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Regulated repression governs the cell fate
promoter controlling yeast meiosis
Janis Tam 1 & Folkert J. van Werven 1✉

Intrinsic signals and external cues from the environment drive cell fate decisions. In budding

yeast, the decision to enter meiosis is controlled by nutrient and mating-type signals that

regulate expression of the master transcription factor for meiotic entry, IME1. How nutrient

signals control IME1 expression remains poorly understood. Here, we show that IME1 tran-

scription is regulated by multiple sequence-specific transcription factors (TFs) that mediate

association of Tup1-Cyc8 co-repressor to its promoter. We find that at least eight TFs bind

the IME1 promoter when nutrients are ample. Remarkably, association of these TFs is highly

regulated by different nutrient cues. Mutant cells lacking three TFs (Sok2/Phd1/Yap6) dis-

played reduced Tup1-Cyc8 association, increased IME1 expression, and earlier onset of

meiosis. Our data demonstrate that the promoter of a master regulator is primed for rapid

activation while repression by multiple TFs mediating Tup1-Cyc8 recruitment dictates the

fate decision to enter meiosis.
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The choice of whether to differentiate into another cell type
is directed by multiple cell intrinsic and extrinsic envir-
onmental factors. These cues signal to master regulatory

genes, which in turn control the initiation of cell differentiation
programmes. As a result, multiple signals are transformed into a
binary decision: whether to undergo cell differentiation or not.

Budding yeast cells undergo a differentiation programme called
gametogenesis or sporulation during which a diploid cell gives
rise to four haploid spores. Yeast gametogenesis is characterised
by one round of DNA replication and recombination, two con-
secutive chromatin segregation events called meiosis followed by
spore formation1. As a result, an ascus with four haploid spores is
produced. In yeast, the decision to enter meiosis is controlled by a
master regulatory transcription factor (TF) named inducer of
meiosis 1, IME12,3. In the absence of IME1, cells cannot enter
meiosis and produce gametes. Thus, understanding how IME1 is
regulated is key to understanding how the decision to enter
meiosis is made.

Multiple transcriptional control mechanisms regulate IME1
expression. The IME1 gene has an unusually large promoter for
the yeast genome (over 2.4 kb) that integrates multiple signals4.
Nutrient and mating type signals ensure that IME1 is only
expressed in the appropriate nutrient environment and in the
correct cell type. Only cells harbouring opposite mating-type loci
(MATa and MATα) can induce IME15,6. In cells with a single
mating type (MATa or MATα), the TF Rme1 is expressed and
induces transcription of the long noncoding RNA (lncRNA)
IRT1, which in turn transcribes through the IME1 promoter and
represses IME1 expression7. In MATa/α diploid cells, a second
lncRNA upstream of IRT1 named IRT2 interferes with IRT1
transcription, thus forming a positive feedback loop by which
Ime1 promotes its own expression8.

In order to induce IME1 transcription, diploid cells must be
starved for glucose and nitrogen, and cells need to be respiring4,9.
The glucose and nitrogen signals integrate at the IME1 promoter.
Distinct sequence element mediates IME1 repression by glucose
signalling, while other parts of the promoter respond to nitrogen
availability10. Notably, the TF Sok2 controls IME1 promoter
activity via the glucose responding element11. Multiple other TFs
contribute to regulation of IME1 transcription12–14. Moreover,
over 50 TFs have a conserved consensus site in the IME1 pro-
moter and about 30 TFs may directly or indirectly control IME1
transcription12.

The nutrient control of IME1 expression is mediated by mul-
tiple signalling pathways, including PKA, TOR complex 1
(TORC1), AMP-activated protein kinase (AMPK) and mitogen-
activated protein kinase (MAPK)15–17. Inhibiting two signalling
pathways, PKA and TORC1, is sufficient to induce IME1
expression in cells exposed to a nutrient rich environment where
IME1 expression is normally repressed16. Thus, PKA and
TORC1 signalling is essential for controlling IME1 expression
and hence the decision to enter meiosis (Fig. 1a). Previously, we
showed that Tup1 represses the IME1 promoter under nutrient
rich conditions16. Tup1 is part of the Tup1–Cyc8 co-repressor
complex, which is involved in repression of more than 300 gene
promoters in yeast18–20. During starvation, when PKA and
TORC1 activity is reduced, Tup1 dissociates from the IME1
promoter and IME1 transcription is concomitantly induced.16.
How Tup1–Cyc8 association with the IME1 promoter is regulated
may be key to how IME1 promoter activity is controlled.

Here, we report how the Tup1–Cyc8 co-repressor complex
regulates IME1 transcription. In short, we found that regulated
repression by multiple sequence specific TFs mediating the
association of Tup1–Cyc8 with the IME1 promoter is the means
by which IME1 transcription is controlled. Our data indicate that
nutrient cues regulate the association of Tup1–Cyc8 interacting

TFs with the IME1 promoter, which is key to regulating IME1
expression. Our work provides a framework for understanding
how nutrient signals integrate at a cell fate promoter and control
a critical developmental decision in yeast.

Results
Tup1–Cyc8 prevents activation of the IME1 promoter. Pre-
viously, we reported that Tup1 associates between 800 and 1400
base pairs (bp) upstream of the IME1 translation start site16. If
the region of the IME1 promoter where Tup1 binds is also
important for IME1 activation, then deleting that part of the
promoter should affect the onset of meiosis. We generated six
truncation mutants with a 200 bp interval in the IME1 promoter
and examined the ability of these mutants to undergo meiosis
(Fig. 1b). The largest truncation mutant that underwent meiosis
with comparable kinetics as wild-type cells harboured 1400 bp of
the IME1 promoter (pIME1(−1400-2315Δ)) indicating that this
region harbours the regulatory elements required for complete
activation of the IME1 promoter (Fig. 1b). In addition, we found
that meiosis in pIME1(−800-2315Δ) was completely impaired,
whereas pIME1(−1200-2315Δ) had a much milder effect on
meiosis. The result suggests that a region between −800 and
−1200 bp harbours regulatory elements essential for IME1 pro-
moter function. Analysis of additional mutants revealed that the
region between −800 and −850 bp contains regulatory elements
important for IME1 activation (Supplementary Fig. 1). In con-
clusion, the region essential for Tup1 binding to the IME1 pro-
moter is also required for transcription of IME1.

