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Abstract

The formation of specific protein-protein interactions is often a key to a protein's

function. During complex formation, each protein component will undergo a change

in the conformational state, for some these changes are relatively small and reside

primarily at the sidechain level; however, others may display notable backbone

adjustments. One of the classic problems in the protein-docking field is to be able to

a priori predict the extent of such conformational changes. In this work, we investi-

gated three protocols to find the most suitable input structure conformations for

cross-docking, including a robust sampling approach in normal mode space. Counter-

intuitively, knowledge of the theoretically best combination of normal modes for

unbound-bound transitions does not always lead to the best results. We used a novel

spatial partitioning library, Aether Engine (see Supplementary Materials), to efficiently

search the conformational states of 56 receptor/ligand pairs, including a recent

CAPRI target, in a systematic manner and selected diverse conformations as input to

our automated docking server, SwarmDock, a server that allows moderate conforma-

tional adjustments during the docking process. In essence, here we present a dynamic

cross-docking protocol, which when benchmarked against the simpler approach of

just docking the unbound components shows a 10% uplift in the quality of the top

docking pose.
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1 | INTRODUCTION

Specific protein-protein interactions are both ubiquitous and essential

within biological processes, ranging from immune system surveillance

to tissue development and repair. Invariably, changes in the conforma-

tional state of the components of protein complexes do occur upon

complex formation.1,2 However, it is difficult to a priori predict the

extent of such changes. Nevertheless, much research has provided

guiding principles, the most notable for which is the concept of con-

formational selection and induced fit.3 Conformational selection can

be defined as a set of states, with likely varying degrees of stability,

and therefore occupancy, which a protein may sample before
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complexation with a binding partner. Induced fit, on the other hand,

can be defined as the influence that one binding partner may have on

the other, often in the final stages of docking, where conformational

states may be stabilized that are not possible for the free unbound

components to sample. Although recent work has uncovered some

interesting trends,4 just how important the above two mechanisms

are for the complex formation of any one particular protein receptor/

ligand pair remains difficult to estimate. In the context of fully auto-

mated docking servers, which often cannot capture the full extent of

conformational changes displayed by unbound components, it would

be desirable to be able to precalculate unbound conformations that

are more predisposed toward their bound conformational states, and

subsequently take such predictions into account within the automated

docking protocol. One relatively successful protocol, in which the

above has been partially implemented, is that of cross-docking.

A number of cross-docking methodologies have been reported5-7;

however, once a number of diverse receptor and ligand conformations

have been selected, the docking process is typically rigid body. Here,

we ask the question of how well might flexible cross-docking perform:

that is, selection of viable alternative conformations for docking, and

then employment of a docking methodology that enables limited flexi-

bility in docking the selected conformations, here termed as “dynamic

cross-docking.” Clearly, many thousands of preselected conformations

could potentially be cross-docked; however, most automated docking

algorithms, with some degree of dynamic flexibility allowed during the

docking process, would struggle to search such a large space within a

turnaround time suitable to run as a publicly available server.

Moreover, sampling of the conformational states space is a

tedious process as it depends on the single potential calculation time

and the number of samples. With increasing numbers of normal

modes, sampling boundaries, and granularity of sampling, the search

task rapidly becomes intractable when utilizing standard high-

performance computer (HPC) hardware, thereby demanding multicore

parallelization and advanced knowledge in distributed computing.

As the importance of the given nontrivial normal mode is generally

unknown when the bound structure cannot be compared with

unbound, we decided to start with a naïve protocol—docking the con-

formations at the extreme magnitudes (in positive and negative direc-

tions) along the first nontrivial normal mode. This required nine

docking runs per complex. After that, we investigated whether knowl-

edge of the theoretically best combination of normal modes improves

the docking results. Finally, we employed a method for sophisticated

inputs generation, which involves sampling and analyzing the multi-

dimensional normal modes space; here restricted to the first three

nontrivial normal modes, but the approach is extendable to any num-

ber of dimensions. This enhanced approach requires only four docking

runs per complex, but includes a generally expensive sampling step.

Therefore, we employed a novel spatial partitioning library to effi-

ciently search the protein conformational states space to reduce time

needed to produce a minimal set of conformations for cross-docking.

All protocols are compared on a set of 55 unbound receptor/ligand

pairs, and one recent, difficult CAPRI target, for which the coordinates

of the complex are available.

2 | MATERIALS AND METHODS

2.1 | Overview

The methodology presented here is aimed at identifying a plausible

route to identifying the best conformation for each of a receptor and

ligand pair to input to a docking server to enhance the quality of

resulting docked poses. Our own protein-protein docking server,

SwarmDock,8 a server that allows moderate levels of conformational

change, is used to cross-dock selected receptor and ligand conforma-

tions. Conformations for docking are selected according to three pro-

tocols, as outlined later.

2.2 | The data set

The 55 complexes from the docking benchmark version 5,9 for which

there are both experimentally determined unbound receptor and

ligand components, as well as the experimentally determined complex,

were used in this analysis. In addition, one difficult CAPRI target,

T131 (6GBG), was also selected to test the methodology: a CAPRI

case for which the SwarmDock server previously failed to return a

correct docked pose. Prior to the methods described after the original

Benchmark 5 was manually curated to repair missing atoms and resi-

dues, these data accompany the DYNACROSS decoy set for scorers

and we have generated as a part of this work (see Supporting Informa-

tion for details).

