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Synthetic protein interactions reveal a
functional map of the cell

Lisa K Berry, Gudjén Olafsson, Elena Ledesma-Fernandez', Peter H Thorpe*

Mitotic Control Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London,
United Kingdom

Abstract To understand the function of eukaryotic cells, it is critical to understand the role of
protein-protein interactions and protein localization. Currently, we do not know the importance of
global protein localization nor do we understand to what extent the cell is permissive for new
protein associations — a key requirement for the evolution of new protein functions. To answer this
question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of
the major cellular compartments and quantitatively assessed the effects upon growth. This analysis
reveals that cells have a remarkable and unanticipated tolerance for forced protein associations,
even if these associations lead to a proportion of the protein moving compartments within the cell.
Furthermore, the interactions that do perturb growth provide a functional map of spatial protein
regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells.
DOI: 10.7554/eLife.13053.001

Introduction

Post-translational protein modifications such as phosphorylation or ubiquitylation often alter the
affinity of one protein for other proteins or cellular components, which drive their movement within
the cell (Scott and Pawson, 2009). Protein relocalization is critical for many cellular processes,
including the asymmetric division of adult stem cells, which underlies metazoan development. The
importance of protein localization is also highlighted by diseases ranging from cystic fibrosis to can-
cer that result, in part, from protein mislocalization (Hung and Link, 2011). The evolution of new
modes of protein regulation requires new associations to form, but currently we do not know how
tolerant the cell is of novel protein interactions. For example, can a nuclear kinase relocate to the
cytoplasm without consequence?

Various methodologies have been developed to allow specific affinity-based relocation of pro-
teins in vivo. For example, some systems are designed to disable a location-specific function by
sequestering proteins to a specific compartment (Haruki et al., 2008; Robinson et al., 2010). Alter-
natively, a leucine zipper-based system was developed to screen for pairwise protein associations,
provided that selection for a phenotype is possible (Devit et al., 2005). However, none of these
approaches have systematically assessed the effects of creating pairwise protein associations, one at
a time, across the entire proteome. To address this, we made use of the Synthetic Physical Interac-
tion (SPI) system (Olafsson and Thorpe, 2015) to create high-affinity interactions between each of
the ~six-thousand members of the eukaryotic yeast proteome and target proteins in each of the
major cellular compartments. This has allowed us to assay the effect of each of these in vivo binary
protein interactions individually upon the normal growth of cells. We find that most protein-protein
interactions are benign to the normal growth of cells, but that specific interactions do perturb
growth - these interactions are termed Synthetic Physical Interactions or SPIs (Olafsson and Thorpe,
2015). The SPIs are enriched for functional regulators, indicating that constitutive colocalization of a
regulator with its target causes a growth defect. We are able to use SPIs to identify novel regulatory
proteins; for example, we examine SPIs between the kinetochore protein Nuf2 and both Hmo1 and
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eLife digest Our actions often depend on who we interact with: parents, teachers, friends,
colleagues. So it is for proteins in the cell: their function depends on which other proteins they work
with. If a protein interacts with new partners or ends up in a new neighborhood of the cell, it can
perform an entirely unexpected role, rewiring how that cell works.

There are millions of possible protein-protein interactions, but it is not known how cells behave if
their proteins are forced into new associations. For example, how many of these associations affect
how well the cell can grow?

Using budding yeast, Berry et al. were able to associate every protein in the cell with proteins
from each of the major areas of the cell such as the nucleus, cell membrane or mitochondria. These
new associations and relocations were then examined to see how many of them caused problems,
slowing the cell’s growth or killing it.

Unexpectedly, most forced associations had no detectable effect, indicating that the cell is
remarkably tolerant of new protein-protein interactions. This contradicts a common idea that
proteins are very fussy about their partner proteins, and will not work properly if they are forced into
new interactions.

The associations that do cause a growth defect are often between proteins that normally work
together, indicating that their association is normally carefully controlled during the normal growth
of cells. In some cases these forced associations identified previously unknown regulators of cell
behavior.

Proteins that interact with the wrong partners or are in the wrong place within cells cause a
number of diseases. Future forced association experiments will allow us to examine such interactions
and possibly search for drugs that will correct the problem.

DOI: 10.7554/¢eLife.13053.002

Sgf29 and find that these two proteins are required to regulate the levels of outer kinetochore pro-
teins. Furthermore, the SPIs correlate with the quaternary structure of large protein complexes such
as the kinetochore or nuclear pore. As such, the SPIs provide a powerful tool to complement existing
physical and genetic interactions.