Tup1 forms a complex with Cyc819,20. The Tup1–Cyc8 co-
repressor complex is conserved and plays various roles in
regulating gene transcription21. Like Tup1, Cyc8 has also been
implicated in regulation of IME1 expression22. To investigate how
Cyc8 regulates IME1 expression, we determined Cyc8 binding
with the IME1 promoter under nutrient rich conditions. We
found that Cyc8 peaked in the same region as Tup1 in the IME1
promoter (Figs. 1c and 1d). These data indicate that Tup1–Cyc8
regulates the IME1 promoter.

Various models for Tup1–Cyc8 mediated repression of target
gene promoters have been described21,23,24. It has been proposed
that Tup1–Cyc8 primarily regulates promoters by masking TFs
from recruiting co-activators25. If Tup1–Cyc8 represses the IME1
promoter by shielding co-activators, then transcriptional activa-
tors should be present at the promoter under repressive
conditions. To test this, we measured the association of a known
transcriptional activator of IME1, Pog17. We found that Pog1 is
indeed enriched at the IME1 promoter under repressive
conditions (Fig. 1d). To further examine whether transcriptional
activators are readily present at the IME1 promoter, we measured
IME1 expression after depletion of Tup1 or Cyc8. We reasoned
that if Tup1–Cyc8 represses the IME1 promoter by restraining
activating TFs, then depletion of Tup1 or Cyc8 should con-
comitantly allow activators present to induce IME1 transcription.
We used the auxin inducible degron (AID) system (TUP1-AID
and CYC8-AID), and treated cells with indole-3-acetic acid (IAA)
to achieve rapid protein depletion in cells26. Rapid and sustained
depletion of Tup1 and Cyc8 was achieved within 30 min after
IAA treatment (Fig. 1e). Strikingly, IME1 transcript levels
strongly increased concurrently, and were comparable to or even
higher than those in wild-type cells entering meiosis when IME1
expression is typically at its peak (Fig. 1f). These data show that
Tup1–Cyc8 represses the IME1 promoter under nutrient rich
conditions and suggest that the default state of the IME1
promoter is active.

Although Pog1 is already bound at the IME1 promoter in
repressive conditions, it is possible that other transcriptional
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activators associate with the IME1 promoter after Tup1–Cyc8
dissociates. This may result in a delay between Tup1–Cyc8
depletion and activation of IME1 transcription. We therefore
decided to monitor IME1 expression by single molecule RNA
fluorescence in situ hybridisation (smFISH)27. We found that as
soon as Tup1 was depleted, IME1 transcripts were detected in
single cells (Fig. 1g–i, Supplementary Fig. 2a). An increase in
IME1 transcripts was detected as early as 10 min after IAA
treatment when Tup1 was partially depleted (Fig. 1g). After 15
min, 5.3 IME1 transcripts were detected per cell on average, and

12% of the cells (TUP1-AID+ IAA) had more than 10 IME1
transcripts compared to 2% in control cells (Fig. 1i). After 30 min,
more than 55% of cells expressed more than 10 IME1 transcripts
(Fig. 1i). The AID-tag fused to Tup1 had some effect on IME1
expression in the absence of IAA as IME1 transcript levels were
increased by five-fold in TUP1-AID compared to wild-type cells
(Fig. 1h). Our analysis indicates that there is little temporal delay
between Tup1–Cyc8 depletion and IME1 transcript accumulation
suggesting that transcriptional activators are readily available for
activating the IME1 promoter.
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Multiple Tup1–Cyc8 interacting TFs bind to the IME1 pro-
moter. The Tup1–Cyc8 complex interacts with DNA sequence
specific TFs to form co-repressor complexes at promoters28–34.
These TFs facilitate Tup1–Cyc8 association with promoters and
mediate repression of target genes. To investigate which TFs recruit
Tup1–Cyc8 to the IME1 promoter and how they control IME1
transcription, we assembled a list of TFs previously reported to
interact with Tup1 or Cyc8. In addition, we examined the region of
the IME1 promoter (−600 to −1200 bp) where Tup1–Cyc8 binds
and scanned for sequence motifs among TFs known to interact
with Tup1–Cyc8 (Fig. 2a, Supplementary Fig. 3). We identified 13
candidate TFs that were known or implicated to interact with
Tup1–Cyc8 and have binding sites in the IME1 promoter (Fig. 2a,
Supplementary Fig. 3). We also included the TF Sok2 in our
analyses because it has been proposed to interact with Tup1–Cyc8
and Sok2 is known to directly repress IME1 transcription11,28.
After the curation of the list of TFs, we measured their binding
under nutrient rich conditions. Eight TFs displayed enrichment
(three-fold or more over background) at the IME1 promoter
(Fig. 2b). As expected, a known regulator of the IME1 promoter,
Sok2, was strongly enriched11. Phd1 (a paralogue of Sok2) and
Yap6 also displayed strong enrichment (Fig. 2b). In addition, the
TF Sut1, which is known to interact with Cyc8, was enriched31.
The TFs Mot3, Sko1, Nrg1 and Nrg2 displayed a milder enrich-
ment (between three-fold and six-fold). For the TFs that displayed
enrichment, we also assessed their binding to other parts of the
IME1 promoter (Fig. 2c). The binding of these TFs peaked in the
same region of the IME1 promoter as Tup1–Cyc8. Thus, at least
eight TFs that have been implicated to interact with Tup1–Cyc8
associate with the IME1 promoter.