2.3 | Calculation of elastic normal modes

To investigate the potential range of conformational states, a receptor/

ligand pair may sample upon forming a complex we calculate from

their unbound states as determined experimentally and their indi-

vidual set of normal modes. Representing protein conformations as

a combination of normal modes is a well-established methodology

for both understanding protein-fold conformational state transi-

tions and employing in protein docking pipelines.10-14 More specifi-

cally, a full-atom elastic network normal mode calculation was

performed on each unbound receptor/ligand pair with the program

elNemo.15 Throughout this work, references to the lowest modes

indicate the lowest nontrivial modes: the first six trivial modes, with

zero frequency that corresponds to rigid-body rotation and transla-

tion, are not considered.

2.4 | Calculation of the solvent-accessible
surface area

To investigate how docked pose quality may have improved when

normal modes were applied to the inputs, we calculated the solvent-

accessible surface area (SASA) using the FreeSASA16 Python package

(https://freesasa.github.io/).
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2.5 | Dynamic cross-docking with SwarmDock

All receptor/ligand pair conformations selected for cross-docking, see

later for selection protocols, were submitted to the SwarmDock server.8

The server and underlying algorithm have been described previ-

ously.8,17,18 Briefly, the server models any missing residues and atoms,

reformats nonstandard residues, and minimizes the starting conforma-

tion. The core algorithm can be described as a modified version of the

particle swarm optimization (PSO) algorithm,19 which is employed to

optimize the binding energy, as determined using the DComplex poten-

tial.20 Each particle search vector consists of the position and orientation

of the ligand, as well as normal mode coefficients, corresponding to the

five lowest frequency nontrivial modes, to model the conformation of

the receptor and the ligand, calculated by the elNemo program.15 After

each PSO iteration, the lowest energy member undergoes a local optimi-

zation.21 Starting swarms are released from approximately 120 evenly

spaced positions around the receptor, and swarms are run four times

from each of these positions.

It is necessary to mention that the quality of docked poses gener-

ated by SwarmDock Server may sometimes be of lower quality than

other leading methodologies, for example, ClusPro.22 However, here

we aim to evaluate “dynamic cross-docking,” a general methodology

that can be applied to any other docking approaches and thus support

the wider docking community.

2.6 | Selection protocols

2.6.1 | P1: Naïve approach: extremes of the
conformation space of each unbound receptor/
ligand pair

Most of the conformational space between unbound and bound

conformations can be accounted for within the first few lowest

mode combinations of the unbound.18 First, for each unbound set

of coordinates, the maximum extent along each of the three modes

separately (maximum mode amplitude) is calculated, in both nega-

tive and positive directions. Preliminary runs of this protocol indi-

cated some unwinding of secondary structure elements, and while

this is tolerable to an extent, indeed may naturally occur upon pro-

tein complexation, a high degree of such unwinding would clearly

destabilize the binding partners. Therefore, it was deemed prudent,

for both this protocol and protocol P3 described later, to monitor

the amount of unwinding and set a threshold for its occurrence.

Hence, each extended conformation is minimized via the program

CHARMM23 and the secondary structure conservation (see later)

calculated by comparing the initial and new conformation second-

ary structure fingerprints. Preliminary runs also suggested initial

maximum mode amplitudes of 100 and −100 in the positive and

negative directions, respectively, and provided a good balance

between the energy of an expanded conformation and extent of

secondary structure unwinding. If the structure is minimized within

a secondary structure threshold, the maximum mode amplitude is

doubled, otherwise, it is halved. The process is complete when the

minimum and maximum amplitude ranges match. As discussed ear-

lier, the secondary structure conservation is an additional constraint

to ensure that protein folds do not notably unwind; the percentage

of secondary structure for the new coordinates is checked to

ensure that the percentage of secondary structure relative to the

original unbound coordinates does not deviate by more than 10%

for any of the three main secondary structure states, helix (H), beta

strand (E), and coil (C), as calculated by the program DSSP24 (all sec-

ondary states other than H and E were converted to C) and called

via Biopython (https://biopython.org/).

In this protocol, only the lowest frequency mode for each

receptor and ligand is searched, and the maximum extent (mode

amplitude) is determined given the constraints described earlier.

The first of the nine runs consists of a normal SwarmDock run of

docking the unbound coordinates of receptor (Ru) and ligand (Lu).

The 9 cross-docking runs are performed as follows: (Ru) with ligand

maximum extension of the lowest mode in the positive direction

(L+); Ru with maximum extension in the negative direction (L−);

similarly, for (Lu), cross-docking is performed with the receptor

conformation extended to a maximum in the positive direction (R+)

and the negative direction (R−); therefore, the nine cross-docking

runs were as follows: (Ru):(Lu), (Ru):(L+), (Ru):(L−), (R+):(Lu), (R+):

(L+), (R+):(L−), (R−):(Lu), (R−):(L+), and (R-):(L-).

