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Inhibition of D-Ala:D-Ala ligase through a
phosphorylated form of the antibiotic D-cycloserine
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D-cycloserine is an antibiotic which targets sequential bacterial cell wall peptidoglycan bio-
synthesis enzymes: alanine racemase and D-alanine:D-alanine ligase. By a combination of
structural, chemical and mechanistic studies here we show that the inhibition of D-alanine:D-
alanine ligase by the antibiotic D-cycloserine proceeds via a distinct phosphorylated form of
the drug. This mechanistic insight reveals a bimodal mechanism of action for a single anti-
biotic on different enzyme targets and has significance for the design of future inhibitor
molecules based on this chemical structure.
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ARTICLE

he increased incidence and dissemination of microbial

resistance to antimicrobials, the lack of incentive for

development of these drugs in the pharmaceutical sector
and the relative failure of high throughput approaches in the
discovery of new antimicrobial targets, all point to a growing
crisis in treating infectious diseases"™. It is clear that many of the
most highly successful antibacterial agents target multiple activ-
ities in bacterial metabolism, resulting in cellular responses
leading to cessation of growth or cell lysis**. This makes the re-
evaluation and further exploration of established antimicrobial
targets and natural sources of antibiotics that target them, a
potentially powerful approach to future antibacterial development.

D-cycloserine (DCS) has been long known to have antibacterial
properties and is unusual in respect of multi-targeting, since it is
known to inhibit two sequential enzymes in the bacterial cell wall
peptidoglycan biosynthetic pathway, leading to the formation of
the dipeptide D-alanyl-D-alanine (D-Ala-D-Ala)°. DCS targets
alanine racemase (Alr), leading to the formation of an aromatized
DCS-PLP adduct, which irreversibly blocks Alr activity®. In
addition, DCS also targets the next enzyme in the pathway, D-
Ala-D-Ala ligase (Ddl). DCS inhibition of Ddl was thought to be
by simple, competitive and reversible binding to one of the D-Ala
binding sites® on this enzyme. The bacterial targets of DCS
inhibition in mycobacteria have been recently shown by meta-
bolomics to be both Ddl and Alr but predominantly via the
former enzyme’. DCS is a natural product of Streptomyces gar-
yphalus and S. lavendulae and is a structural analog of D-Ala. Its
clinical use at present is limited to the treatment of tuberculosis
(TB), where it is used as a second-line drug for multidrug resis-
tant strains of Mycobacterium tuberculosis. Its utility is limited as
DCS is also a co-agonist of the N-methyl-p-aspartic acid
(NMDA) receptor in the brain. DCS binds to the glycine mod-
ulatory site of the NMDA receptor and causes adverse side effects,
including seizures and peripheral neuropathy®. These rare but
serious side effects limit its use as an antibiotic to all but the most
recalcitrant M. tuberculosis infections and preclude its more
general use as an antimicrobial agent. However, oral bioavail-
ability, its general efficacy, high gastric tolerance, low rates of
resistance and lack of cross reactivity to other anti-TB drugs
mean it is still of considerable interest and potential.

Ddl enzymes present an attractive target for further che-
motherapeutic investigation because of their essential and uni-
versal role in bacterial cell-wall peptidoglycan biosynthesis, which
has been a validated target for antibiotics since the discovery of
penicillin. Ddls, which belong to the ATP grasp superfamily, use
ATP to activate a single D-alanine substrate. Phosphorylation of
D-alanine by the bound ATP (Supplementary Fig. 1) produces a
transient phosphoryl carboxylate intermediate susceptible to
nucleophilic attack by a second D-amino acid. The resulting
dipeptide is then incorporated onto the tripeptide chain of the
peptidoglycan by the next enzyme in the cytoplasmic phase of the
peptidoglycan biosynthetic pathway’. Additional interest in Ddl
enzymes arises with altered second-substrate specificity of the
vancomycin associated Ddl ligases (e.g., VanA, VanB, VanC),
which are the central components in the resistance mechanism’
and have been recently shown to have been present in the eco-
system for millennia'’. Although the interaction of DCS with Alr
has been thoroughly studied, no comparable structural data has
yet been obtained to show how DCS interacts with Ddls. We set
out therefore to investigate this by elucidation of Ddl structures in
complex with DCS and natural ligands to provide further
mechanistic insight into the mode of inhibition. Our results reveal
the presence of phosphorylated DCS and ADP in both active sites
within a dimer. These results are confirmed “off-crystal” using
positional isotope exchange and ATPase inhibition assays.
Importantly, calculations indicate that DCSP would not bind to
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the human NMDS receptor, which is the main cause of its toxi-
city. DCSP-inhibited EcDdIB represents a significant advance on
the mechanism-of-action of this clinically used antibiotic and
paves for the development of further improved analogs to target
Ddl enzymes.