Next, we examined whether these TFs are responsible for
recruiting Tup1 to the IME1 promoter. We reasoned that
candidate TFs should associate independently of Tup1–Cyc8 to
the IME1 promoter, while the binding of Tup1–Cyc8 should
depend on the TFs and thus the presence of their binding motifs
(Fig. 3a). First, we depleted Tup1 (TUP1-AID+ IAA) and
measured binding for a subset of the bound TFs (Fig. 3b,
Supplementary Fig. 4a). Except for Sko1, the binding of the TFs to
the IME1 promoter was not affected by Tup1 depletion (Fig. 3b).
Thus, multiple TFs known to interact with Tup1–Cyc8 associate
with the IME1 promoter independently of Tup1–Cyc8. Second, we
examined whether the candidate TFs contribute to Tup1–Cyc8
recruitment. We mutated putative binding sites of the TFs that
showed binding to the IME1 promoter. To do so, we generated
a construct containing the full-length promoter controlling the

expression of a sfGFP fused to the IME1 gene (pIME1-WT).
Subsequently, we mutated 103 nucleotides distributed across a
region of 400 bp in the IME1 promoter where most TF binding
sites were present (pIME1-bsΔ) (Fig. 3c, Supplementary Fig. 4b, c).
We integrated the constructs into the TRP1 locus in cells
harbouring a deletion of the endogenous IME1 gene and promoter
sequence. Tup1 association with the IME1 promoter was nearly
completely lost in pIME1-bsΔ cells (Fig. 3c). As expected, control
cells (pIME1-WT) displayed strong Tup1 binding. Finally, we
assessed how IME1 expression is affected in pIME1-bsΔ cells.
Surprisingly, IME1 expression in pIME1-bsΔ cells was reduced,
suggesting the regulatory elements essential for Tup1–Cyc8
recruitment are also important for IME1 activation (Fig. 3d). In
conclusion, DNA sequence motifs of TFs bound to the IME1
promoter are required for Tup1–Cyc8 association with the IME1
promoter.

Tup1–Cyc8 does not directly control the chromatin state. The
Tup1–Cyc8 complex represses gene promoters, at least in part, by
stabilising nucleosomes and establishing repressive chromatin35–37.
Indeed, the region where Tup1–Cyc8 binds in the IME1 promoter
is devoid of nucleosomes in the absence of Tup116,35. One possi-
bility is that the repressive effects of Tup1–Cyc8 on the IME1
promoter are indirect. Instead of Tup1–Cyc8 directly promoting
nucleosome occupancy or stability, nucleosomes could be evicted
by transcriptional activators together with chromatin remodellers
in the absence of Tup1–Cyc8. Such an activator–repressor model
has been proposed for Tup1–Cyc8 and functionally demonstrated
for other loci25. Since pIME1-bsΔ cells displayed low binding of
Tup1 and no de-repression of IME1 expression (Figs. 3c and 4a),
we can discriminate between direct and indirect effects of
Tup1–Cyc8 in regulating chromatin state. We found that in
pIME1-bsΔ cells, relative histone H3 occupancy was slightly
increased in the region between 400 and 1000 bp upstream of
IME1 AUG and mostly unaltered in the rest of the IME1 promoter
when compared to pIME1-WT cells grown in rich medium
(Fig. 4b, Supplementary Fig. 5a). Conversely, under activating
conditions, histone H3 was strongly reduced in pIME1-WT cells
but to a significantly lesser degree in pIME1-bsΔ cells (Supple-
mentary Fig. 5a, bottom panel).

Tup1–Cyc8 also directly interacts with class I and II histone
deacetylases (HDACs), which in turn confer repression through
deacetylation of nucleosomes38–40. For example, repression of the
FLO1 promoter is achieved by Tup1–Cyc8 mediated recruitment
of Hda1 and Rpd341. In hda1Δ rpd3Δ cells strong de-repression