(Ru):(Lu) is additionally reported as P0, which shows the results of

running a basic docking from unbound inputs comparing with cross-

docking approaches.

2.6.2 | P2: Theoretically best normal modes
combination as input

The vector of coefficients, β, that represent the closest fit between

unbound and bound receptor or ligand conformational states, can be

formulated in matrix notation as follows:

β = MTM
� �−1

MTT, ð1Þ

where M is an m × n matrix of m normal modes and n coordinates

(unbound), and T is a vector of the difference in coordinates, after

superposition, between bound and unbound conformations. For the

full mathematical derivation, please see Moal et al.18

As a benchmark, the theoretically best combination of the three

lowest frequency modes for both receptor and ligand, see Table 1,

is used to construct the input conformations to the server. For this

protocol, there is no need to monitor unwinding of secondary

structure elements as we are simply interested in the parsimonious

route between unbound and bound conformations and the combi-

nation of mode amplitudes to achieve this. It should be noted that

the SwarmDock server is not using any information on known

bound structures. The above procedure is for benchmarking purposes

only and to investigate whether knowledge of the best combination

can be helpful in docking, which is of interest for development of in

silico predictors from unbound structures.
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TABLE 1 The 55 targets from Benchmark 59 and the CAPRI target T131, PDB code 6GBG32 (in bold font), used in this analysis