Results

Structure of inhibited EcDdIB reveals phosphorylated DCS. E.
coli DAIB (EcDdIB) was co-crystallized, as described in methods,
with ATP and D-Ala-D-Ala (Fig. la), ADP and D-Ala-D-Ala
(Fig. 1b), and ATP and DCS (Fig. 1c) and structures determined
at sub 2 A resolution as summarized in Table 1. The overall
structure is described in Supplementary Fig 2. Weighted differ-
ence maps at 1.65 A resolution revealed the surprising discovery
that phosphorylated DCS was bound in the high-affinity D-ala-
nine binding site (D-Alal), with the y-5'-phosphoryl moiety of
ATP having been transferred to the 3-oxygen of DCS (Fig. 1c).
Continuous strong electron density extended from the DCS
oxygen into the phosphoryl group, which was then linked by two
magnesium ions to the product ADP. This finding revealed the
existence of a new chemical entity, DCSP, within this inhibited
EcDdIB structure. The DCSP moiety mimics the structure of D-
alanyl phosphate, which is an obligatory intermediate formed by
phosphoryl transfer during the first stage of catalysis, prior to
condensation with the C-terminal D-Ala of the D-Ala-D-Ala
product of DdIB. DCSP exploits most of the interactions that
generate the high affinity site for the first D-Ala substrate (D-
Alal). The amino group of DCSP forms a strong hydrogen bond
with the carboxylate group of Glu-15, mimicking the critical
interaction made by the «-amino group of D-Ala in the first
subsite. The ring oxygen (position 1) of DCSP is hydrogen
bonded to the backbone NH of Gly-276, in the oxyanion pocket
of DdIB, while the adjacent non-protonated ring nitrogen, which
occupies the position of the peptide oxygen of the dipeptide D-
Ala-D-Ala product mimics the bifurcated interactions with Gly-
276 NH and Arg-255 NH1 made by this atom in the product
complex. The DCSP phosphate group is hydrogen bonded to
Arg-255 (NH1 and NH2), Lys-215 and the amide nitrogen of
Ser-150, replicating the interactions observed with the y-
phosphate of ATP and it forms additional links with the adja-
cent ADP via two coordinated magnesium ions that bridge
between the DCSP and ADP molecules.

Positional isotope exchange shows DCSP formation in solu-
tion. To demonstrate the formation of DCSP by EcDdIB in
solution a positional isotope exchange (PIX)!112 experiment was
setup using [y-'30,]-ATP. Changes in the isotopic composition
of the initial [7—1804]—ATP species over time were monitored by
3P NMR spectroscopy (Fig. 2). As described in the PIX reaction
scheme (Fig. 2a), the reversible transfer of the y-P group from [y-
180,]-ATP to DCS (1 and 3) induces scrambling in the position
of the p-y bridging 0 and affects the isotopic composition at y-
P and B-P. This is caused by the free rotation of the B-P group of
ADP with subsequent positional exchange of oxygens before the
reverse reaction takes place (2). As a consequence, decrease of the
[y-1804]-P species and concomitant increase of [y-1803 160]-p
species are observed in the NMR spectrum (Fig. 2b and Supple-
mentary Fig. 3a) as well as transfer of the B-y bridge 30 to a non-
bridging position, resulting in an upfield change of 'P chemical
shift at the p-P position (Fig. 2c). No PIX reaction was observed
in control experiments performed in absence of DCS at the same
concentration of EcDdIB, confirming that DCS is the specific
acceptor of the ATP y-P group during the phosphate transfer
reaction (Supplementary Fig. 4). A rate of 0.36 h™! was obtained
for the PIX reaction by fitting the decrease of the [y—1804]—P
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Fig. 1 Active site region of EcDdIB in different complexes. a Active site region of EcDdIB in complex with ATP and D-Ala-D-Ala, and (b) ADP, carbonate ion
and D-Ala-D-Ala. ¢ 2F.-F, difference map of EcDdIB in complex with ADP, 2Mg2* and DCSP. Electron density at 2 & is shown over the ADP, Mg%* and
DCSP atoms for clarity. EcDdIB residues Glul5 (above) and Arg255 (below) are within hydrogen bonding distance to DCSP