Results

The SPl system uses a GFP-binding protein (GBP) derived from an alpaca antibody
(Rothbauer et al., 2006), which when fused to a target protein of interest creates binary associations
in vivo with GFP-tagged proteins (Rothbauer et al., 2006; Rothbauer et al., 2008; Grallert et al.,
2013). We define a target protein as one fused with the GBP and a query protein as one tagged
with GFP. By introducing GBP-target proteins into strains encoding GFP-query proteins, we induce
an affinity between the target and query proteins via the strong binding of GBP to GFP. We used
the Selective Ploidy Ablation technique (Reid et al., 2011) to introduce a plasmid encoding the
GBP-target protein into the collection of ~6000 GFP strains, each of which has a chromosomally
integrated GFP introduced at the 3’ end of a specific open-reading frame (Huh et al., 2003). In each
resulting haploid strain, the GBP-target protein is plasmid-encoded and the GFP-query protein is
endogenously-encoded; we are therefore able to create a binary protein-protein interaction and
assess the effects of this interaction upon growth. We used two independent controls, which were
separately transferred into the GFP collection. The first control encodes the GBP alone, and the sec-
ond encodes the target protein. These two constructs control both for the effects of binding a pro-
tein to the GFP tag and also for the ectopic expression of the target gene in each GFP strain. We
chose 23 different target proteins that represent 18 of the major cellular compartments (Figure 1A
and Figure 1—source data 1), such as the nucleus (Pus1 and Rad52), the cell membrane (Psr1), and
the endoplasmic reticulum (Secé3). The genes encoding these target proteins were fused with GBP
and transferred into every strain of the GFP collection (Figure 1—source data 1). Thus, for each tar-
get protein, we create ~6000 strains each of which contains the target GBP-tagged protein
together with a specific GFP-query protein. The effect on growth was assayed by comparing the col-
ony sizes of strains containing the GBP-GFP interaction with the two controls (Figure 1B,C)
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Figure 1. Quantitative analysis of the effects of binding proteins throughout the cell. (A) A schematic diagram of
S. cerevisiae indicating the cellular compartments and target proteins within the cell that were associated with
each member of the proteome. (B) A 1536 colony plate from the Sec63 screen. The inset below shows the
highlighted row from the Secé3-GBP plate, the Sec63 control plate and the GBP-only control plates respectively.
Growth defects are indicated with a black line. (C) The z-scores of all 5734 proteins in each of the 23 screens. For
each screen, the strains are ranked according to order of z-scores, positive z-scores indicate a growth defect

relative to controls. The inset highlights the strains with the largest growth defects in each screen.

DOI: 10.7554/eLife.13053.003

The following source data and figure supplement are available for figure 1:

Figure 1 continued on next page
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(Dittmar et al., 2010). The two controls gave equivalent results (Figure 1—figure supplement 1
and as previously reported Olafsson and Thorpe, 2015) and consequently an average growth score
was used.

We expected that many of the forced associations would disrupt cellular homeostasis, but unex-
pectedly, we found that 98% of GBP-GFP combinations (129,098 out of 131,882) do not affect the
growth of cells (Figure 1C). These data imply that cells are surprisingly permissive for most protein-
protein interactions and as a corollary that cells are broadly tolerant of proteins being relocated
within the cell.

In cases where fluorescent imaging was able to detect protein relocalization, we confirmed that
~72% of interactions do occur. Since the GBP tag is linked to red fluorescent protein (RFP), we were
able to assay colocalization with GFP. We examined 552 GBP-GFP combinations - each of the 23
GBP-tagged target proteins separately combined with a random selection of 24 GFP-tagged query
proteins - using live cell imaging (Figure 2—source data 1, for examples see Figure 2 and Fig-
ure 2—figure supplement 1). Of the 524 GBP-GFP combinations that we could score, 210 (40%)
are already in the same compartment and so we cannot determine whether GFP and GBP associate,
of the remaining 314, 225 were detectably colocalized (Figure 2C), indicating that in the majority of
cases the protein-protein associations do occur (Figure 2, Figure 2—figure supplement 1 and Fig-
ure 2—source data 1). These observations are therefore consistent with the notion that most syn-
thetic protein-protein interactions do not cause a growth defect.

The microscopy analysis also allows us to examine whether the GBP-tagged target protein
recruits the GFP protein to its location or vice versa. We anticipated that each binary protein associa-
tion would create a ‘tug-of-war’ between the target protein and the query protein. The image data
support this notion; where it is possible to distinguish the location of two proteins in the cell, we
observed that there are roughly equal instances of the GBP protein recruiting the GFP protein as the
reverse (Figure 3 and Figure 3—figure supplement 1). However, this generalization is not true for
some classes/types of proteins. When we look at individual GBP or GFP proteins, we find that struc-
tural components more often recruit proteins to their location than enzymes that are not anchored
to a specific location (Figure 3, Figure 3—figure supplement 1 and Figure 2—source data 1). For
example, GFP-tagged cytosolic query proteins such as Cdc55 and Snf1 mostly relocalize to their tar-
get proteins (Figure 2B and Figure 3—figure supplement 1), whereas the GFP-tagged nucleolar
proteins Rpa49 and Pwp2 more often recruit GBP-tagged target proteins to their location (Fig-
ure 3—figure supplement 1). There are some rare cases where the two proteins localize to both
locations and also where one or both proteins mislocalize to a new location that is foreign to both
(Figure 2D). An example of the latter is the recruitment of the nucleosome remodeling protein,
Sptb, to the histone subunit Hta2. Constitutive recruitment of a nucleosome remodeler to the chro-
matin might be expected to give a phenotype and indeed we find that the histone subunit Hta2-
GBP is strikingly no longer restricted to the nucleus (Figure 2E) concomitant with a strong growth
defect. It is possible that we are overestimating the extent of relocalization caused by the GFP-GBP
interaction. First, since the target and query proteins are not stoichiometrically matched, some of
the GFP or GBP protein will likely remain at its native location. Second, it is possible that in some
cases either the GFP tag or the GBP tag is cleaved from its query or target protein respectively, thus
giving a false indication of colocalization. It is also possible that imaging underestimates the propor-
tion of relocalization, since we could not score the 210 combinations where proteins are already in
the same compartment, these are perhaps more likely to associate via the GFP-GBP interaction. Fur-
thermore, it should be noted that in some cases where we could not detect that the GFP and GBP
proteins were colocalized, there was nevertheless either a growth phenotype or a change in the
location of one of the proteins. For example, of the 15 Iqg1 associations that failed to show protein
colocalization (Figure 3), 14 show mislocalization of either the lqg1 target protein or the GFP query
protein.