PDB complex Type IRMSD Difficulty

Receptor Ligand Protocols

M1 M2 M3 M1 M2 M3 P0 P1 P2 P3

3EOA A 0.39 RB 252.64 26.56 57.65 7.52 −2.17 10.17 A A A A

3BIW OX 0.39 RB −16.38 0.35 25.38 5.04 1.70 4.62 A A A M

4 M76 OR 0.43 RB −10.61 −4.04 1.14 −3.90 −7.68 −3.54 I A I I

1JTD EI 0.44 RB 1.03 4.13 −3.65 0.93 3.08 3.83 I M A A

3L5W A 0.48 RB −44.49 6.84 12.02 −7.57 −11.72 −29.54 I A I A

3MXW A 0.48 RB 50.73 −18.51 1.23 3.48 −1.58 −2.00 M M M M

4G6M A 0.49 RB −13.69 9.58 −2.87 −1.53 −0.65 6.12 M M M M

3RVW A 0.50 RB −8.70 −11.37 −3.34 5.29 10.70 6.83 I I I A

3PC8 ER 0.50 RB −0.14 2.99 −1.36 −13.63 −9.09 −0.55 H H H H

3VLB EI 0.51 RB −8.10 13.12 −22.29 4.21 −10.68 −2.61 M M M M

3P57 OX 0.53 RB −2.48 −0.09 −0.67 19.82 16.01 21.28 A A A A

2GTP OG 0.54 RB −4.65 −6.69 −21.10 −4.22 −3.30 −5.16 H H M H

2YVJ ER 0.60 RB 4.32 10.89 −10.91 −0.42 3.78 1.52 M M M M

4G6J A 0.61 RB −166.10 12.60 −21.70 −3.83 0,76 −0.60 M M M M

1EXB OX 0.62 RB −4.45 12.67 −13.45 23.87 4.53 10.04 H H H H

3 K75 ER 0.64 RB −28.65 −0.84 −13.82 0.16 −1.49 −2.98 M M M M

4H03 ES 0.68 RB −20.74 −11.31 −12.49 12.85 42.78 38.05 I A I I

2GAF ER 0.69 RB −2.24 −4.38 22.32 3.03 12.19 −5.00 M M M M

3A4S EI 0.72 RB 24.13 6.77 1.90 −7.93 15.26 −6.36 M M M M

3HMX A 0.73 RB −176.10 47.67 6.96 30.28 36.90 −4.80 A A A A

BP57 OX 0.74 RB 1.63 1.21 0.47 20.26 15.67 20.74 I I I I

4GXU A 0.78 RB 27.41 6.96 −3.60 171.39 28.07 24.10 I M A A

3H2V OX 0.80 RB 12.89 0.25 −4.22 9.83 −1.60 −5.86 I A I A

4DN4 A 0.81 RB −177.76 −44.97 −0.31 3.66 3.74 1.38 M M M M

3LVK ER 0.81 RB −23.09 −3.05 9.71 −7.67 2.69 −3.22 M M M M

4HX3 EI 0.90 RB 21.85 6.44 −15.03 3.11 4.15 −1.40 M M M M

CP57 OX 0.91 RB −4.17 5.42 −1.18 −0.17 0.01 0.05 M M M M

4FQI A 1.08 RB 142.03 −39.70 26.35 −118.89 −15.29 9.26 A A A A

2W9E A 1.13 RB −21.10 7.69 −16.40 6.19 11.00 0.59 I A I I

1 M27 OX 1.22 RB 2.28 −6.43 1.43 2.70 −4.82 4.89 A M A M

2VXT A 1.33 RB −58.55 −36.44 28.40 −2.95 −9.40 4.96 I A I A

2X9A OR 1.33 RB 1.94 −0.75 −10.04 −0,71 −1.19 −2.42 A A A A

2A1A ES 1.35 RB 0.05 0.08 0.96 −15.94 −11.30 5.92 A A A A

3EO1 A 1.37 M 80.74 −25.14 −11.74 53.36 9.39 8.74 A A A A

3DAW OX 1.49 M 50.29 −1.68 23.33 20.86 −4.81 5.40 A A A A

4IZ7 EI 1.56 M 12.24 27.11 20.68 11.60 13.81 −8.48 I I I I

4LW4 ES 1.60 M −19.77 3.31 −9.73 −39.72 −8.93 39.82 A A A A

4JCV OX 1.62 M 225.96 22.95 −11.33 25.79 −21.10 −34.79 A A I M

3BX7 OX 1.63 M 1.55 22.06 7.36 −4.11 −12.48 −4.21 A A A A

3HI6 A 1.65 M −140.53 −41.11 −7.63 16.36 −15.11 −18.27 I I I I

3S9D OR 1.69 M 1.17 −0.40 48.63 16.33 1.81 −4.70 M M M M

3AAA OX 1.78 M −77.49 58.28 32.22 2.94 −6.71 0.20 A A I A

3V6Z A 1.83 M −21.01 16.58 6.74 −56.12 0.19 50.15 I I I I

3G6D A 1.86 M 361.98 6.16 −18.48 9.88 −33.32 −7.28 A A I M

(Continues)
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2.7 | P3: Sophisticated sampling and selection of
inputs

Here, we concentrate our efforts on mapping the conformational space

explored by the first three lowest mode frequencies of each receptor,

and each ligand, for every complex in our set of 56 targets. Once the

maximum envelope has been calculated, separately for every normal

mode, as described earlier, its volume was sampled at regular intervals

along each axis by calculating the relative stability of each volume point,

a point that represents the linear combination of the three modes. Sam-

pling was performed with the distance-dependent empirical atom-atom

potential program DFIRE2,25 a pair potential program that can rapidly

assign the relative energy of a conformation.

In order to allow for energetic space comparison, the DFIRE2

potential values were normalized and multiplied by 10.0, so the nor-

malized potential values are in the range between 0.0 for the lowest

and 10.0 for the highest. This can be incorporated into a PDB-like for-

mat using normal mode magnitudes as coordinates and normalized

potential values as B-factors. In this manner, the conformational state

space can be easily visualized with up to three normal modes in the

visualization graphics program VMD,26 using a color index as the

fourth dimension (Figure 3).

After several trials with various thresholds, we isolated a subset of

samples, where a cut-off threshold for the normalized DFIRE2 energy

score was set to <=5.0. The sample point at maximum distance in this

normal mode space from the origin was then selected such that the

sample point still maintains 90% of secondary structure conservation.

When compared to protocol P0, this protocol leads to 4-fold cross-

docking runs per complex: (R5):(L5), (Ru):(L5), (R5):(Lu), and (Ru):(Lu).

The run results (Ru):(Lu) are already known from protocol P1 (and

labeled as P0), so here we performed three docking runs and reused

(Ru):(Lu) docking results for consistency.

It should be noted that even for just three modes, the sampled

conformational envelope for each receptor and ligand pair is large.

We selected a single conformation from each envelope as described

earlier. Of course, many other sample points within these volumes

could have been selected. In the context of the current work, it must

remain a research aim to investigate the potential of selecting alterna-

tive conformations, perhaps with the aid of a feedback machine learn-

ing protocol that enabled capture of the finer energetic architecture

of these volumes where subtle interplays between mode combina-

tions along the docking trajectory could be revealed. It was initially

hoped that eigenvalues, calculated along with the eigenvectors

describing each mode,15 could be utilized to direct and scale each

search for optimal configurations. However, a scatter plot of such

eigenvalues against the theoretical amplitudes (obtained from P2, see

Table 1) indicate, see Figure S1, that although there is a general trend

for the smaller eigenvalues to correspond to larger mode amplitudes,

a particular eigenvalue can map to a wide range of mode amplitudes,

especially at the lower end of the eigenvalue range, thereby indicating

that any guidance gleamed from eigenvalue ratios could only be

considered weak.

TABLE 1 (Continued)

PDB complex Type IRMSD Difficulty

Receptor Ligand Protocols

M1 M2 M3 M1 M2 M3 P0 P1 P2 P3

3R9A OR 1.91 M −0.45 −2.97 −7.86 70.43 −41.64 23.27 A A A A

BAAD OX 2.00 M −11.45 −56.21 12.49 4.37 1.08 −0.70 I I A I

4FZA ER 2.04 M 13.22 30.36 4.74 −0.40 8.56 11.01 A A I A

3SZK OX 2.10 M 9.49 12.85 −24.44 27.75 −15.85 −7.96 M M I M

3 L89 OR 2.51 D −8.77 −10.06 −0.11 −121.96 −4.27 −55.80 A A I A

3F1P OX 2.52 D −0.97 −5.62 −3.15 3.48 4.08 4.59 M M M M

3FN1 ER 3.65 D 4.29 −0.82 0.58 33.71 7.24 17.34 A M M A

3H11 ER 3.79 D 32.62 −12.08 −23.19 −11.01 6.84 −5.52 I I I I

1RKE OX 4.25 D −12.68 −11.57 −81.11 −52.27 −6.60 −8.65 A A I A

3AAD OX 4.37 D 15.80 −58.67 6.39 −8.57 −6.27 3.50 I A A A

4GAM ER 5.79 D 15.65 25.17 −3.58 8.57 −67.77 43.11 I I I I

6GBG OX 1.82 M −21.65 4.64 24.68 −5.52 −11.90 −3.95 I A I A

Notes: Type: protein function categories as described in Vreven et al.9: A, antibody-antigen; EI, enzyme-inhibitor; ES, enzyme-substrate; ER, enzyme