species fraction (Fig. 2e) to Eq. (1):
F=Fy+Ae™ (1)

where, F is the fraction of y-'80,-P scrambled, F, is the final
exchange value of y-180,-P, A is the amplitude of change in
-180,-P observed during the experiment, k is the observed rate,
and ¢ is time. The PIX rate reaches a value of zero at around 8 h.
Control experiments (Supplementary Fig. 3b) indicate that this
decrease in PIX rate is due to isotopic equilibrium, which as DCS
is an inhibitor, or very slow substrate in this particular case, is
quite slow. Importantly, as identical PIX kinetics are observed in
control experiments, where fresh labeled ATP was added after the
equilibrium was achieved (Supplementary Fig. 3b), it is clear that
the slowdown in PIX rate is not due to enzyme or substrate
inactivation.

DCS inhibits EcDdIB phosphatase activity. Under the condi-
tions of the PIX experiment, hydrolysis of ATP was detected as a
side reaction over an incubation period longer than 8h. The
phosphatase activity of EcDdIB has been quantified by NMR
under the conditions employed for the PIX experiment (Sup-
plementary Fig. 5). In addition, kinetic measurements were per-
formed using a coupled enzyme system (Fig. 2f). Fitting of the
initial velocity data from the latter experiment to Eq. (2) provided
a K, for ATP hydrolysis of 167 + 13 uM and a V. of 0.29 +
0.01 min~%.

_ Vimaxx A

= _maxT 2
YK A (2)

where v is the velocity at substrate concentration A, V., is the
maximal velocity, and K, is the Michaelis constant. Initial velo-
city data obtained in the presence of DCS show inhibition of ATP
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hydrolysis, and were fitted to Eq. (3) (ICso 11.5+ 0.7 uM), con-
firming that the observed activity is specific to EcDdIB and not
caused by the presence of an adventitious phosphatase con-
taminant (Fig. 2g).

[1 + (;)"H} (3)

where, I is the concentration of DCS, ICs is the concentration of
DCS necessary to give 50% inhibition, and n® is the Hill number.
Together, these experiments demonstrate a direct interaction of
DCS with ATP and positional isotope exchange of ATP y-P,
induced by DCS, consistent with the formation of DCSP.

V=

The NMDA receptor’s glycine site cannot accommodate DCSP.
In relation to neurotoxic effects associated with the binding of D-
cycloserine to the NMDA receptor, it has been documented that
D-serine, D-cycloserine and glycine bind to the NR1 region of the
NMDA receptor in overlapping positions'>. In order to explore
the possibility that the phosphorylated D-cycloserine species may
also bind within the NMDA receptor, we applied the docking
algorithm eHiTS!* to the D-cycloserine binding region within the
NR1 crystal structure, and modeled the resulting best docking
“pose” (Supplementary Fig. 6a—d). These studies indicated that
there is insufficient space in the NDMA ligand binding site to
accommodate the DCSP species (Supplementary Fig. 6a, b).
Using the scoring function in the de novo ligand design program
SPROUT??, the predicted binding affinity for the phosphorylated
D-cycloserine to NRI1 is around two orders of magnitude lower
than that predicted for the binding of D-cycloserine itself to NR1.
Importantly, the phosphate group cannot be accommodated
within the ligand binding site due to predicted steric clashes of
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Table 1 Data collection and refinement statistics

EcDdIB DCSP-ADP
(PDB: 4C5A)

EcDdIB D-ala-D-ala-ATP
(PDB: 4C5B)

