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article and alanine. We improve on this by extending the scope of residue types to include

all 20 naturally occurring residue types. Our results reveal differences in secondary
structure preferences for the all residue types. There are in most cases very deep energy
troughs corresponding either to the polyproline Il (collagen) helix and the a-helix or
both. The 3-strand was not strongly favoured energetically although the extent of

this depression in the energy surface is, while not "deeper” (energetically), has a wider
extent than the other two types of secondary structure. There is currently great interest
in the question of cotranslational folding, the extent to which the nascent polypeptide
begins to fold prior to emerging from the ribosome exit tunnel. Accordingly, while
most previous quantum studies of dipeptides were carried out in the (simulated) gas
or aqueous phase, we wished to consider the first step in polypeptide biosynthesis on
the ribosome where neither gas nor aqueous conditions apply. We used a dielectric
constant that would be compatible with the water-poor macromolecular (ribosome)
environment.

Background

There are many reasons why there has been so much interest in calculating peptide con-
formations (Gould et al. 1994; Wu et al. 2010; Bellesia et al. 2010; Hovmoller et al. 2002;
Bywater and Veryazov 2013; Carrascoza et al. 2014). These include the need to under-
stand the preferred conformations of physiologically active peptides, the way peptides
are incorporated into polypeptide and protein structures, and the conformation of de
novo peptide formation in the ribosome. Most previous studies (Gould et al. 1994; Wu
et al. 2010) were concerned with small peptides per se, in the gas or aqueous phase, while
we addressed the latter question, that of peptide biosynthesis.

Throughout this and our previous work, and in keeping with the usage adopted by
previous authors (Gould et al. 1994; Bywater and Veryazov 2013; Carrascoza et al. 2014),
we study constructs that we refer to as primitive dipeptides with a N-acetyl-(XXX)
(2)-N'-methylamine as a generic structure in which XXX represents the defining amino
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acid residue type for the particular dipeptide. In this context, N-acetyl is employed as a
surrogate for the first amino acid residue in the dipeptide. Although not a true amino
acid residue as such it is needed, together with the C-terminal amide group, to provide
the correct electronic arrangement for a dipeptide and in order to block zwitterion for-
mation. We chose to study all twenty members of the canonical set of amino acid types.
A previous publication (Carrascoza et al. 2014) also reported studies of the entire set of
amino acids, with somewhat different results, as discussed below.

As referred to in earlier papers (Bywater et al. 2001; Bellesia et al. 2010; Hovmoller
et al. 2002; Bywater and Veryazov 2013; Carrascoza et al. 2014), different residue types
have different propensities to adopt one or other of the regularly repeating polypep-
tide structures, a-helix, 3,, helix, polyproline II helix (here abbreviated as PP-helix) or
[B-strand (Bywater et al. 2001; Liljas et al. 2009). These preferences are however not abso-
lute, they can vary according to context: both near neighbours and internal 3D contacts
can affect the outcome. In many different areas of protein science it is of interest to know
what are the energetic differences between these conformations. In the area we wish to
investigate, that of the conformation adopted by newly synthesized peptides on the ribo-
some, it has previously been proposed (Lim and Spirin 1984, 1986) that the a-helix is
the predominant structure. Our earlier results (Bywater and Veryazov 2013) support this
prediction, but an alternative, the PP-helix, emerged as an equally likely and in some
cases stronger contender. Furthermore, any extended a-helix would be vulnerable to dis-
ruption upon the appearance of a proline residue (Bywater et al. 2001). These reflections
added to the importance of studying all twenty amino-acid types so as to see how these
preferences are distributed throughout the entire set. It is important to note that while
the a-helix and the B-strand are, either singly or in combination, by far the most pre-
dominant secondary structure types found in globular proteins (membrane proteins are
either all-a-helix or all-B-strand), for fibrous proteins the converse is true, these are typi-
cally proline- and glycine-rich structures similar to the PP-helix which plays a promi-
nent role. The protein biosynthesis machinery must be able to cater for both classes of
protein.