complex with a regulatory or accessory chain; OG, others, G-protein containing; OR, others, receptor containing; OX, others, miscellaneous. IRMSD:

root-mean-squared deviation of Cα atoms of residues at the receptor/ligand interface, calculated after finding the best superposition of bound and

unbound. Difficulty: three categories for expected docking difficulty as defined by IRMSD; rigid-body (RB), IRMSD ≤ 1.35 Å; medium (M), IRMSD > 1.35 Å

and IRMSD ≤ 2.5 Å; and difficult (D), IRMSD >2.5 Å. Next, amplitudes of the three lowest mode for the receptor, followed by the amplitudes of the first

three lowest modes of the ligand, as calculated by Equation (1); values highlighted in bold if the first amplitude for a receptor or ligand is higher than the

following two. Finally, columns P0-P3 show the best obtained docked pose quality (incorrect, acceptable, medium, or high) for basic docking runs (from

unbound; (Ru):(Lu) run from P1), naïve approach (P1), theoretical combination of normal modes input approach (P2), and sophisticated sampling approach

(P3). When comparing with protocol P0, transitions with improving quality are highlighted in blue, and the ones worsening the quality are highlighted

in red.
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2.8 | Sampling efficiency benchmark

The DFIRE2 single potential calculation time is dependent on the

number of atoms and is of approximately O(N2) complexity due to

symmetry in interactions: our complexity analysis on the set of

110 proteins (55 complexes) of various sizes from Benchmark 5 gave

O(N1.98). Additionally, the process scales linearly with the application

of normal modes to change the atom coordinates. Moreover, sampling

requires a huge number of calls to the potential calculation function,

in this case dependent on the number of normal modes in use, granu-

larity of sampling (step size), and the ranges for positive and negative

extremes for every normal mode. As this would be a serious bottle-

neck for bigger proteins and normal mode spaces, we decided to use a

novel spatial partitioning library to reduce the complexity of the calcu-

lation and accelerate processing time. Aether Engine's distributed

octree is used here to decompose the atom space and speed-up

potential calculations; both on a single core and scaled across multiple

processors (see Supporting Information for details).

We benchmarked this novel technology for proteins of various

atom sizes. We prepared both (a) pure C++ single core and (b) Aether

Engine based C++ codes and validated the correctness of implementa-

tion on around 38 000 of PDB structures generated during sampling.

We first calculated the single potential calculation time (averaged over

100 runs) of the pure C++ implementation to estimate the number of

samples to be computed in approximately 10 minutes. Then, after set-

ting the ranges within three normal modes accordingly, we obtained

the number of samples we had estimated were needed. We per-

formed the benchmark both on a personal laptop and on Azure cloud

VM, and this did not require any change to the code. As the results

are comparable, here we present only cloud-based results as the cloud

resources allowed us to do 10 runs per type of calculation to generate

the proper statistics; this is required because CPU performance is no

longer fixed in contemporary machines (can be adjusted by the oper-

ating system depending on various factors) and as such out of the

user's control. On pure C++ implementation, the calculation scales

linearly with a number of samples. We then ran the same calculation

on Aether Engine with various numbers of cores, using the VM

equipped with Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz

(64 logical cores, 2 sockets of 16 cores with two threads per core).

The C++ code was compiled in release mode (contrary to the default

cmake debug mode). “sched_setaffinity” was used to pin the processes

to specific cores. The results are presented in Table S1.

A common property used to measure distributed systems is

“speed-up” SN, defined as the time to calculate on 1 CPU/core (T1) vs

the time to calculate on N CPUs/cores (TN) (Equation 2):

SN =
T1

TN
: ð2Þ

The speedup of 1.0 means no change in calculation times, whereas

the speedup below 1.0 suggests that there is no gain in using parallel

processing, for example, due to overheads. Similarly, we can compare

the time to compute off- and on-Aether on 1 CPU/core. Traditionally,

the theoretical limit for the speedup on N cores was N (eg, 4.0 for

4 cores). However, various special techniques, both hardware-based

like Hyper-Threading, and software based, like spatial partitioning, are

capable of boosting speedup even higher.