EcDdIB D-ala-D-ala-ADP (PDB: 4C5C)

Data Collection

Synchrotron radiation beamline,
detector and wavelength (A)
Unit cell (A)

Space group

Resolution (A)

Observations

Unique reflections

I/a(1)
Rsyma

Completeness (%)
Refinement non-hydrogen
atoms

b

Diamond, 104, ADSC Q315
CCD 0.9763

a=53.79, b=97.51, c=109.99
P212:2

49-1.65 (1.71-1.65)

468913

70170

23.8 2.1

0.076 (0.655)

99.8 (99.7)

5100 (including 2 ADP, 4Mg?*,
2 DSC-P, 2 glycerol & 347
water molecules)

Diamond, 104, ADSC Q315 CCD
0.9763

a=51.23, b=97.8-, c=110.12
P2,2:2,

49-1.4 (1.45-1.4)

648917

106127

22.4 (2.)

0.069 (0.577)

97.1(94.6)

5365 (including 2 ATP, 4Mg2+, 2 D-
Ala-D-Ala, 3Mg?* 1 imidazole, 2
glycerol & 652 water molecules)

Diamond, 104, ADSC Q315 CCD 0.9763

a=53.00, b=97.62, c=109.49
P212:2

48-1.5 (1.55-1.5)

601481

91443

18.9 (2.1)

0.093 (0.578)

99.9 (99.1)

5483 (including 2 ADP, 4Mg%*, 2C05%",
2 D-Ala-D-Ala, 2Mg%* 1 imidazole, 2
glycerol & 766 water molecules)

Reryst 0.205 (0.318) 0.180 (0.285) 0.170 (0.263)
Reflections used 67309 (4861) 101827 (7180) 87714 (6275)
Riree 0.237 (0.327) 0.203 (0.284) 0.200 (0.283)
Reflections used 2861 (210) 4300 (273) 3729 (258)
Reryst Call data)P 0.206 0.181 0171

Average temperature factor 16.9 1n.4 1.9

(A%

Protein 16.5 10.1 10.3
Co-factors 24.2 9.9 9.1

Solvent 20.6 20.8 21.8

Wilson plot 19.4 129 13.6

Rmsds from ideal values

Bonds (A) 0.014 0.015 0.015

Angles (deg) 1.6 1.7 1.6

DPI coordinate error (A) omn 0.07 0.08
Ramachandran plot

Most favored (%) 92.0 93.7 935
Additionally allowed (%) 8.0 6.3 6.5

“Riree is equivalent to Reys; for a 4% subset of reflections not used in the refinement?®
dDP] refers to the diffraction component precision index3°

Numbers in parentheses refer to values in the highest resolution shell

Rsym = SiShllhnj = <Ih>1/S;Sh<ln> where I; is the jth observation of reflection h, and </,> is the mean intensity of that reflection
bRc,yst=SIIF0bSI = IFcaicll/SIFopsl Where Fops and Fegc are the observed and calculated structure factor amplitudes, respectively

The SIGMAA weighted 2mF,-AF, electron density3! is contoured at the 1.0 & level, where & represents the rms electron density for the unit cell

DCSP with the wall of the NMDA ligand-binding cavity (Sup-
plementary Fig. 6¢, d).

Discussion

DCSP is clearly stable under conditions employed to crystallize
and diffract EcDdIB but previous work indicated that alanyl-
phosphates and related compounds are likely to break down
rapidly in aqueous solution, precluding their experimental isola-
tion for confirmatory purposes'. The highly reactive nature of
acyl phosphates, and in particular, the great difficulties in terms of
isolating and characterizing them, has been well established.
Although very early chemical approaches have shown that inso-
luble silver salts of acetyl phosphate itself can be isolated!” all
other reports involving these systems indicate that they are
reactive and subject to ready decomposition. For example, under
neutral conditions (pH="7.2), it has been shown that acyl phos-
phates are rapidly hydrolyzed'® (e.g., rate of hydrolysis of acetyl
phosphate at 39°C and pH 7.2=4.4 x 10° min~!). More recent
studies'® report that acyl-phosphorylated amino acids (e.g., that
derived from valine), generated in aqueous solution, can be
detected using NMR, but are somewhat transient, and undergo
steady decomposition (rate=5.7 x 10757}, corresponding to a
halving of the concentration of the acyl phosphate intermediate
after 30 min). These authors briefly investigated the mechanism

4

of decomposition of the acyl phosphates and report that addition
of methanol to the aqueous solution followed by evaporation of
the solvents allowed the identification of methanol cleavage
products (methyl phosphate) corresponding to attack of the
phosphate group in the intermediate amino acid acyl phosphate
by methanol.