Fig. 1 Tup1–Cyc8 prevents activation of the IME1 promoter. a Schematic representation of nutrient control of the IME1 promoter. b Effects of truncations
in the IME1 promoter on meiosis. Diploid cells with one copy of IME1 deleted (control, FW4128) and harbouring promoter truncations at the WT IME1 copy
(pIME1(−1600-2315Δ), FW3946; pIME1(−1400-2315Δ), FW3947; pIME1(−1200-2315Δ), FW3948; pIME1(−1000-2315Δ), FW3949; pIME1(−800-2315Δ),
FW3950; pIME1(−600-2315Δ), FW3951) were induced to enter meiosis. Samples were taken at the indicated time points, fixed and DAPI masses were
counted (n= 200 cells per sample) to determine meiosis (MI+MII). c Cyc8 binding to IME1 promoter determined by chromatin immunoprecipitation
(ChIP). Cyc8 bound DNA fragments were isolated and quantified by qPCR using eight different primer pairs from cells expressing V5 epitope-tagged Cyc8
(FW6381). The signals were normalised over HMR. Mean of n= 2 is shown. d Similar as c except that the binding of Cyc8 (Cyc8-V5, FW6381) and Pog1
(Pog1-V5, FW968) is shown alongside untagged wild-type (control, FW1511) cells. The region around 1000 bp upstream of the IME1 AUG was analysed.
Mean of n= 3 (control is n= 2) and SEM are shown. e Tup1 and Cyc8 depletion detected by western blot. Diploid cells harbouring Tup1 or Cyc8 fused to
auxin induced degron (AID) (TUP1-AID, FW5057; CYC8-AID, FW6371) were treated with IAA or DMSO. As a control, Hxk1 levels were determined. *Tup1-
AID cleavage product with no detectable function. A representative AID depletion experiment is shown (n > 3). f Similar as e except that IME1 mRNA
expression was determined by RT-qPCR. Mean of n= 2 is shown. g Tup1 protein levels (TUP1-AID, FW5057) detected by western blotting as described in
(e). *Tup1-AID cleavage product with no detectable function. A representative AID depletion experiment is shown (n > 3). h Distribution of IME1 transcript
levels in single cells as described in g determined by single molecule RNA fluorescence in situ hybridisation (smFISH). Cells were hybridised with IME1
(AF594) and ACT1 (Cy5) probes. Cells positive for ACT1 were used for the analyses. Data of n≥ 50 cells and mean (black line) are displayed. Unpaired
parametric two-tailed Welch’s t test with 95% confidence was used. Non-significant (ns) and p values (** = ≤0.01, *** = ≤0.001) are indicated. i Same as
h with data binned by expression levels.
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of the FLO1 gene can be observed. To examine whether histone
deacetylases mediate Tup1–Cyc8 repression at the IME1
promoter, we generated single and double mutants of known
Tup1–Cyc8 interacting histone deacetylases (Rpd3, Hda1, Hos1
and Hos2) and measured IME1 expression levels by smFISH
(Fig. 4c, Supplementary Fig. 5b). Deletion of individual HDACs
(rpd3Δ, hda1Δ, hos1Δ and hos2Δ) did not increase expression of
IME1. About 10% of rpd3Δhda1Δ cells expressed four or more
IME1 transcripts, which is a marginal increase when compared to
Tup1 depleted cells (Supplementary Fig. 5b, Fig. 1i). Two other
double mutants (rpd3Δhos1Δ and rpd3Δhos2Δ) displayed no
detectable increase in IME1 expression but showed a decrease in
IME1 levels similar to that observed in the rpd3Δ mutant
(Fig. 4c). Our data suggest HDACs that are known to interact
with Tup1–Cyc8 play only a marginal role in repressing the IME1
promoter. It is worth noting that our analysis does not exclude
the possibility that there is further redundancy between HDACs
in regulating the IME1 promoter. Taken together, our analyses
suggest a marginal role for Tup1–Cyc8 in regulating the IME1
promoter through chromatin directly.

Multiple TFs are required for Tup1–Cyc8 mediated repression.
Our analyses of the IME1 promoter suggest that multiple TFs and
binding sites are essential for Tup1–Cyc8 recruitment. Next, we
examined how the different TFs control IME1 expression and
mediate Tup1–Cyc8 recruitment. First, we assessed how the
paralogues Sok2 and Phd1 control IME1 expression. sok2Δ cells
displayed a marginal yet significant increase in IME1 expression
(average transcripts per cell: 0.6 for sok2Δ versus 0.3 for control)
(Fig. 5a, b). In the sok2Δphd1Δ double mutant, IME1 expression
was further increased (average transcripts per cell: 2.2) and about
5% of cells displayed more than 10 transcripts per cell suggesting
that Sok2 and Phd1 play redundant roles in tightly repressing the
IME1 promoter (Fig. 5a, b). IME1 repression was not affected in
single or double mutant cells containing yap6Δ, but the
sok2Δphd1Δyap6Δ triple deletion mutant showed the largest
increase in IME1 expression (average transcripts per cell: 2.8 for
sok2Δphd1Δyap6Δ versus 2.2 for sok2Δphd1Δ) (Fig. 5a). About
8% of sok2Δphd1Δyap6Δ cells expressed more than 10 IME1
transcripts per cell (Fig. 5b), which was still much lower than that
in cells depleted for Tup1 (Fig. 1i), suggesting that additional TFs
contribute to IME1 repression.

Our data demonstrate that Sok2, Phd1 and Yap6 associate with
the IME1 promoter and contribute to IME1 repression in nutrient
rich conditions. Yet, IME1 expression was reduced in cells with
DNA sequence motifs mutated (pIME1-bsΔ). One explanation is
that the mutated binding sites in pIME1-bsΔ facilitate Tup1–Cyc8
recruitment as well as binding of transcriptional activators. Another
possibility is that TFs important for Tup1–Cyc8 recruitment are
also required for IME1 activation. To discriminate between the two
possibilities, we generated a construct that contained binding sites
for Sok2, Phd1 and Yap6 (pIME1-spy), while the other TF binding
sites remained mutated (Fig. 5c, Supplementary Fig. 5c). By
combining pIME1-spy with sok2Δphd1Δyap6Δ, we determined
whether Sok2, Phd1 and Yap6 are important for IME1 activation or
repression. Tup1 binding was restored in cells harbouring pIME1-
spy (Fig. 5c). Furthermore, Yap6, Sok2 and Phd1 were enriched at
the IME1 promoter in pIME1-spy cells but their binding was
reduced compared to the wild-type promoter—suggesting that
additional binding sites are present or cooperative interactions with
remaining TFs exist (Fig. 5c). Next, we measured IME1 expression
in sok2Δphd1Δyap6Δ mutant cells harbouring pIME1-spy (Fig. 5d).
We found that IME1 expression was significantly de-repressed—
about 17% of cells harbouring pIME1-spy and sok2Δphd1Δyap6Δ
expressed more than 10 IME1 transcripts per cell (Fig. 5d, e).
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As expected, the sok2Δphd1Δyap6Δ triple deletion only had a mild
effect on IME1 levels in cells expressing pIME1-WT or pIME1-bsΔ.
We conclude that Sok2, Phd1 and Yap6 are important for
repression of the IME1 promoter and play little role in IME1
activation.