Around 2% of the forced interactions restrict growth (Figure 1C, 4A and Figure 1—source data
1). However, we note that of the 6000 GFP-tagged proteins used in this study, only ~4000 have
been validated and are clearly observable (Huh et al., 2003). We therefore reanalyzed the prote-
ome-wide data using only 3905 GFP strains with unambiguous fluorescence signal (Tkach et al.,
2012) and find that ~3% restrict growth (Figure 4—source data 1), consistent with the notion that
most protein-protein associations do not restrict growth. We did not use a specific threshold cutoff
to define a SPI, rather we confirmed the SPIs with the greatest impact on cell growth for each GBP
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Figure 2. Colocalization of target GBP protein and query GFP proteins. (A) Cdc11-GBP relocalizes to the Golgi
when bound to Sec26-GFP. (B) Cdc55-GFP relocalizes to the mitochondria when bound to Om45-GBP. (C) Bar
chart of the proportion of colocalization (n=552), note that the colocalized category includes 210 combinations
where the target and query proteins are within the same compartment and so protein-protein association will not
be apparent from this microscopy analysis. (D) Bar chart of the direction of movement of GFP and GBP (n=225).
‘To query protein - GFP’ indicates relocation of the majority of the GBP target protein to GFP (see A); ‘To target
protein - RFP’ denotes relocation of the majority of the GFP query proteins to the GBP-RFP target (see B). ‘Both
locations’ indicates that GBP and GFP proteins are in both their normal location and those of the other protein
Figure 2 continued on next page
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by repeating the assay starting with the strongest interaction and proceeding sequentially through
the SPIs until the false discovery rate (FDR) reached 40% (Figure 4—figure supplement 1). Associa-
tions that produced a growth defect relative to controls with 16 replicates in the confirmation experi-
ments are considered SPIs. Thus, some SPIs result from relatively mild growth defects, as outlined in
Figure 4—source data 1. We note that the false negative rate may be significant, since we did not
test further than the 40% FDR and due to the limitations of measuring growth by colony size. Using
this approach, we confirmed 2784 SPIs in total produced by 727 GFP-tagged query proteins with
one or more of the 23 target proteins (Figure 4—figure supplement 2 and Figure 4—source data
1).

One possible cause of the SPIs is that the target protein would sequester the GFP-tagged query
protein away from its normal location. Should this be the case, we would expect low-abundance pro-
teins to be more susceptible to growth defects. However, this is not generally the case for most
SPIs, consistent with our earlier findings (Olafsson and Thorpe, 2015), since we found there was no
correlation between protein abundance and the z-scores (a relative measure of growth) from the 23
GBP screens (R? values <0.004). To address the issue further we grouped all GFP strains into eight
categories based upon the abundance of their GFP proteins, each group has 421 proteins. We then
plotted the proportion of GFP strains within each group that produced SPIs with a given GBP target
(Figure 4—figure supplement 3A). Broadly, there are no abundance categories that are consistently
enriched for SPIs with all GBP associations. However, we did note that in some cases the group of
most abundant proteins had fewer SPIs than the other groups (for example Hta2 and Secé3, see Fig-
ure 4—figure supplement 3A). To assess whether the levels of the GBP-tagged protein would influ-
ence the SPls, we altered the GBP-tagged protein levels by virtue of their constitutive copper
promoter. The CUP1 promoter functions in the absence of copper and its expression can be gradu-
ally increased by adding copper to the growth media. We confirmed that upon addition of increas-
ing amounts of copper, the levels of the GBP target proteins increased, as assayed by quantitative
fluorescence imaging of the RFP tag attached to GBP (Figure 4—figure supplement 3B). We then
retested 400 GFP strains, representing both high and low abundance proteins, with four different
GBP target proteins, two of which had less SPIs with high-abundance proteins than expected (Hta2
and Sec63). The results indicate that increasing the expression of the GBP proteins does not specifi-
cally increase the number of SPIs within high abundance categories (Figure 4—figure supplement
3C). Nevertheless, we expected that a subset of proteins would be particularly sensitive to the
effects of forced association and relocalization and this proved true. When we examine all the 727
SPI query proteins collectively (Figure 4A), we find that 75 GFP query proteins produce SPIs with at
least 10 of our 23 GBP-tagged target proteins (Figure 4—figure supplement 2A). These ‘frequent
SPI query proteins’ are on average of lower abundance than less frequent SPI query proteins (Fig-
ure 4—figure supplement 2B,C), also they are enriched for essential genes (=83%) and for proteins
whose gene ontology (GO) terms include RNA metabolism (p-value = 9.26x107°), mRNA polyadeny-
lation (p-value = 1.63x10), cytoplasmic and nuclear transport (p-values = 1.14x10°® and 1.69x107,
respectively), microtubule nucleation (p-value = 5.09x1 0%, and spindle pole body (p-value =
3.22x10°®). We have previously shown that these interactions are mostly suppressed by having an
untagged copy of the query protein present in the cell (Olafsson and Thorpe, 2015). In heterozy-
gous diploid strains, the untagged version of the SPI query protein is able to complement for the
tagged version of the protein that is mislocalized via its association with the target protein. To con-
firm that the frequent SPI query proteins fall into this category we retested 41 SPIs from the Nuf2
screen that fall into the frequent SPI query proteins group and 40 from the non-frequent SPI query
proteins group. Consistent with our expectation all 41 frequent SPIs are suppressed in heterozygous
diploid cells, whereas 15% (6 out of 40) SPIs in the non-frequent group were reproduced in diploid
cells (Figure 4—figure supplement 4). Thus, we conclude that these frequent SPI query proteins are
predominantly those whose essential function is location-dependent and whose sequestration to
another compartment results in a growth defect (as is routinely achieved using other systems
Haruki et al., 2008).