Using Aether Engine on a single core, a maximum 4.37 speed up

in sampling has been achieved; this was beneficial for proteins above

4000 atoms, as well as increased acceleration because of the engine's

ability to add parallelism to previously unparalleled problems (like

DFIRE2 here) and scale to any number of CPUs/cores/machines with-

out any change to the code. The speed-ups on one core were

between 4.37 for the protein containing 17 445 atoms and 0.57 for

the protein containing 3012 atoms; respectively, on two cores, the

numbers were 7.70 and 0.85, and on four cores, the numbers were

11.56 and 1.14. With the understanding that perfect scaling is unac-

hievable in reality, these speed-up analyses show the lower boundary

of Aether outperforming pure C++ code implementation and that of

the speed-ups, thanks to spatial partitioning increase with the size

of protein. This places Aether Engine as a tool for efficient analyses of

bigger systems, while small systems (below 4000 atoms) can be still

efficiently sampled with standard coding approaches.

These performance improvements, combined with the ability to

efficiently use all resources available, mean that incorporating a spatial

partitioning library, like Aether Engine, for sophisticated sampling in a

publicly available server protocol would therefore negate any addi-

tional burden brought on by this preprocessing step. When combined

with the reduction in number of cross-docking runs (from 9-fold to

4-fold), P3 makes an interesting candidate methodology for future

investigations.

2.9 | Assessment of docking poses

For all of the abovementioned SwarmDock runs, the CAPRI assess-

ment criteria27,28 were used to assign quality to each docked pose.

Three metrics were calculated, such as ligand root mean square devia-

tion (LRMSD), interface root mean square deviation (IRMSD), and

fraction of native contacts (FNAT). These metrics were then

employed, using the same cut-off values described in Mendez

et al,27,28 to classify each pose into one of four categories: high accu-

racy (H), medium accuracy (M), acceptable accuracy (A), and incor-

rect (I).

3 | RESULTS AND DISCUSION

The 55 complexes from docking benchmark version 5,9 for which

there are both experimentally determined unbound receptor and

ligand components as well as the experimentally determined complex,

were used in this analysis (see Table 1). Interestingly, as part of

reporting this benchmark, four automated protein-protein docking

servers were benchmarked as to their success in finding solutions,

three ab initio servers SwarmDock,8 pyDock29 and ZDOCK,30 plus

one server for which biological constraints are typically used, HAD-

DOCK31 (see Figure 1A in Vreven et al9). Disappointingly, for almost a
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quarter of the targets, and irrespective of the extent of conforma-

tional changes observed upon complex formation, all four docking

servers were unable to return at least an acceptable docking pose

within the top 50 ranked solutions, and for 8 of the targets an accept-

able pose could not be found in the top 100 solutions. Although the

abovementioned is certainly not an exhaustive list of publicly available

docking servers, one notable admission being the well-established and

high-performing ClusPro22 server, the following question can be asked

of server performance: are servers generating any acceptable solutions

for these supposedly more difficult cases, even if some are formally

classified as rigid body? Therefore, in the context of one of the servers,

SwarmDock, which is entirely within our own hands and can be

experimented on with ease, we investigate the above question, and

moreover, design a protocol to enhance the list of docked poses with

potentially acceptable solutions (“acceptable”—as defined by the CAPRI

assessment criteria, see the Materials and Methods section). For all pro-

tocols, we recorded both the highest FNAT docking pose and poses of

the highest quality, as defined by the CAPRI scoring scheme.

Although we have entirely focused on designing protocols to bet-

ter generate conformations that enrich the list of docked poses with

higher quality models, rather than improve their final ranking, a pre-

liminary analysis to determine whether we can identify the improved

poses did not indicate significant improvements (data not shown).

This underlines that development of good ranking schemes con-

tinues to remain a major obstacle for server developers. Nevertheless, if

a list of solutions does not contain high-quality docking poses, no form

of improved ranking will be able to enhance the overall docking pipeline,

so we are encouraged by our ability to generate higher quality poses.

3.1 | P1: Cross-docking extreme conformations from
the naïve mapping approach

Nine-times cross-docking runs (as described in the Materials and

Methods section) were performed using inputs generated at the

extreme magnitude of the lowest normal mode (in both the positive

and negative directions) for both receptor and ligand. In terms of the

best FNATs achieved across the board for the 56 targets, we observe

approximately a 10% uplift comparing with P0 (see Figure 1). Even

more encouraging, we observe that for 21% of targets, a top docking

pose can be generated that improves upon simply docking unbound

receptor and ligand pairs in a single SwarmDock run (as measured by

the CAPRI scoring scheme; see Table 1).

As the SwarmDock server has a number of stochastic elements

associated with its central PSO algorithm, such as the generation of

random initial orientations for the particles in each swarm, exactly the

same docking poses are not obtained for multiple runs with identical

starting protein conformations. Therefore, on 10 of the targets

selected randomly, ranging from rigid body to the more difficult cases,

we tested whether running SwarmDock nine times on each of them,

with the standard algorithm (ie, just R(u):L(u)), would also produce

improved docking poses as has been noted. Analysis of these results

showed that no improved docking poses could be obtained by this

simple approach (results not shown).