PIX is the method of choice for mechanistic investigation of
enzymatic reactions involving phosphate transfer from reactant
to product or phosphate exchange between them at equili-
brium?°. The method exploits 3'P NMR to monitor shift of the
31P resonance by substitution of bonded '®O with 80 and has
been widely applied to clarify mechanisms of enzymatic reactions,
including the demonstration of formation of the intermediate
D-alanyl phosphate (also not stable in aqueous medium), during
peptide bond formation catalyzed by Enterococcal VanA'® and
Salmonella DdIA?! (Supplementary Fig. 2). It should be noted
that in the case of the experiment with EcDdIB, ATP and DCS the
PIX rate is of the order of 0.36 h™!, which is significantly slower
than the rate obtained with VanA, about < 1 min~!'®, We believe
this difference can be attributed to the intrinsic reactivity of the
substrate (D-Ala) vs. the inhibitor (DCS).

The phosphatase activity of EcDdIB detected as a side-reaction
alongside the PIX reaction was proved to be inhibited by DCS.
The ICs, obtained for DCS-inhibition of ATPase activity (11.5
uM) is well in the range of K; values obtained for DCS-inhibition
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Fig. 2 Mechanism of DCS phosphorylation by EcDdIB as proved by positional isotope exchange (PIX) and steady-state kinetics of ATP hydrolysis and its
inhibition by DCS. a Positional isotope exchange (PIX) mechanism for inhibition of EcDdIB by DCS. Position of 80 label in the initial [7-1804]-ATP,
intermediate and final species is highlighted in red. b 3'P NMR spectra monitoring changes in the isotopic composition of y-P (doublet), (¢) p-P (triplet) and
(d) a-P (doublet) species of [y-1804]-ATP as a function of time: (blue) 155, (red) 0.5h, (green) 3.5h, (purple) 5.5h, (yellow) 8 h, (orange) 18 h. In
accordance with the reaction scheme reported in a, a PIX effect is observed both at y-P and p-P position whereas, as expected, a-P remains unaffected.
Based on the relative peak intensity the initial fraction of the [y—1804]—P species (blue, upfield doublet) and [y—1803 1601-P species (blue, downfield
doublet) is 77% and 23%, respectively, consistent with a > 94% isotopic enrichment of each of the 4 oxygens. e Fractional occurrence of the [y—1804]-P
species during the PIX reaction as a function of time. After 8 h upon addition of the enzyme at 25 °C, the fraction of the [y—1804]—P species decreased to
42%. The rate constant was obtained from fitting of the data to Eq. (1). f Phosphatase activity of EcDdIB (black) as a function of ATP concentration and its
inhibition by T mM DCS (red) were monitored by a coupled enzyme system assay (See Methods for details). Points are experimental data and lines best fit
to Eq. (2). g Inhibition of EcDdIB hydrolysis of ATP by DCS. Data were fitted to Eq. (3)

of E.coli Ddls biosynthetic reaction (9 uM for DdIA and 27 uM for
DdIB)?. Interestingly, a value of 1.5 for the Hill number seems to
suggest the existence of positive cooperativity for DCS inhibition
of ATP hydrolysis reaction.

We conclude that it is highly unlikely that DCSP or analogs
developed from this structure, if able to cross the blood-brain
barrier, would result in NMDA receptor activation and the side
effects associated with DCS treatment. Furthermore, in the high-
level vancomycin resistance mechanism found in Enterococci,
chromosomally encoded Ddl enzymes are superseded in function
by transposon-borne D-alanine:D-lactate ligases (e.g., VanA,
VanB) that enable the formation of peptidoglycan pe}g)tlde termini
that have low affinity to glycopeptide antibiotics If such
DCSP-based inhibitors also bind to the D-alanyl-D-lactate ligases
(e.g., VanA, VanB) then this would lead to renewed therapeutic
utility of glycopeptide antibiotics in life threatening glycopeptide
resistant infections.