Methods

We constructed the starting structures for each of the many thousands of calculations in
the same way as before (Bywater and Veryazov 2013) using the Yasara protein modelling
program package (Krieger et al. 2002). A complete set of conformers was constructed
for each set, whereby the C, ;—N,—CA,;—C,; angles (the ¢ angle) were stepped through at
intervals of 3° (120 steps) while for each ¢ rotamer the N;-CA,—~C—N,_ , angle (y) was
stepped through 120 steps of 3°. This produced a total of 1681 structures for each amino
acid type (41 for the special case of proline). In contrast to certain other studies (e.g.
Carrascoza et al. 2014) there was no attempt to optimize these input structures. Instead
a so-called rigid scan regime was imposed whereby, for each amio acid type, the rota-
meric state of the side chain was maintained while the ¢,y angles were changed. This
was considered essential in order to be able to make like-for-like comparisons for each
amino acid type at these different backbone angles. If the side chain rotameric state for
each different backbone geometry were allowed to relax, that would produce an energy
minimized structure, but that would be a rather uninteresting object of study because it
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could not be compared with the thousands of other backbone geometries. Furthermore,
the minimum side chain energy state may or may not be relevant at all. For all but the
“smallest” side chain types there are multiple rotameric states that are accessible (Ponder
and Richards 1987; Pupo and Moreno 2009). It would be impossible to cater for all of
them.

For each of these conformers DFT calculations with B3LYP functional and ANO-
L-VDZP basis set were performed using Molcas 7.8 (Aquilante et al. 2010). The PCM
model was used to simulate solvation effects (Karlstrom et al. 2003; Pomelli and Tomasi
1997). As before (Bywater and Veryazov 2013) we selected a dielectric constant of 2.5
to reflect the water-poor environment of the peptidyltransferase site and the extremely
slow tumbling rate of an object as large as a ribosome.

Results

The results of our calculations for the 20 residue types are presented in the form of
Ramachandran-style energy surface plots for each residue type and a table that summa-
rizes the salient features of each of these plots. Some necessary auxiliary information is
required as a preliminary, this is provided in the form of the first two figures. Figure 1
is a graphical overview Ramachandran plot showing the ¢,¢ positions of the 50 lowest
energy conformers for all amino acid types except G and P. The location of the three clas-
sical secondary structure types o-helix, 3;,-helix and PP-helix are shown by colored tri-
angles (see caption to Fig. 1). Figure 2 focuses on the forbidden regions. This is intended
to highlight some characteristics of certain residue types (in particular I, V, T and D) and
to explain some features that turn up in Figs. 3, 4, 5 and 6. Further details are given in
the caption to the figure. The grid and axis markings of Fig. 1 can be used for scaling
the 20 plots in Figs. 3, 4, 5 and 6 [the B-strand region (not marked in the figure) covers a
very wide range 100° < ¢ < 180°, 90° < ¢ < 180°]. We note however that the large central
forbidden region in our plots is almost absent in those of Carrascoza et al. 2014. The full
set of results are displayed in Figs. 3, 4, 5 and 6, Ramachandran-style plots showing the

¢, ¥ distributions separately for each residue type (20 plots) with energy contours shown.
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Fig. 1 Generic ¢,y map showing commonly populated areas. This figure is intended to be used as a
template for labelling axes and determining values for the dihedral angles in Fig. 4. Blue triangle a-helix, red
triangle 3, helix, green triangle PP-helix
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Fig. 2 Generic ¢,y map showing commonly forbidden areas. For this plot, “forbidden areas”is defined as
those representing structures in which there is a close contact (‘collision”) between atoms. The contact
distance was set at 0.93 A. These forbidden areas are generally less interesting than the “valleys’ of the energy
surface but they explain why certain residue types behave the way they do (in particular V, | and T). Residue
types are shown in lower-case single letter code. This figure also explains the black regions in some of the mem-
bers (especially V .and D) of Figs. 3, 4, 5 and 6—the energy gradients are too steep to be properly rendered by
the graphics