3.2 | P2: Cross-docking the theoretically closest to
the bound conformations for each receptor/ligand pair

The above cross-docking experiment indicates that better poses can

be generated than simply docking the unbound. If the ideal starting

conformation for each receptor and ligand could be found, ideal in as

much as their conformations are closer to their bound conformation,

would a SwarmDock run do as good, if not better, as the above cross-

docking protocol? To test this, the 56 docking runs were performed

starting from conformations adjusted relative to the unbound by

adjusting their conformations according to a linear combination of the

first three lowest mode amplitudes, as shown calculated by Equa-

tion (1) the values for which are shown in Table 1. The results of these

runs are shown in Figure 1. Interestingly, knowing the correct combi-

nation of normal modes, hence the generation of starting conforma-

tions closer to their bound state, did not generally improve the

docking results; we observed that for only 9% of targets there was an

improvement comparing with simply docking unbound receptor and

ligand pairs (protocol P0), but in 14% cases the quality worsened. This

may suggest that notable changes in the conformational states of

both binding partners, which may even be in the opposite direction

from their bound conformational states, are important in the docking

process, as opposed to the simpler notion of proteins obtaining their

near bound-state conformation early and then gently descending the

binding funnel with relatively minor conformational changes.

3.3 | P3: Cross-docking a selected energy map
conformation for each receptor/ligand pair

Cross-docking can generate docking poses with higher quality. How-

ever, the strategy employed in protocol P1 requires a 9-fold increase

in computation time relative to simply docking the unbound receptor/

ligand pairs. This constitutes a considerable burden on the turnaround

time for a publicly available server. Therefore, a strategy to select just

one conformation for each receptor and ligand (different from simply

F IGURE 1 Plot of the best percentage of native contacts vs
unbound-bound IRMSD for the 56 Target when various protocols,
from P0 to P3, are applied
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selecting the original unbound coordinates), which only requires a

4-fold increase in computation time, is desirable. For example, the

CAPRI target (6GBG), the starting receptor structure for (R5), was cre-

ated by assigning the following magnitudes (−76, 425, 240) to the

minimized unbound receptor, whereas for the ligand (L5) structure

(101, −64, −30) were applied.

Taking the best FNATs achieved (across the 56 targets) into con-

sideration, we observe a similar (10%) uplift as gained by P1 (when

comparing with P0; see Figure 1). We also observed that for 21% of

targets, a top docking pose can be generated, which is an improve-

ment upon simply docking unbound receptor and ligand pairs in a sin-

gle SwarmDock run (as measured by the CAPRI scoring scheme; see

Table 1). Considering the CAPRI methodology (which assumes that

medium grade structure is also acceptable), we see an uplift in quality

from both protocols P1 and P3 for 8 out of 12 complexes. Although

as previously stated, the focus of this work is on generating improved

docking poses as opposed to also improving their ranking, it is clearly

interesting to know where these eight consistently improved poses

might be ranked. Considering just the P3 protocol (4-fold cross-dock-

ing, equals around 2000 models), which has less final docking poses to

rank than the P1 protocol (9-fold cross-docking, equals around 4500

models), we observed the following ranks for each of the eight tar-

gets: 1JTD - 95, 3L5W - 35, 4GXU - 888, 3H2V - 5, 1 M27-34, 2VXT

- 220, 3AAD - 124, and 6GBG - 505. These ranks are based on merg-

ing standard clustering files produced by the SwarmDock server for

each run, clusters from which are subsequently sorted by their lowest

energy member.

The scoring strategy requires further innovation. However, alter-

native scoring schemes developed by the docking community may be

far better and here we encourage scoring scheme investigations and

development by making all docking poses generated in this study

available for download (see Supporting Information for details on the

“DYNACROSS” set available to download from https://doi.org/10.

6084/m9.figshare.c.4682477).

3.4 | General trends for each cross-docking set

Table 1 provides the relative degree of difficulty for the 56 targets,

and ranging from essentially rigid-body docking to more difficult

targets with notable conformational changes can be observed

between unbound and bound components. Cross-docking is rev-

ealed to be a valuable strategy for the entire spectrum of targets

with a slightly better improvement to FNAT for rigid-body and

medium difficulty targets.

In an attempt to explain the improved conformations over P0

when compared with the strained states used in protocols P1

(maximum extension along normal mode 1) and P3 (where normal-

ized DFIRE2 ≤ 5.0), we calculated SASA values (data not shown) for

all cases with improved quality (16 in total; see Table 1). It was

hypothesized that input structures are dynamic during docking and

native mechanisms, such as the opening of a binding site on a

receptor, which may allow easier access for incoming ligand, and

would lead to an increase in SASA for the receptor. The direction

of change in SASA did not prove to be a single predictor of favor-

able input structures, which led toward a favorable docking trajec-

tory. This may imply that there is no obvious single feature we can

use to explain why certain starting conformations are successful, as

there is likely to be a complex interplay between entropic and

enthalpic contributions.