To understand whether associations to similar areas of the cell create growth defects from com-
mon sets of query proteins, we compared the SPIs generated from each target protein. Spearman'’s
correlation coefficient analysis (Lubbock et al., 2013) indicates that, in specific cases, SPI screens
using target proteins from the same cellular compartment give similar SPIs (Figure 4B). For example,
the Pus1 and Rad52 target proteins, which are both in the nucleus, produce SPls with a similar set of
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Figure 3. Direction of colocalization. (A) The proportion of the 24 query proteins that colocalized in the direction
indicated. Categories used to characterize the direction of colocalization are described in Figure 2. The
‘Uncharacterized’ category includes strains where there were no cells to image, which is often the case if the
interaction perturbs growth.
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The following figure supplement is available for figure 3:

Figure supplement 1. Direction of colocalization.
DOI: 10.7554/eLife.13053.012

query GFP proteins. However, it is interesting to note that some target proteins from the same cellu-
lar compartment give quite distinct sets of SPIs. For example, the SPI data for nuclear proteins
Nop10 (nucleolus), Heh2 (nuclear membrane), and Hta2 (histone) cluster together but are distinct
from both Pus1 and Rad52 (two nuclear enzymes). We suggest that these SPIs segregate into two
different classes because Pus1 and Rad52 are non-essential nuclear enzymes, whereas Nop10, Heh2,
and Hta2 are structural components, which may be more sensitive to movement. We next asked
whether SPI query proteins would be located in the same cellular compartment as their target pro-
tein. SPIs between query and target proteins that normally localize to the same cellular compartment
are enriched (10.4% of our confirmed SPIs are with target and query proteins from the same com-
partment, versus an expected value of 7.1% for the full dataset, p-value = 1.8x10”7, Fisher’s Exact
test). Also, this notion is true in specific cases, particularly for nuclear proteins. For example, SPls
with a nucleolar protein, Nop10, are enriched for nucleolar components (21 out of 115, p-value =
1.8x10°8, Fisher's exact test) or SPIs with the microtubule-associated kinetochore component Nuf2,
which are enriched for microtubule components (described below). This pattern was typical of
nuclear proteins, but not evident for other proteins: for example, the SPIs with the mitochondrial
protein Om45 did not include any mitochondrial proteins. However, it should be noted that although
there are more SPls between proteins in the same compartment, SPIs produced by proteins in differ-
ent compartments tend to give a greater growth defect (Figure 4C).

Unexpectedly, we find that SPI query proteins are enriched for characterized physical interactions,
compared with non-SPls (p<2.2 x 107'¢, Wilcoxon’s rank-sum). This is visualized by overlaying all the
confirmed SPI query proteins onto a graph of the yeast physical interaction dataset (HINT database
(Das and Yu, 2012), Figure 4D). We also asked the same question for each SPI screen using the Cut-
off Linked to Interaction Knowledge tool (CLIK), which examines quantitative data for interaction
density (Dittmar et al., 2013). The CLIK tool ranks all genes/proteins by their z-score (high scores
bottom left, low scores top right) and then plots the interaction density between all proteins (using
data from the Biogrid database Stark et al., 2006). If, from a specific target screen, the most growth
restricted query proteins are collectively enriched for genetic or physical interactions then a cluster
of high density will be visible in the bottom left of the density plot. Most SPI screens have a strong
enrichment for genetic and physical interactions indicating that the strongest SPIs share interactions
(Figure 4E and Figure 4—figure supplement 5), which is a predictor of common function. The over-
lap with physical interactions is particularly surprising; indicating that proteins that normally interact
together can induce a growth defect when constitutively bound. Collectively, these observations are
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Figure 4. Comparisons of synthetic physical interaction screens. (A) Cluster analysis of the SPI data. The 23 screens
are arranged horizontally and the 727 GFP strains clustered vertically. High z-scores (positive; >2) in yellow and low
(negative; < -1) scores in blue. Three distinct clusters are highlighted (a, b, and ¢) and described in Figure 4—
figure supplement 6. (B) Spearman’s Rank Correlation Coefficients for the different SPI screens shows similar
compartments give similar SPls, for example, Secé3 and Loal cluster together as do two kinetochore proteins
Nuf2 and Dad2. (C) The notched box-and-whisker plot indicates the distributions of the retest log growth ratios
and indicates that SPIs produced by a query protein and a target protein from different compartments produce
stronger growth defects than those from the same compartments (***indicates a p-value = 1.8x10”°, Wilcoxon's

rank-sum). The plot shows the median value (bar) and quartiles (box), the whiskers show the minimum of the range
or 1.5 interquartile ranges, outlying data points are indicated as circles and the notches indicate the 95%
confidence intervals of the medians. (D) The GFP proteins with SPIs have, on average, more protein-protein

