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Lung cancer is a disease with dismal outcome. We recently reported a detailed intratumor heterogeneity analysis in
7 non-small cell lung cancer samples, revealing spatially separated driver events as well as the temporal dynamics of
mutational processes and demonstrating an important role for APOBEC-mediated heterogeneity later in disease
evolution.

Lung cancer, of which non-small cell
lung cancer (NSCLC) is the most preva-
lent subtype, is the leading cause of can-
cer-related mortality. To better
understand NSCLC pathogenesis, several
sequencing efforts have been undertaken.
These studies demonstrated that NSCLC
exhibits a complex genomic landscape and
identified several NSCLC driver genes.1-3

Few studies have investigated the clonal
architecture of NSCLC. Whole-genome
sequencing analysis of 17 NSCLC samples
identified biclonal tumors, some of which
had potentially targetable mutations in
one subclone next to a clonal targetable
mutation.3 Intratumor heterogeneity in
NSCLC could thus have significant conse-
quences in terms of therapeutic efficacy.
We recently showed in renal cancer that
single region analyses significantly under-
estimates the heterogeneity.4 Therefore,
our understanding of the clonal architec-
ture of NSCLC and the biological pro-
cesses driving this disease remain far from
complete.

To gain a greater insight into the level
of intratumor heterogeneity in NSCLC
and improve our understanding of its evo-
lution, we set out to investigate in detail

the spatial and temporal heterogeneity of
NSCLC.5 We performed multiregion
exome and/or whole-genome sequencing
on 7 primary NSCLCs, including adeno-
carcinoma (LUAD) and squamous cell
carcinoma (LUSC) samples.

We found spatial heterogeneity of
mutations, copy number alterations, and
translocations. On average, two-thirds of
all mutations identified in a tumor were
present in all regions of that tumor,
whereas one-third of the mutations were
present in only one or a few regions.
Importantly, known lung cancer driver
genes, including therapeutically targetable
drivers, were significantly more often pres-
ent in all tumor regions. Nevertheless, all
tumors revealed candidate driver muta-
tions and/or copy number aberrations
present in only one or two regions.
Sequence analysis of only that region
would have given the illusion that these
subclonal driver mutations were fully
clonal events (Fig. 1).

To investigate the temporal heteroge-
neity in mutations, we separated ‘early’
mutations (present in all tumor regions)
from ‘late’ mutations (present in at least
one, but not all regions) and explored the

mutational spectra over time. We found
that all tumors from former and current
smokers showed a decrease in smoking-
associated C>A mutations over time,
accompanied by an increase in C>T and
C>G mutations at TpC sites in the
majority of tumors, indicative of apolipo-
protein-B mRNA editing catalytic poly-
peptide-like (APOBEC) cytidine
deaminase-mediated mutagenesis.6 On
average, 31% of the ‘late’ non-silent muta-
tions occurred in an APOBEC context
compared to 11% of the ‘early’ non-silent
mutations, indicating a functional impact
of APOBEC activity later in NSCLC
evolution.

It is currently unclear what activates
APOBEC enzymes in NSCLCs, or other
tumor types.6-8 A striking observation
from our study is the more pronounced
enrichment of APOBEC-associated ‘late’
mutations in LUAD compared to LUSC,
suggesting a different regulatory route for
APOBEC activity between histological
subtypes. We furthermore noticed that
chromosomal instability, including whole-
genome doubling events, often preceded
APOBEC activity. We could not, how-
ever, find an association with
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chromosomal breakpoints, nor did we
find any evidence for clusters of APOBEC
mutations.

A number of other questions arise
from our findings, such as: What drives
spatial heterogeneity? Does it result from
random genetic drift with spatially differ-
ent selective pressures, or is there a spatial
barrier between the subclones preventing
subclonal intermixing? Having deter-
mined the tumor cell fraction of each
mutation within each region, we found
very few subclonal mutations shared
between regions (Fig. 1), indicating that
the regions may evolve through a process
similar to allopatric speciation, with geo-
graphically distinct separation of sub-
clones. The striking regional differences
in APOBEC activity in some tumors pro-
vide evidence for spatial heterogeneity in
mutational processes, leading to increased
mutational intratumor heterogeneity.

Multiregion sequencing of 10 renal
cancer samples revealed that many known
driver mutations were always subclonally
present.4 It would be very interesting to
determine whether certain driver muta-
tions are predominantly subclonal or
always clonal using larger NSCLC cohorts.
Furthermore, this approach can be used to
increase the statistical power to identify
novel drivers of subclonal expansions.

Intriguingly, by combining smoking
cessation information with the relative
timing of clonal genome doubling events,
we found evidence for a prolonged latency
period of these tumors. In these cases, all
‘early’ driver mutations had occurred
more than 2 decades prior to surgery,
indicating a long period during which
these tumors have been shaped, most
likely involving many processes prior to
clinical presentation.

Another important question for
NSCLC is whether the observed intratu-
mor heterogeneity has clinical consequen-
ces. Importantly, we found that the
mutations present in metastasized tumor
cells of patients with lymph node involve-
ment closely correlated with one particular
region within the primary tumor, indicat-
ing that a minor subclones present in a
distinct region in the primary tumor can
determine clinical outcome. Intriguingly,
the level of intratumor heterogeneity var-
ied from 4% to 63% across the samples.
Such variation indicates that tumors could
potentially be classified into discrete cate-
gories based on their heterogeneity, and
these categories may hold clinical rele-
vance. Interestingly, an accompanying
study of 11 early-stage NSCLCs by Zhang
et al. showed that primary tumors from
the 3 patients with relapsed disease had

significantly larger subclonal fractions
than tumors from the other patients.9

In conclusion, our study showed vary-
ing levels of intratumor heterogeneity in
NSCLC, and revealed insights into the
processes that shape the NSCLC evolu-
tion, with APOBEC enzyme activity pre-
dominantly later in disease evolution. Our
study justifies larger longitudinal studies,
such as the lung TRACERx study,10 to
assess the clinical impact of this heteroge-
neity on patient outcome.
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Figure 1. Multiregion DNA sequencing allows analysis of genetic diversity within a tumor. Certain mutations are present in all tumor regions, whereas
others are only present in certain tumor regions, as presented in a heatmap. 2D-Dirichlet analyses of mutations corrected for copy number shows the
clonality of each mutation within each region (upper graph). The presence of 2 copies of multiple mutations can indicate a genome-doubling event, in
which the entire tumor genome has been duplicated. Mutations present in 2 copies were present prior to the doubling event whereas those present at
one copy occurred after the doubling (lower graph). The mutational diversity can also reveal a tumor’s life history. Exploring ‘early’ versus ‘late’ muta-
tional signatures sheds light on howmutational processes change over time. In NSCLC adenocarcinomas, ‘early’mutations are mainly caused by smoking
whereas ‘late’mutations are mainly caused by apolipoprotein-B mRNA editing catalytic polypeptide-like (APOBEC) cytidine deaminase activity.
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