant distribution is stochastic, estimates of response fitness are stochastic too. This

scheme of competing the wild-type and mutant with the same attractant distributions is thus

used to ensure that lucky mutants do not fix.) Each of the bacteria is run until it experiences

50T attractant units. Dw,i (Dm,i) denotes the time it took the i-th wild-type (mutant) to experi-

ence the specified amount of attractant. Fitness of response k = {w, m}, Fk, is then calculated as

Th 1

Dk;i
ii averaged over the bacteria. As mentioned in the main text, the way fitness is character-

ised, i.e. the time it takes to experience a critical amount of nutrient, despite fluctuations in

space and time, includes an effective measure of robustness to these fluctuations over the

length scale L and timescale T.

Once fitnesses are determined, the probability of acceptance of the mutation, pm, is calculated

using the Metropolis-Hastings algorithm: pm = 1 if Fm� Fw and pm = exp((Fm − Fw)/(UFw))

otherwise. U, the temperature, is constant at 0.005. Simulations are run until the fitness stops

increasing and stays constant for at least 600 generations. 3 replicate simulations are run for

each chemotactic strategy and combination of T and L.

The software implementing these simulations can be found at https://github.com/kotanyi/

chemotaxis-evolution.

Supporting information

S1 Video. Dynamics of the attractant distribution for a) T = 10000, L = 100, b) T = 10000,

L = 20, c) T = 100, L = 100, a) T = 100, L = 20.

(MP4)

S2 Video. Dynamics of optimized adaptive (a), inverted (b) and speculator (c) strategies

under T = 10000 and L = 20. The parameters used are: α0 = 0.0065, β = 4.2, A = −2100,

B = 2100, τ = 0.016 in adaptive, α0 = 0.0016, β = 0.048, A = 3.7, B = 0, τ = 5.8 in inverted and

α0 = 0.0089, β = 0.056, A = 74, B = −67, τ = 33 in speculator response. In the adaptive response,

the bacterium swims up attractant gradients and tumbles when it experiences a decrease in

attractant concentration. This leads to an oscillatory behavior around peak maxima. In the

inverted response, tumbling rate increases with increasing attractant concentration. Response

sensitivity is optimized such that the bacterium tumbles most persistently at attractant concen-

trations which correspond to typical values at attractant maxima. However, this means that the

bacterium can get stuck at sub-optimal concentrations on large peaks. The speculator response

compares the current concentration of attractant with a long term average. If the current con-

centration is greater than this average, the bacterium tumbles more. If the current concentra-

tion is lower than the average, or declining, the bacterium swims away, leaving the peak to

search for higher attractant concentrations. The bacterium will typically run past peaks if their

amplitude is lower than the peak it just left.

(MP4)
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