Figure 4 continued on next page
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consistent with the idea that proteins and their regulators are often located within the same com-
partment, but their temporal or spatial physical association is tightly regulated.

The SPIs for each target protein are also enriched for proteins involved in regulating their func-
tion. Gene ontology enrichment analysis for the SPls demonstrates that specific functional classes of
proteins are enriched for each cellular compartment. For example, SPIs for the DNA repair protein
Rad52 are enriched for components of the nuclear pore (Ndc1, Nic96, Nup1, Nup85, Nup49,
Nup57, Nup84, Nup145, and Nup192; p-value = 7x107), specifically the Nup84 complex, which
functions in specialized types of DNA repair (Nagai et al., 2008). Another example is the kineto-
chore protein Nuf2, whose SPIs are enriched for proteins involved in microtubule organization
(Ark35, Bir1, Cbf2, Cdc14, Ctf19, Dad2, Dad4, Dsn1, Ipl1, Kip1, Kip3, Okp1, Spc24, Spc29, Spc42,
Spc105, Spc110, Stul, and Tub4; p-value = 8x1 07"3). Nuf2 is an outer kinetochore protein whose cal-
ponin-homology domain directs microtubule binding (Wei et al., 2007, Ciferri et al., 2008). As
such, the SPIs may include numerous novel regulators of their target proteins (Olafsson and Thorpe,
2015). To test this, we examined three Nuf2 SPIs in more detail. Hmo1, Sgf29 (both chromatin-asso-
ciated proteins) and Sst2 (a GTPase activating protein) all gave a strong SPI phenotype with the
kinetochore protein Nuf2. Only one of these mutants, hmoTA, gives a chromosomal instability phe-
notype (Stirling et al., 2011) and none have a reported role in kinetochore function. The SPI data
(Figure 4A) cluster Hmo1 adjacent to Dad4, an outer kinetochore protein and with other kineto-
chore proteins (Mcm21, Okp1, Nkp2, Ctf19, and Spc24). To test whether the Hmo1-Nuf2 SPI was
unigue in the kinetochore, we tested various other kinetochore target proteins fused with GBP in an
Hmo1-GFP strain. We find that in addition to Nuf2, Hmo1 has SPIs with Mif2 and Ctf19, but not
Kre28, Mtw1, Dad2, Ctf3, Chl4, Skp1, Cnn1, or Cbf1 (Figure 5A). These data suggest that the Hmo1
SPI is specific to central/outer kinetochore components. We examined fluorescently tagged kineto-
chore proteins in hmo1A, sgf29A, and sst2A cells. We chose two kinetochore proteins, Mtw1 and
Dad4, both of which are at the central and outer kinetochore, respectively, and adjacent to Nuf2,
Ctf19 and Mif2 and also have been used in quantitative studies (Joglekar et al., 2006; Ledesma-
Fernandez and Thorpe, 2015). Strikingly, we find that hmoTA and, to a lesser extent, sgf29A cells
both have elevated levels of Dad4 outer kinetochore protein associated with their centromeres,
although the levels of Mtw1 were unaffected (Figure 5B,C and 5D). However, Hmo1 stimulates the
activity of the SWI/SNF chromatin remodeling complex (Hepp et al., 2014) and therefore may affect
expression of the DAD4 gene. To test whether the hmo 1A mutant was affecting Dad4 protein levels
we quantified total cellular Dad4-YFP fluorescence in wild-type and mutant cells and find approxi-
mately one third of hmo1A cells have higher levels of Dad4 than those found in wild-type cells (Fig-
ure 5—figure supplement 1). Nearly half of the hmoTA cells have Dad4 levels in the wild-type
range (+/- one standard deviation of the wild-type mean); hence cellular Dad4 protein levels are not
sufficient to explain the aberrant Dad4 foci seen in most hmo1A cells (Figure 5B). Furthermore, it
has previously been shown that Hmo1 is associated with purified kinetochores (Akiyoshi et al.,
2010), consistent with a direct role at the kinetochore. These data support the notion that in specific
cases SPls define functional regulators.

For each cellular compartment there are relatively few GFP proteins that produce SPIs with just
one target protein. The query GFP proteins that produce SPIs have on average 3.8 SPIs with the 23
target proteins. However, those GFP proteins with just one SPI may be informative. For example,
the histone subunits Hta2, Htb1, Htb2, and Hhf2 as well as the chromosomal proteins Bub1 and
Mft1 have unique SPIs with the eisosome component Pil1. These interactions may indicate a nuclear
role for Pil1, which relocalizes from the plasma membrane in response to DNA damage
(Tkach et al., 2012) and associates with histones and chromosomal proteins (Lambert et al., 2009,
Akiyoshi et al., 2010). Indeed, the Pil1-histone SPIs result from Pil1 recruitment into the nucleus
(Figure 2—figure supplement 2).