The Tup1–Cyc8 complex dissociates from the IME1 promoter
in cells exposed to nutrient starvation16. We hypothesised that TFs
interacting with Tup1–Cyc8 at the IME1 promoter control
Tup1–Cyc8 dissociation during IME1 activation. To examine this,
we measured the binding of the TFs during activation of the IME1
promoter. In order to induce IME1 expression and meiotic entry,
we typically grow cells in rich medium conditions containing
glucose until saturation, then shift to pre-sporulation medium
containing acetate to ensure that cells are not subjected to
repressive glucose signalling to the IME1 promoter4,9. Subse-
quently, cells are starved in sporulation (SPO) medium (0.3%
acetate), which induces IME1 transcription and meiotic entry.
Both Pog1 and Tup1 were enriched at 0 h in SPO prior to IME1
induction. As expected, during meiotic entry (4 h in SPO) Tup1
dissociated from the IME1 promoter completely while Pog1
binding was maintained albeit to a reduced level (Fig. 6a, right
panel). In addition, we found that all eight TFs were enriched at
the IME1 promoter prior to induction of IME1 (Fig. 6a, left panel).

Upon entry into meiosis (4 h in SPO), five TFs showed near
background binding (less than three-fold) to the IME1 promoter,
while three TFs (Yap6, Phd1 and Nrg1) displayed marginal
enrichment (less than five-fold over background) (Fig. 6a, right
panel). We further performed a time course experiment with three
TFs (Yap6/Sok2/Phd1) and Tup1. We found that IME1 bulk
expression levels peaked at 3 h in SPO (Supplementary Fig. 6a).
Tup1 and Sok2 dissociated from the IME1 promoter in the early
time points (1 and 2 h in SPO), while the majority of Tup1 and
Sok2 was evicted at 4 h in SPO (Fig. 6b). Yap6 and Phd1 displayed
reduced binding at the IME1 promoter at 3 h in SPO and was thus
slower than Sok2 and Tup1. We propose that the gradual
dissociation of multiple TFs evicts Tup1–Cyc8 from the IME1
promoter.

One possible mechanism by which Tup1–Cyc8 and TFs
dissociate from the IME1 promoter is by re-localisation to the
cytoplasm. Indeed, nutrient signalling via PKA and TORC1 can
impact the localisation of several TFs42,43. We fused mNeonGreen
to Sok2, Phd1, Yap6, Tup1 and Cyc8 (Supplementary Fig. 6b). As
expected, Sok2, Phd1 and Yap6 were concentrated in the nucleus.
Neither protein abundance in the nucleus nor the nuclear-to-
cytoplasmic ratios were altered in cells prior to (0 h in SPO) and
during entry into meiosis (4 h in SPO) (Fig. 6c, Supplementary
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Fig. 6c). Taken together, activation of the IME1 promoter
correlates with dissociation of Tup1–Cyc8 and Tup1–Cyc8
recruiting TFs from the IME1 promoter, but likely not via a
mechanism involving re-localisation of TFs to the cytoplasm.

Sok2, Phd1 and Yap6 control the onset of meiosis. Our
observations indicate that Sok2, Phd1 and Yap6 are important
TFs for IME1 repression. Next, we investigated how the three TFs
control Tup1–Cyc8 recruitment in different nutrient conditions.
We found that Tup1 binding to the IME1 promoter was not
decreased by sok2Δ, phd1Δ and yap6Δ single/double/triple dele-
tions in rich medium containing glucose, suggesting that other
TFs contribute to IME1 repression via Tup1–Cyc8 when glucose
is used by cells as the carbon source (Fig. 7a). In contrast, prior to
meiotic entry (0 h in SPO) Tup1 binding was diminished in sok2Δ
and sok2Δphd1Δ cells, but not in yap6Δ and phd1Δ cells (Fig. 7a).
Strikingly, Tup1 association with the IME1 promoter was severely
reduced (less than three-fold over background) in sok2Δyap6Δ
and sok2Δphd1Δyap6Δ cells at 0 h in SPO. IME1 expression was
inversely correlated with Tup1–Cyc8 recruitment to the IME1
promoter since IME1 was significantly de-repressed in
sok2Δyap6Δ, sok2Δphd1Δ or sok2Δphd1Δyap6Δ cells at 0 h in
SPO (Fig. 7b). Finally, we examined how Sok2, Phd1 and Yap6
mediated Tup1–Cyc8 recruitment contributes to the onset of
meiotic entry. Cells harbouring sok2Δ or sok2Δphd1Δ underwent
meiosis much faster than wild-type cells (Fig. 7c). There was little
effect on the onset of meiosis in the yap6Δ or yap6Δphd1Δ
mutants. In sok2Δyap6Δ and sok2Δphd1Δyap6Δ cells the kinetics
of meiosis was slightly faster than sok2Δphd1Δ cells (Fig. 7c).
Approximately 50% of cells underwent meiotic divisions within
2 h in SPO for sok2Δphd1Δyap6Δ cells compared to 3 h for

sok2Δphd1Δ cells. We also analysed how the onset of meiosis is
affected in sok2Δphd1Δyap6Δnrg1Δ cells (Supplementary Fig. 7a).
We found no difference in the onset of meiosis between
sok2Δphd1Δyap6Δnrg1Δ and sok2Δphd1Δyap6Δ cells, suggesting
that Nrg1 is not involved in IME1 activation (Fig. 6a, right panel).
We conclude that Sok2, Phd1 and Yap6 direct Tup1–Cyc8
association with the IME1 promoter to ensure timely expression
of IME1 in cells grown in acetate-containing medium. Our data
further suggest that the IME1 promoter is regulated by multiple
Tup1–Cyc8 co-repressor complexes.