There are 1680 data points for each plot (except P) and in order to give a better represen-

tation of this data a scaling factor tanhy/(e? — €2,,,

)/10 was applied. For residue type P,
only the region —72° < @ < —60° is shown (40 data points). Because of the cyclic structure
of its side chain involving the atoms which form the ¢ torsion angle (C’-N-CA-C), there
are essentially no structures outside that range. As stated above, the key findings from a
perusal of these plots is provided in Table 1 which describes the topography of the energy
surface in ¢,¢ space and provides remarks concerning the secondary structure prefer-
ences for each residue type.

Discussion

Our previous results, for residue types G, A, I and L provided support for established
ideas (Lim and Spirin 1984; Lim and Spirin 1986) that the a-helix is a “default” confor-
mation for the de novo generation of polypeptides on the ribosome but also demon-
strated a clear alternative or rival. The PP-helix was given comparable, if not in some
cases, greater prominence. We see further examples of that here, in the now extended
repertoire of residue types. This is important because there is for any species only a
single class of ribosome which has to cater for both globular (requiring a-helix and/or
B-strand) and fibrous (strongly PP-helix preferring) proteins. Recent DFT studies on
a restricted set of GXG model peptides (Ilawe et al. 2005) confirm the prominence of
the PP-helix, while also finding a preference for -strand. The latter is understandable
since these authors were focusing on the X = I/V/L and the first two of these residue
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Fig. 3 QU energy surfaces for dipeptides. O, energy surfaces for dipeptides with residue types are shown in
this order: A (Ala), C (Cys), D (Asp), E (Glu), F (Phe). Note that only the —72° < ® < —60° region is relevant for
Pro because of its cyclic structure involving the -N-CA-CB-CG-CD- atoms which restricts rotation around
the @ dihedral bond. A diagram showing the chemical structure for Pro is provided in order to illustrate this.
Some members of this set of dipeptides appear to show defects (black colour) in certain regions. This has

been anticipated and explained above (caption to Fig. 2)

types are known (and shown here) to be B-strand preferring. All of these “preferential”
states (a-helix, B-strand, PP-helix) must be regarded as at least potentially accessible for
most amino acid types. I and V do turn up in «-helices, albeit less frequently than in
[B-strands. Note should be taken of the fact that while a- and PP-helix occupy a rela-
tively small area of ¢,y space these two structural types are characterised by very deep

Page 5 of 12
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Fig. 4 O\ energy surfaces for dipeptides. O, energy surfaces for dipeptides with residue types are shown in
this order: G (Gly), H (His), I (lle), K (Lys), L (Leu). For details see the caption to Fig. 3

depressions which renders them enthalpically favored. The B-strand in contrast covers a
wide area (alternatively: there is greater tolerance to distortions) although the depression
is not as deep. Located between the a-helix, f-strand zones is a region that corresponds
to the 2.2, ribbon structure. This was discussed at length in Carrascoza et al. 2014 and
indeed, our results do not rule out that some of the amino acid types might dwell in that
region. But it is not normally found in proteins and it is an unlikely contender as part of
a biosynthesis process. Concerning the apparent propensities for an a-helix geometry,
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Fig. 5 QU energy surfaces for dipeptides. O, energy surfaces for dipeptides with residue types are shown
in this order: M (Met), N (Asn), P (Pro), Q (GIn), R (Arg). For P (Pro) the cyclic structure of sidechain locks the
torsion angle. For details see the caption to Fig. 3