Since selected SPI query proteins are enriched for physical and genetic interactions and contain
proteins involved in regulating the biology of their target, we next performed hierarchical clustering
analysis in order to test whether SPI data can be used to assess functional associations between pro-
teins (Figure 4A). We find that query proteins from specific large functional complexes cluster
together, for example, the mediator complex, which is involved in activating transcription, clusters
together as do members of the COP1 coatomer, the outer ring of the nuclear pore, the signal recog-
nition particle and TRAMP complex (Figure 4—figure supplement 6). It is important to note that
SPIs are not a substitute for physical interaction data, but rather represent a common phenotype in
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Figure 5. Nuf2 SPIs affect kinetochores. (A) The Hmo1-GFP query protein encoding strain was transformed
separately with 13 plasmids encoding different kinetochore proteins target proteins tagged with GBP (4 replicates
each). The growth relative to controls (GBP alone and target protein alone) was assessed as in Figure 1. (B)
Deletion of HMO1, SGF29, and SST2 were separately introduced into strains encoding Dad4-YFP and Mtw1-YFP at
their endogenous loci. Fluorescence imaging of these strains reveals that hmo1A mutants have large-bright Dad4-
YFP kinetochore foci (red arrows) and some weak foci (green arrows). sgf29A mutants contain bright Dad4-YFP foci
(red arrows). In all cases, there are no effects upon Mtw1-YFP foci (right panels). Scale bars in all images are 5 um.
(C) Quantitation of the Dad4-YFP kinetochore foci fluorescence levels from these cells indicates that the levels of
Dad4-YFP at kinetochores are affected by deletion of either HMO1 or SGF29. The left notched box and whiskers
plot indicates the median (background subtracted) fluorescence values of kinetochore foci in relative units. The
plot shows the median value (bar) and quartiles (box), the whiskers show the minimum of the range or 1.5
interquartile ranges, outlying data points are indicated as circles (note that several outlying data points are not
shown as they are beyond the scale of the plot). The notches indicate the 95% confidence intervals of the medians
(***indicates p-values <107'° from a Wilcoxen's rank-sum test). It should be noted that the distribution of

Figure 5 continued on next page
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response to forced association. Collectively, the clustering of protein complexes, gene ontology
enrichment and physical and genetic enrichment indicate that specific target proteins show SPIs with
sets of query proteins that share a common location, potentially common components of larger pro-
tein complexes. Thus, although the proteome-wide SPI data themselves do not directly give struc-
tural information, the SPI data groups query proteins within these known protein complexes.

We next asked whether the SPI data would correlate with the quaternary structure of multi-pro-
tein complexes, since protein associations with one part of a complex may give a similar growth phe-
notype that contrasts with a different part of that same complex. We chose the kinetochore as an
example, since this is a large array of between 60 and 100 proteins that are arranged into defined
sub-complexes (Biggins, 2013). We selected these proteins (and some kinetochore-associated pro-
teins) and clustered them based upon their SPI scores from the 23 screens. We find that key sub-
complexes within the kinetochore are clustered together purely based upon their 23 SPI scores (Fig-
ure 6). For example, three of the four members of the COMA complex cluster together (Ctf19,
Okp1, and Mcm21) with two members of the Ctf3 complex (Mcm22 and Nkp2), and Cse4 and Chl4,
which are all part of the constitutive centromere associated network (CCAN) of inner kinetochore
proteins that bind to centromeric DNA. Three of the four MIND complex members (Dsn1, Nnf1, and
Nsl1) also cluster with Spc24, Kre28 and Nuf2, which are all part of the KMN network of outer kinet-
ochore proteins. In contrast, the DAM/DASH complex, which is composed of 10 different proteins,
segregates into distinct clusters (with Dad2, 3, and 4 distinct from Dam1, Ask1, Dad1, Spc34, and
Duo1). Dad2, 3 and 4 are small central domain subunits of the DAM/DASH complex that are impor-
tant for structural integrity of the complex and therefore potentially sensitive to association with
other proteins (consequently they have many SPIs). In contrast Dam1, Duo1, and Spc34 are key inter-
action hubs for the decameric complex (Shang et al., 2003) and Ask1's C-terminus plays an impor-
tant role in intercomplex interactions (Ramey et al., 2011). Thus these proteins form external
surfaces on the complex, which may be more tolerant of protein association. A similar correlation
with the quaternary structure can be made for another large protein assembly, the nuclear pore
complex (Figure 6—figure supplement 1). Hence, although SPls do not substitute for physical inter-
action data they indicate a common phenotype produced by specific protein-protein associations.