Binding of TFs is highly regulated by nutrient cues. Why do so
many TFs (at least eight) associate with the IME1 promoter? One
possibility is that the TFs facilitate Tup1–Cyc8 recruitment
under different nutrient conditions. With this logic, repression of
the IME1 promoter can be maintained under various nutrient
conditions and will only be fully activated when all the nutrient
signalling requirements are met. In agreement with this model,
IME1 expression was only marginally increased in sok2Δphd1-
Δyap6Δ cells grown in the presence of ample nutrients with
glucose as the carbon source (YPD), and was significantly
increased by nearly ten-fold in sok2Δphd1Δyap6Δ cells grown in
acetate-containing medium (Figs. 5a, b and 7b). Furthermore, in
YPD saturation when glucose is depleted from the growth
medium, we observed that some TFs displayed altered associa-
tion with the IME1 promoter. For example, Sok2 binding was
increased, while Yap6 and Cyc8 association with the IME1
promoter was decreased (Supplementary Fig. 7b). To examine
how the different TFs respond to nutrient signalling at the IME1
promoter more systematically, we measured their association
under different nutrient conditions (Fig. 8a). We grew cells until
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the pre-sporulation stage, and subsequently shifted cells to
sporulation medium (SPO) (1), SPO plus 2% glucose (2), YP (3)
or YP plus 2% glucose (YPD) (4). First, we measured Tup1
association with the IME1 promoter. We found that in SPO plus
glucose, Tup1 binding to the IME1 promoter was partially
restored (Fig. 8b). The association of Tup1 with the IME1 pro-
moter was further increased in YP and was the highest in YPD
growth medium. Pog1, the transcriptional activator of IME1, was
enriched in all four nutrient conditions, but at higher levels in YP
and YPD (Fig. 8b). Interestingly, TFs important for Tup1–Cyc8

recruitment to the IME1 promoter responded to nutrient signals
in distinct ways (Fig. 8c). For example, Yap6, Sok2, Sko1 and
Nrg1 associated with the IME1 promoter in response to the
nutrient cues present in YP, but not to glucose signals alone.
Phd1 binding partially recovered in the presence of glucose and
showed the strongest enrichment in cells exposed to YP and
YPD. Conversely, glucose signalling, but not YP, maintained
association of Mot3 and Nrg2 with the IME1 promoter (Fig. 8c).
Finally, Sut1 association with the IME1 promoter was restored in
YPD only.
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Given that Sok2, Phd1 and Yap6 were strongly enriched in cells
exposed to YP medium (Fig. 8c), we hypothesised that
Tup1–Cyc8 association with the IME1 promoter is affected in
sok2Δphd1Δyap6Δ cells in YP, but not in SPO containing glucose.
We therefore examined how Tup1–Cyc8 association with the
IME1 promoter was affected in sok2Δphd1Δyap6Δ cells under
different nutrient conditions. Indeed, in sok2Δphd1Δyap6Δ cells,
Tup1 binding was detected in SPO plus glucose, but not in YP
medium (Fig. 8d). These data indicate that Sok2, Phd1 and Yap6
are important for mediating Tup1–Cyc8 association in YP, while
other TFs are required for glucose signalling to the IME1
promoter (Fig. 8e). In summary, our analyses revealed that the
association of one set of TFs (i.e., Mot3 and Nrg2) with the IME1
promoter is induced by glucose signalling, while another set of
TFs (i.e., Yap6, Sok2, Phd1, Sko1 and Nrg1) was recruited to the
IME1 promoter primarily in response to the nutrient cues in YP.

Thus, only when all the required nutrient signalling pathways are
repressed, all TFs interacting with Tup1–Cyc8 dissociate from the
IME1 promoter allowing activation of IME1 transcription. These
data show that TFs important for Tup1–Cyc8 recruitment to the
IME1 promoter respond to different environmental cues to
ensure Tup1–Cyc8 mediated repression under various nutrient
conditions.

Discussion
We report that the Tup1–Cyc8 complex together with multiple
sequence-specific TFs constitute the essential components that
control repression of the IME1 promoter. The decision to enter
meiosis and produce gametes is remarkably simple in yeast:
environmental signals regulate the association and dissociation of
TFs that recruit Tup1–Cyc8 to the IME1 promoter. We propose
that regulated repression of IME1 by multiple TFs and
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Tup1–Cyc8 ensures tight control of the decision to enter meiosis
in yeast.

Our data show that repression of IME1 transcription, and not
activation, is highly regulated. Depletion of either Tup1 or Cyc8
completely de-repressed IME1 expression (Fig. 1). We detected
little delay between depletion of Tup1 and de-repression of IME1
expression in the presence of ample nutrients (Fig. 1g–i). From
these two observations, we can infer two important features of the
IME1 promoter. First, the transcriptional activators are bound to
the IME1 promoter or readily available prior to activation of
IME1 transcription. Second, key transcriptional activators of the
IME1 promoter can be active under nutrient rich conditions
when Tup1–Cyc8 is unbound. We found that the activator Pog1
is bound to the IME1 promoter prior to activation. A pog1Δ
mutant only has a mild effect on IME1 expression indicating that
there must be other transcriptional activators controlling IME1
transcription7. Several other transcriptional activators have been
implicated in regulating IME1 transcription12.

How does Tup1–Cyc8 control the IME1 promoter? The
Tup1–Cyc8 complex regulates transcription of a subset of pro-
moters in yeast18,44. Several mechanisms have been described for
Tup1–Cyc8 mediated gene repression21,23,24. Our data are lar-
gely consistent with a model in which Tup1–Cyc8 masks or
shields activating TFs from recruiting co-activators at pro-
moters25,32. We showed that multiple (at least eight) TFs that are
known to interact with Tup1–Cyc8 associate with the IME1
promoter (Fig. 2b). Our data suggest that these TFs are impor-
tant for facilitating Tup1–Cyc8 binding but play little role in
IME1 transcriptional activation. First, almost all TFs involved in

Tup1–Cyc8 recruitment dissociated from the IME1 promoter
upon activation of IME1 transcription (Fig. 6a, right panel).
Second, deleting multiple TFs led to activation, but not repres-
sion of IME1 transcription (Fig. 7c, Supplementary Fig. 7a).
However, we cannot exclude that the Tup1–Cyc8 recruiting TFs
can function as transcriptional activators in some conditions.
Indeed, Yap6 and Sok2 have both been implicated as activators
of transcription at some promoters45,46. In the context of the
IME1 promoter, each TF likely has a designated function in
either repression or activation of IME1 transcription. We pro-
pose that multiple TFs are required to recruit the Tup1–Cyc8 co-
repressor to the IME1 promoter. The Tup1–Cyc8 co-repressor
complexes, in turn, mask transcriptional activators (which are
different from the Tup1–Cyc8 recruiting TFs) and prevent co-
activator recruitment.