In summary, the structural and biochemical analysis of EcDdIB
in complex with DCSP represents both the first of a Ddl enzyme
in complex with a D-alanyl-phosphate mimic and the only
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structure of a Ddl enzyme from any organism in complex with a
clinically used antibiotic. Furthermore, our structural studies have
suggested a novel mode of action for DCS, involving its phos-
phorylation to yield DCSP, which is to the best of our knowledge
a previously undescribed chemical entity. The results underscore
the biochemical flexibility of this remarkably simple antibiotic.
This mechanistic diversity of antibiotic action is unusual amongst
the natural antibiotics.

Methods

Protein purification and crystallization. Recombinant EcDdIB with an amino-
terminal histidine-tag was expressed and purified from E. coli BL21(ADE3)Star-
pRosetta, crystallized and cryoprotected for data collection as previously repor-
ted?*. Briefly, after cells harvesting, resuspension in buffer (50 mM sodium phos-
phate, 300 mM NaCl, 10 mM imidazole), lysis by sonication and centrifugation,
EcDdIB was purified from the supernatant by Ni-affinity and size-exclusion
chromatography.

Crystals were obtained by co-crystallization at 291 K using the hanging-drop
method and a 2 pl drop containing one to one ratio of protein and crystallization
solution (200 mM MgCl,, 25% PEG 3350, 100 mM Tris—HCI pH 8.0). Protein
concentration was 12 mg ml~! in 50 mM HEPES pH 7.5, 150 mM KCl, and 0.5 mM
EDTA buffer, containing 5mM ATP or 5mM ADP and 50 mM D-alanyl-D-
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alanine, and 5mM ATP and 5mM DCS. Crystals were flash cooled in liquid
nitrogen using reservoir solution containing 30% glycerol as a cryoprotectant and
used for X-ray diffraction data collection on beamline I04 at the Diamond Light
Source, U.K.

All crystals belonged to the orthorhombic space group P2,2,2;, with two
molecules in the crystallographic asymmetric unit?*. Following structure solution
by molecular replacement, refinement of each structure was carried out by alternate
cycles of REFMAC?® using non-crystallographic symmetry (NCS) restraints and
manual rebuilding in O%°. Water molecules were added to the atomic model
automatically by Arp/wARP?’ and in the last steps of refinement all the NCS
restraints were released. A summary of the data collection and refinement statistics
is given in Table 1. For each structure, all 306 amino acid residues of the native
protein, along with an extra 8 residues from the N-terminal Hiss affinity tag
sequence, are visible in molecule 1 of the asymmetric unit and the electron density
is of a high quality throughout this molecule (Supplementary Fig. 1). Residues
3-306 could be fitted in molecule 2, but both the N- and C-terminal domains
display higher flexibility in this molecule, as evidenced by less well-defined electron
density. Nevertheless, the bound ligands are clearly defined in both subunits and
refine well.