this has to be viewed in the light of the fact that we are considering dipeptides and a true
a-helix will not actually form in stretches shorter than 4 residues, in which the first of
the hydrogen bonds that stabilize the helix can be established. So this suggests that there
is something that intrinsically favours this helix regardless of the assistance provided by
hydrogen bonds. The answer almost certainly resides in the need to “remove bumps’,
i.e., steric repulsions between the atoms at certain key side chain torsion angles. Similar
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Fig. 6 O\ energy surfaces for dipeptides. O, energy surfaces for dipeptides with residue types are shown in
this order: S (Ser), T (Thr), V (Val), W (Trp), Y (Tyr). For details see the caption to Fig. 3

remarks might be made about the B-strand. There is a very wide range of backbone tor-
sion angles available to this geometry. Also in this case there are no stabilising hydrogen
bonds, but in proteins, -strands are always incorporated into B-sheets, held together
by hydrogen bonds. These [3-sheets exhibit, as mentioned above, a very large variety of
“shapes” and contortions which are allowed because of the very wide range of torsion
angles accessible to the constituent p-strands. Lastly, mention should be made of 3,
helices. There are clear hints of distinct differences in their prevalence between different
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amino acid residue types and this can have repercussions for how protein folding takes
place. Now that we have energy calculations for the entire set of 20 residue types this
malkes it easier to survey the whole family and see what patterns of secondary structure
preferences might emerge.

The results presented here can be used by protein chemists as a guide to what the
most likely secondary structure propensities are for each of the amino acid types. But
certain caveats need to be issued. Firstly, the structures studied are not in the strict
chemical sense “correct” structures for the dipeptides in gas phase or solution. This
is anyway not an endeavor of compelling interest. Here, we have attempted to mimic
an environment that the incipient polypeptide chain might encounter in the inter-
stices of the ribosome, or indeed anywhere inside the cell which is known to be very
“crowded”, but we can only do that with a very primitive solvation model. We do not
know what the neighboring residues in contact with the newly synthesized peptide
are and what the precise geometric arrangement is. We only allow the two backbone
angles ¢ and Y to change, Given the uncertainties about the environment, it does
not make sense to allow all other angles to relax and to conduct energy minimiza-
tions of these structures. We think that by conducting things in the way we have has
at least thrown some light on to the question of how each residue type behaves in
comparison with the others, and some information concerning secondary structure
propensities is provided. Obtaining structural information about longer peptides is of
course also of great interest, but different methodologies are needed for that, molecu-
lar dynamics rather than quantum chemical methods, and recent work (Nilsson et al.
2015) reports the results of such cotranslational folding studies. These data do not
in any way contradict our results, quite the converse, but the example given was of
a small protein with a tendency to form a-helical structure. It would be interesting
to see if any attempt is made to detect cotranslational folding of a fibrous protein, in
which case the collagen PP helix would come into play.

Conclusions

There has been much interest in determining the structure of dipeptides. Usually these
efforts have been restricted to the case of primitive dipeptides where the central residue
type is glycine or alanine, and no account was made of the effect of solvent. Gas-phase
conditions were assumed. Our previous work extended this coverage of the residue type
repertoire to two further cases, that of leucine and its position isomer isoleucine. Sim-
ulated solvent conditions corresponding approximately to the water-poor environment
and large particle size of a ribosome (or elsewhere in the crowded interstices of the cell)
were applied. Already at that stage, major differences were seen between the four residue
types, particularly between the two isomers. This encouraged further research into the
entire set of 20 standard residue types. We have produced a compendium that protein
chemists can use as a guide to the most likely secondary structure propensities for each
of the amino acid residue types. Most amino acid residue types can access all three of
the major secondary structures a-helix, 3-strand, PP-helix but there are individual prefer-
ences which were known from experimental and bioinformatics studies. Our plots map
out these preferences. In reference to ribosomes we recall that the same ribosomes have
to cater for all 20 amino acid types but also enable both globular and fibrous proteins to
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be formed within and emerge from the peptide synthesis tunnel. We have not considered
cotranslational folding as such, but our work should be helpful as a starting point for such
studies.
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