Discussion

The SPI technology has allowed us to create binary protein associations throughout the cell and in
many cases these interactions result in protein relocalization. However, only a small fraction of these
interactions lead to a measurable growth phenotype, suggesting that cells are highly tolerant of
both protein mislocalization and protein-protein associations. There are exceptions, proteins that do
affect growth in almost any location. For example the ubiquitin hydrolase, Doa4 and numerous pro-
teins involved in transport (Figure 4—source data 1). Furthermore, there are proteins whose associ-
ation with specific proteins causes a growth defect. We find that these SPIs are enriched for proteins
that physically interact (Figure 4). Collectively the SPI data allow us to both identify regulatory pro-
teins (Olafsson and Thorpe, 2015 and Figure 5) and provide information on quaternary structure of
specific large complexes within the cell (Figure 6). These data illustrate that SPIs can be used, like
physical interactions, to reveal the functional organization of the cell. However, since the readout of
SPIs is phenotypic, in this case cell growth, the SPIs indicate functional interactions rather than physi-
cal interactions per se. Thus, the SPI methodology provides a powerful in vivo proteomics tool to
map the mechanisms underlying spatial regulation within cells. The SPI technology may be particu-
larly informative to define interactions that are detrimental under conditions of stress, drug treat-
ment or other specific cellular perturbations. Many disease pathologies result, at least in part, from
the mislocalization of proteins in cells (Hung and Link, 2011). Recent studies are discovering the
extent to which specific drugs induce global changes in protein location (Tkach et al., 2012,
Breker et al., 2013; Chong et al., 2015). Combining this cellular pharmacodynamics knowledge
with SPI data opens the possibility of using drugs to induce therapeutic changes in protein localiza-
tion; of the 727 SPI query proteins identified here, ~76% (549) have human homologs compared to
56% (3766) of the whole yeast genome (6604 ORFs) (YeastMine, Balakrishnan et al., 2012). This
study provides the first comprehensive map of the effects of forced protein associations within cells.
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Figure 6. Cluster analysis of kinetochore and associated proteins using the SPI data are plotted as a heat-map.
High z-scores (positive; >2) are shown in yellow and low (negative; < -1) scores in blue (as in Figure 4A). The
different protein complexes within the kinetochore are color-coded as indicated in the legend. Based on the SPI
data alone, key complexes within the kinetochore cluster together as indicated by the colored boxed regions of

the plot.

DOI: 10.7554/elife.13053.023

The following figure supplement is available for figure 6:

Figure supplement 1. Clustering analysis of nuclear pore complex (NPC).
DOI: 10.7554/¢elife.13053.024
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Materials and methods

Yeast strains and methods

All yeast strains used in this study are listed in Table 1. W303 strains are ADE2"RAD5" derivatives of
W303 (can1-100 his3-11,15 leu2-3,112 ura3-1 unless otherwise indicated Thomas and Rothstein,
1989; Zou and Rothstein, 1997). GFP strains are all based upon BY4741 (his3A1 leu2A0 met15A0
ura3A0 Brachmann et al., 1998; Huh et al., 2003). Yeast were grown in standard growth medium
including 2% (weight/volume) of the indicated carbon source (Sherman, 2002). Yeast plasmids were
created using the gap-repair cloning technique, which combines a linearized plasmid with PCR prod-
ucts using in vivo recombination. All PCR products were generated using primers from Sigma Life
Science and Pfull Ultra proof reading polymerase (Agilent Technologies, UK) or Q5 polymerase
(New England Biolabs, USA). All plasmid constructs (listed in Figure 1—source data 2) were vali-
dated using Sanger sequencing (Beckman Coulter Genomics, UK).

Selective ploidy ablation (SPA) screening

The SPA screening method is a mating-based approach for yeast transformation, and we followed
the established protocol (Reid et al., 2011). The SPA method relies upon a universal donor strain
(UDS, W8164-2B) that includes conditional centromeres on each and every chromosome. This strain
is transformed with a plasmid encoding the GBP-tagged target protein (or controls) and then mated
en masse with the collection of GFP strains. The resulting diploids are converted back to haploids by
first destabilizing and then counter-selecting against all of the chromosomes from the UDS. The
resulting colonies are then assessed for growth by measuring colony size as described below. In the
first step, plasmid constructs (encoding GBP alone, target protein alone or target-GBP) were trans-
ferred into the UDS by transformation. The three resulting strains were separately mated with arrays
of MATa GFP strains (Huh et al., 2003) on YPD agar plates for 24 hr. The resulting colonies were
then copied to synthetic galactose medium lacking leucine to destabilize the donor chromosomes
for 24 hr. Finally, colonies were copied onto galactose medium lacking leucine, including the drug 5-
Fluoroorotic acid (5-FOA) to counter-select against the UDS chromosomes. Plates were then grown
at 30°C for 48-72 hr prior to imaging. All mating and copying of yeast colonies utilized a RoToR pin-
ning robot (Singer Instruments, UK) with a minimum of four replicates per strain.

Quantitative analysis of high-throughput yeast growth

After SPA screening, the resulting agar plates were scanned using a desktop flatbed scanner (Epson
V750 Pro, Seiko Epson Corporation, Japan) at 300 dpi resolution in transmission mode. These
images were processed and analyzed using the ScreenMill suite of software (Dittmar et al., 2010),
which assesses growth based upon the two-dimensional size of the colonies. The software was run in
default mode, both for the kinetochore-specific screen and for the proteome-wide screen. For
retesting strains for growth defects, plate images were normalized using specific controls on the
plate as a reference, rather than the default plate median. This is necessary when the majority of the
strains on a plate are affected since this will influence the plate median.