Structure description. Two of the EcDdIB structures solved in this study con-
tained the dipeptide product D-Ala-D-Ala, but differ in the presence of either ADP
or ATP. In both these structures, the dipeptide product makes essentially identical
interactions with the enzyme. The protonated?® a-amino group of the N-terminal
D-Ala (D-Alal) makes a salt bridge with the carboxylate group of Glu-15, as in the
original structure, to form the high affinity alanine binding site seen in EcDdIB and
other related ligases®?’. The carbonyl oxygen of the peptide bond makes two
hydrogen bonds, with the backbone amide NH of Gly-276 and the side chain of
Arg-255 in the oxyanion pocket of the ligase. The C-terminal D-Ala of the product
(D-Ala2) is bound with its carboxylate occupying the low affinity alanine binding
site centered on side chain hydroxyl of Ser-281 and e-amino group of Lys-281. The
side chain hydroxyl of Tyr-216 also interacts with the product at the backbone NH
of D-Ala2, corresponding to its amino end. The adenine ring of the ATP or ADP
ligand lies in a pocket mainly composed of hydrophobic and aromatic residues,
while the a- and B-phosphate groups are hydrogen bonded to the e-amino groups
of Lys-97, Lys-144, and Lys-215. In the ATP-containing structure, there are further
links from the y-phosphate to Lys-215, Arg-255 and the backbone amide nitrogen
of Ser-150 (Fig. 1a). In the ADP-D-ALa-D-Ala structure, we find density for a
putative carbonate ion at the equivalent spatial position the y-phosphate group of
ATP would occupy. We initially considered whether this density could correspond
to an yttrium ion from the yttrium chloride used in crystallization, but density
clearly represents a planar molecular species, not consistent with a metal ion. This
was included in the model, and refined, and found to make interactions identical to
those made by the y-phosphate of ATP. The active site interactions observed in the
DdIB:ADP:D-Ala-D-Ala structure parallel those observed in the two previous
EcDdIB structures with ligands, which essentially mimic the transition state of the
EcDdIB reaction (Fig. 1b).

Kinetic measurements. All chemicals were of analytical grade and purchased
from Fisher Scientific (Loughborough, UK) or Sigma (Poole, UK). [y—1804]—ATP
(>94% isotopic enrichment and 97% chemical purity) was purchased from Cam-
bridge Isotopes Laboratories.

31p NMR experiments. >'P NMR spectra were acquired at 25 °C using a
Bruker Avance III HD spectrometer equipped with a 5mm quadruple-resonance
PFG cryoprobe and operating at a 3'P frequency of 283.4 MHz.

PIX reaction. Reaction mixture for PIX contained 100 mM HEPES (pH 7.5), 2 mM
[y-180,]-ATP, 6 mM MgCl, and 1 mM DCS. The PIX reaction was started by
EcDdIB enzyme addition at 24.5 uM and the sample incubated at 25 °C. At time
points equal to 155, 15 and 30 min, and 1, 2, 3.5, 5.5, 7.75, 18, and 24 h, aliquots of
500 pl were removed and quenched by addition of 50 ul of 0.5 M EDTA (Fig. 2e).
Time points for the control experiment (Supplementary Fig. 3b) were taken at 15,
30 min, 1.5, 3.5, 6, and 20 h. After collection of the aliquot at 20 h, further 2 mM of
fresh [y-1804]-ATP was added to the reaction mix and time points were taken at
155, 30 min, 1.5, 3.5, 6, and 20 h after addition. The final volume of the NMR
sample was 600 ul containing 8% D,O added after quenching the reaction. A
control experiment for detection of ATP hydrolysis under identical conditions of
the PIX experiment was run on unlabeled ATP.

Phosphatase activity and inhibition assays. Initial velocities of the EcDdIB
phosphatase activity were monitored continuously at 25 °C by UV-Vis spectro-
photometry (Shimadzu UV-2550, Milton Keynes, UK) using a 1 cm li)ath—length
cell and coupling ATP hydrolysis to NADH oxidation (e349-6220 M~ cm™) via a
pyruvate kinase and lactate dehydrogenase system. Reaction mixtures contained 50
mM HEPES (pH 7.5), 10 mM MgCl,, 80 mM KCl, 0.10 mM NADH, 1.5 mM PEP,
1l ml™! pyruvate kinase/lactate dehydrogenase enzyme solution (PK/LDH; stock
solution of 6-10 U ml™! PK and 9-14 U/ml~! LDH) and variable ATP con-
centration (12.5, 25, 50, 100, 200, 400, 750, 1000, 2000 uM). When included in the
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experiments, DCS was present at 1 mM (Fig. 2f). EcDdIB was at a final con-
centration of 14.4 uM. In the phosphatase inhibition assay (Fig. 2g) DCS con-
centration was 2.5, 5, 10, 15, 25, 30, 75, 150, 250 uM, whereas ATP concentration
was 2 mM.

Data availability. The atomic coordinates and the structure factors for E. coli
EcDdIB in complex with DCSP and D-ala-D-ala peptides have been deposited with
the accession codes 4C5A, 4C5B and 4C5C. Other data are available from the
corresponding authors upon reasonable request.
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