Under most environmental conditions, the IME1 promoter must
be repressed to prevent cells from inappropriately entering meiosis
and forming gametes only unless when cells are starved. We
propose that multiple TFs ensure IME1 repression under various
environmental conditions. First, we found that distinct sets of TFs
associate with the IME1 promoter in different nutrient environ-
ments (Fig. 8). Second, deleting three TFs (Sok2, Phd1 and Yap6)
led to very mild IME1 expression in rich medium containing
glucose (Fig. 5a, b), but IME1 was almost fully expressed in cells
grown in an acetate-containing medium (Fig. 7b). Thus, additional
TFs must facilitate Tup1–Cyc8 association with the IME1 pro-
moter in rich medium containing glucose.

We previously showed that inhibiting PKA and TORC1 is
sufficient to drive entry into meiosis16. Understanding how PKA
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and TORC1 regulate TFs controlling Tup1–Cyc8 recruitment to
the IME1 promoter may be key to understanding how the deci-
sion to enter meiosis is regulated. However, the mechanism
remains to be deciphered. Inhibiting PKA and TORC1 activity
can trigger the re-localisation of TFs, alter protein–protein

interactions and protein turnover, and more32,47. With this view,
we observed no depletion of TFs from the nucleus during acti-
vation of the IME1 promoter (Fig. 6c, Supplementary Fig. 6c).
Nutrient signalling may also regulate Tup1–Cyc8 itself through
post-translational modifications48,49.
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Our work in yeast shows similarities to how multicellular
organisms undertake developmental decisions. In Drosophila,
plants, and mammals, transcriptional repressors of the Groucho
family (structurally related to Tup1) are important for regulating
various developmental processes such as body patterning and
determination of organ identity50–52. Like Tup1–Cyc8, the asso-
ciation of Groucho repressor with promoters relies on sequence
specific TFs, and Groucho repressor integrates multiple signals to
control gene expression and cell fate outcomes. Regulation of the
IME1 promoter also demonstrates features of enhancer-directed
transcriptional control of cell-fate master regulators in mamma-
lian cells53–55. Like at the IME1 promoter, an array of TFs
associates and controls the activity of enhancers. In addition,
developmentally controlled enhancers are typically regulated by
multiple upstream signalling pathways and are often primed for
activation56. Our findings in yeast may provide insights to better
understand how signal integration controls master regulatory
genes and developmental decisions in all eukaryotic cells.

Methods
Yeast strains and plasmids. The Saccharomyces cerevisiae SK1 genetic back-
ground was employed for all experiments in this study. Experiments were carried
out with diploid cells and the list of yeast strains described in this study can be
found in Supplementary Data 1. Gene deletions, IME1 promoter truncations, and
protein fusions were achieved by the single step PCR-based gene modification
protocol described in ref. 57. Auxin-based depletion of Tup1 and Cyc8 was
achieved by fusing Tup1 and Cyc8 with the auxin-induced degron (AID) tag
containing 3×V5 epitope and the Arabidopsis thaliana IAA7 protein26. The Oryza
sativa TIR1 ligase (osTIR1) was also expressed under the TEF1 promoter from a
plasmid integrated at the HIS3 locus (courtesy of Leon Chan) in the TUP1-AID and
CYC8-AID strains. Protein-mNeonGreen fusions were constructed by tagging the
proteins with mNeonGreen tagging cassettes (courtesy of Andreas Doncic)
described in ref. 58. Cells expressing protein-mNeonGreen fusions also harboured a
nuclear localisation signal peptide derived from simian virus 40 tagged with two
copies of mCherry (2xmCherry-SV40NLS)58.

Single-copy integration plasmids containing IME1 N-terminally fused with
sfGFP and full length IME1 promoter were derived from pNH60459. The pIME1-
sfGFP-IME1 fragment (~4.6 kb) was amplified from yeast cells expressing sfGFP-
Ime1 and was cloned into pNH604 plasmid in the NotI and BamHI sites by
restriction digestion. The resulting plasmid (pIME1-WT) consists of pIME1-sfGFP-
IME1 followed by C. glabrata TRP1 and the whole cassette is flanked by the 5′ and
3′ UTRs of S. cerevisiae TRP1. To mutate TF binding sites, DNA fragments of 500
bp in length corresponding to 701–1100 bp upstream of the IME1 start codon with
binding site mutations were synthesised (gBlocks Gene Fragments, Integrated DNA
Technologies) and cloned into the pIME1-WT plasmid by Gibson assembly using
the NEBuilder HiFi DNA Assembly Master Mix (New England BioLabs). The
pIME1-bsΔ plasmid carried 103 mutated nucleotides (nt) between 701 and 1100 bp
upstream of the IME1 start codon to disrupt Yap6, Sok2, Phd1, Mot3, Sko1, Nrg1
and Nrg2 binding sites (Supplementary Fig. 4c). The pIME1-spy plasmid was
designed based on the promoter sequence in pIME1-bsΔ by restoring the Yap6,
Sok2 and Phd1 sites (33 nt) between 701–1100 bp upstream of the IME1 start
codon while other TF sites remained mutated (Supplementary Fig. 5c). Plasmid
sequences were verified by Sanger sequencing. Plasmids (pIME1-WT, pIME1-bsΔ
and pIME1-spy) were linearised with PmeI and integrated by transformation into
the TRP1 locus.