F IGURE 2 Naïve approach
example—9-fold cross-docking
conformations. A, CAPRI Target
T131 (6GBG), showing the
variability in conformations that
are presented to the SwarmDock
server. Three receptor
conformations of the left, (Ru) as
green, (R-) as blue, and (R+) as
red, three ligand conformations
on the right, (Lu) as green, (L-) as
blue, and (L+) as red. B, The best
docked pose superimposed on
bound receptor structure, red and
blue are for bound receptor and
ligand, gray and green are for the
highest quality docked receptor
and ligand pair from run P1
(9-fold docking), and purple and
pink are for the highest FNAT
docked receptor and ligand pair
from run P0 (basic single run from
unbound). The pictures were
generated using VMD26
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3.5 | CAPRI Target 131 (6GBG)

We applied the abovementioned conformational search and cross-

docking protocol to one of the CAPRI targets (see Figure 2A): Target

131, a complex between CEACAM1, a cell surface protein receptor,

and HopQ, a Helicobacter pylori adhesion protein.32 This is a target for

which SwarmDock could not find an acceptable solution during the

CAPRI blind trials, and the best docking pose had 0.18% of native

contacts. We found acceptable solutions from (Ru):(L-) run in protocol

P1 and from (Ru):(L5) run in protocol P3 (see Figure 2B for P1 run).

The conformational sampling energetic maps for receptor and ligand

for the whole sampled three normal modes space and with normalized

DFIRE2 ≤ 5.0 are depicted in Figure 3. It should be noted that in nor-

mal modes space, the energy distribution is not symmetrical. It must

also be stated that with our final ranking scheme, we were unable to

rank this improved docking pose within the top 10 runs, indicating

that a parallel improvement in our ranking scheme would be needed

to take full account of improvements achieved in enhancing the qual-

ity of some of our docking poses.

4 | CONCLUSIONS

The CAPRI blind trials have set many challenges in the macromolecu-

lar docking field, ranging from docking of homology models to the

construction of multibody complexes. Irrespective of the specific

challenge, one clear message always feeds through in the assessment

of results, and deterministic modeling of flexibility in the docking

process remains an unsolved problem.33 One of the most exacerbat-

ing aspects, particularly for those developing docking servers, is our

inability to estimate the likely degree of flexibility for each target.

Counterintuitively, docking from the inputs, when the theoretically

best combination of normal modes for the unbound-bound transition

is applied, is not shown to be the best docking protocol. Interest-

ingly, the better conformations were obtained for protocols P1 and

P3 where a degree of perturbation for the input structures confor-

mations was employed. It is hypothesized that a relatively strained

starting conformation could give an entropic impetus for docking.

Here we show, in protocol P1, that by carefully searching the lowest

frequency normal mode combinations, for both the receptor and

ligand of binary complexes, conformations can be selected to

enhance subsequent automated docking. Then, we assessed the

energy landscape of the conformational envelope across three nor-

mal modes, up to a threshold of normalized DFIRE2 ≤ 5.0, and saw

similarly positive results, but required fewer SwarmDock runs.

Essentially the method attempts to blend the two fundamental

principles of associated with flexible docking—conformational selection

and induced fit. The results, showing a 10% uplift in quality, compared

to the simple approach of simply docking experimentally determined

unbound conformations, indicate that a careful exploration of confor-

mational selection space should ultimately aid docking efforts.

Furthermore, the previous bottleneck for sampling the conforma-

tional states space (the large number of samples and potential calculation

F IGURE 3 Energy diagrams for
linear combinations of the first three
lowest frequency modes. Receptor, all
samples (A) and DFIRE2 ≤ 5.0 (B), and
ligand, all samples (C) and
DFIRE2 ≤ 5.0 (D) for a CAPRI Target
131, 6GBG. DFIRE2 values were
normalized to the range from 0.0
(blue) to 10.0 (red) as presented in (E).
Yellow marks the origin (run P0) and
green marks various starting
combinations as labeled in the figure
for protocols P1, P2, and P3 (see the
Methods section and Table 1 for
details). Arrows show the normal
modes axes—red, green, blue for the
first, second, and third nontrivial
normal mode, respectively. The
pictures were generated using VMD26
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time for each position in normal modes space) could be mitigated by

applying spatial partitioning and multicore/multimachine computation.

Here, we used Aether Engine, which displayed consistent speed-ups as

parallelism is added, thereby allowing one to benefit from the full amount

of resources available. Therefore, the efficient preprocessing and docking

pipeline could be built and run as a publicly available server, with no prior

knowledge or access to supercomputing resources needed.

As an additional improvement for the future work, we consider

applying Aether Engine to allow the Particle Optimization algorithm to

be run on cross-docked structures in one simulation instead of run-

ning nine (P1), or four (P3), separate SwarmDock server runs per-

formed here. This will require the communication between swarms

with various input conformations (in relation to translational and rota-

tional space) and separately considering the normal mode space.

Future work on scoring strategies would be a good extension to

this work as improving the quality of poses in the docking pipeline

could only lead to improved ranking results.

As the diverse set of docking results, we named DYNACROSS for

easy reference, based on varying starting conformation can be valu-

able for groups involved in scoring methodology development,

cleaned up docking Benchmark 5 starting structures (plus CAPRI tar-

get T131) and docking results, in PDB formats, altogether with CAPRI

assessment values (such as IRMSD, LRMSD, FNAT, FNONNAT, and

quality), have been deposited at https://doi.org/10.6084/m9.figshare.

c.4682477 (see Supporting Information for details).
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