Spatial smoothing algorithm

Colonies arrayed on agar plates often grow faster on one side of the plate than the other. This
growth effect can be caused by temperature or humidity gradients within incubators, variable thick-
ness of agar (and hence concentration of nutrients), or uneven pinning pressure during plate copy-
ing. These anomalies can result in one side of the plate producing an overall higher z-score than the
other. To correct for these type of biases, algorithms adjust colony size data to reflect overall even
growth across a plate (Collins et al., 2006, Baryshnikova et al., 2010). The ScreenMill suite of soft-
ware used for our analysis does not contain such corrections and so we employed a simple algorithm
to correct z-scores for spatial anomalies (Olafsson and Thorpe, 2015).

Fluorescence microscopy

To examine the levels and location of tagged proteins within the cells, we used epifluorescence
microscopy. Log phase cells were embedded in 0.7% low melting point agarose dissolved in the
appropriate growth medium. The depth of agarose between the slide and coverslip is fixed at 6—
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Table 1. Yeast strains used in this study.
Strain name Genetic background Relevant genotype Reference
W8164-2B W303 MATa CEN1-16::Gal-KI-URA3 (Zou and Rothstein, 1997)
GFP strains BY4741 MATa his3A1 leu2A0 met15A0 ura3A0 XXX-GFP::HIS3 (Huh et al., 2003)
PT147-7C W303 MATa TRP1 lys2A DAD4-YFP::NAT SPC42-RFP:: This study
PT12-13D W303 MATa TRP1T MTW1-YFP hmolA::KAN This study
T403 W303 MATa TRP1 lys2A DAD4-YFP::NAT SPC42-RFP::HYG hmo1A::KAN This study
T404 W303 MATa TRP1 lys2A DAD4-YFP::NAT SPC42-RFP::HYG sgf29A::KAN This study
T402 W303 MATa TRP1 lys2A DAD4-YFP::NAT SPC42-RFP::HYG sst2A::KAN This study
T406 W303 MATa TRP1 MTW1-YFP hmo1A::KAN This study
T407 W303 MATa TRP1T MTW1-YFP sgf29A::KAN This study
T405 W303 MATa TRP1T MTW1-YFP sst2A::KAN This study

DOI: 10.7554/eLife.13053.025

8um, slightly larger than the diameter of the average yeast cell, which maintains a consistent dis-
tance from the coverslip to the cell nucleus. Cells were imaged with a Zeiss Axioimager Z2 micro-
scope (Carl Zeiss AG, Germany), using a 63x 1.4NA oil immersion lens, illuminated using a Zeiss
Colibri LED illumination system (GFP=470 nm, YFP=505 nm, and RFP=590 nm). Bright field contrast
was enhanced with differential interference contrast (DIC) prisms. The resulting light was captured
using either a Hamamatsu ORCA ERIl CCD camera containing an ER-150 interline CCD sensor with
6.45 um pixels, binned 2x2 (Hamamatsu Photonics, Japan) or a Hamamatsu Flash 4 Lte. CMOS cam-
era containing a FL-400 sensor with 6.5 um pixels, binned 2x2. The exposure times were set to
ensure that pixels were not saturated and were identical between control and experimental images.
All images were acquired using either Axiovision or Zen software from Zeiss. Images shown in the
figures were prepared using Volocity imaging software (Perkin Elmer Inc., USA) and control and
experimental images have identical linear contrast adjustments unless otherwise stated.

Fluorescence image analysis

To quantify the relative amount of RFP in cells containing GBP-RFP tags we used custom scripts for
the Volocity image analysis software (Perkin Elmer Inc. USA). Briefly, red fluorescence regions were
identified within the three-dimensional images based upon an intensity threshold. These regions
were then dilated by a fixed amount (~600 nm) in each direction to ensure that we assay all of the
red fluorescence signal. The regions were further dilated (2.4 um) to create an outer background
region, which was subtracted from each fluorescence measurement (the script is available online
https://sourceforge.net/projects/berry-et-al/files/RFP_quantitation.assf/download).

To quantify the relative levels of Dad4-YFP and Mtw1-YFP kinetochore proteins within kineto-
chore foci, we employed a custom ImageJ script (Ledesma-Ferndandez and Thorpe, 2015). To quan-
tify the total cellular levels of Dad4-YFP we measured the YFP fluorescence signal from maximum
projection images (from a stack of vertically separated z planes) for each cell and subtracted a mean
background signal specific to each image (this script is available at https://sourceforge.net/projects/
berry-et-al/files/general_cell_quan.ijm/download).

Bioinformatics analysis

Michael Eisen’s cluster program (version 3.0) was used to cluster the SPI data (Eisen et al., 1998).
We used hierarchical centroid linkage clustering of both the GBP screens and the GFP-tagged
genes. For the quaternary structure examples (Figure 6, Figure 4—figure supplement 6 and Fig-
ure 6—figure supplement 1) only a selected subset of the GFP strains were used for the cluster
analysis. Cluster diagrams were visualized using Java Treeview (Saldanha, 2004). Gene ontology
enrichment analysis was performed using the GOrilla algorithm (cbl-gorilla.cs.technicon.ac.il
[Eden et al., 2009)).
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