Growth conditions. Yeast cells were grown in YPD medium (1% yeast extract, 2%
peptone, 2% glucose) supplemented with 96 µg/mL tryptophan, 24 µg/mL uracil and
12 µg/mL adenine, grown at 30 °C and liquid cultures were agitated at 300 r.p.m. To
obtain exponentially growing cells (YPD (E)) and cells grown to saturation (YPD
(S)), cells were grown in YPD to saturation overnight, diluted to OD600= 0.2 and
subsequently YPD (E) cells were harvested after two to three doublings. YPD (S)
cells were grown for 20–24 h in YPD. To induce entry into meiosis, cells were grown
overnight in YPD, shifted to pre-sporulation medium BYTA (1% yeast extract, 2%
tryptone, 1% potassium acetate, 50 mM potassium phthalate) at OD600= 0.4 for
16–18 h, and subsequently transferred to sporulation medium SPO (0.3% potassium
acetate, 0.02% raffinose, pH 7.0) at OD600= 1.8.

To study the responses of the TFs in distinct nutrient conditions in Fig. 8b–d,
cells were grown in YPD and pre-sporulation medium following the standard
sporulation induction protocol. Subsequently, cells were shifted to four different
types of media including sporulation medium (SPO), glucose-only medium (SPO
+ 2% glucose), YP medium without glucose (YP+ 0.05% glucose) and YPD
medium (YP+ 2% glucose). Yeast cells were harvested for ChIP analyses at the
point of shift (0 h SPO) and after four hours in the different nutrient conditions.

To study the effect of Tup1 and Cyc8 depletion on IME1 expression and TF
binding (Fig. 1e–i, Fig. 3b, Supplementary Figs. 2b and 4a), 500 µM of indole-3-

acetic acid (IAA) (Aldrich) was added to exponentially growing cells to induce
degradation of Tup1-AID and Cyc8-AID proteins. As control, same volume of
dimethyl sulphoxide (DMSO) was added to yeast cells. Cells were harvested at the
indicated time points for ChIP, RT-qPCR, smFISH and western blot analyses.

Chromatin immunoprecipitation (ChIP). Harvested cells were crosslinked with
formaldehyde for 20 min at room temperature and reaction was quenched by the
addition of 100 mM glycine. Cells were washed with FA lysis buffer (50 mM
HEPES pH 7.5, 150 mM sodium chloride, 1 mM EDTA pH 7.6, 1% Triton X-100,
0.1% sodium deoxycholate, 0.1% sodium dodecyl sulphate (SDS)), snap frozen and
stored at −80 °C. Cell lysis was performed in cold FA lysis buffer with cOmplete
Mini Protease Inhibitor Cocktail (Roche). Samples were homogenised with zirconia
beads (BioSpec) using Mini-Beadbeater-96 (BioSpec). The chromatin fraction was
subjected to shearing by sonication on Bioruptor Plus (Diagenode) using 9 cycles of
30 s on, 30 s off or until the majority of fragments were under 850 bp. V5 epitope-
tagged proteins were immunoprecipitated with anti-V5 agarose beads (Sigma-
Aldrich) at room temperature for 2 h with rotation. Histone H3 was immuno-
precipitated (Fig. 4b, Supplementary Fig. 5a) with Dynabeads Protein A (Invitro-
gen) coupled with anti-H3 antibodies (ab1791, Abcam) using 2 µg of antibodies per
sample. Subsequently, the beads were washed with FA lysis buffer, FA lysis buffer
with 260 mM sodium chloride and a lithium chloride/detergent buffer (10 mM Tris
pH 8, 250 mM lithium chloride, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM
EDTA). Samples were reverse crosslinked in TE buffer with 1% SDS at 65 °C, 500 r.
p.m. overnight and treated with 80 µg/mL proteinase K (Thermo Scientific) at 37 °
C for 2 h. Purified DNA fragments were quantified by quantitative PCR using
EXPRESS SYBR GreenER SuperMix (Thermo Fisher Scientific) or PowerUp SYBR
Green Master Mix (Thermo Fisher Scientific) on Applied Biosystems 7500 Fast
Real-Time PCR System (Thermo Fisher Scientific). ChIP signals were typically
corrected by an input, and subsequently were normalised over the silent mating
type cassette HMR. Primer sequences are listed in Supplementary Table 1. The
HMR locus is known to be transcriptionally inactive but binding of Tup1 has been
detected near silent mating loci. To examine whether HMR is an appropriate
background control for Tup1 ChIP, we calculated Tup1–V5 ChIP signals nor-
malised over input for the IME1 promoter and HMR, which showed that Tup1 was
not enriched at the HMR locus (Supplementary Fig. 8).

RNA isolation and reverse transcription. Total RNA was extracted from har-
vested cells using the hot phenol method. Briefly, TES buffer (10 mM Tris-HCl pH
7.5, 10 mM EDTA, 0.5% SDS) and acid-phenol:chloroform (Ambion) were added
to samples and incubated at 65 °C. RNA was subsequently purified using the
NucleoSpin RNA kit (Macherey-Nagel) according to the manufacturer’s instruc-
tions. rDNase was added to remove residual genomic DNA during the purification
procedure. For reverse transcription, ProtoScript II First Strand cDNA Synthesis
Kit (New England BioLabs) was used and 500 ng of total RNA was provided as
template in each reaction. qPCR reactions were prepared using EXPRESS SYBR
GreenER SuperMix (Thermo Fisher Scientific) or PowerUp SYBR Green Master
Mix (Thermo Fisher Scientific) and IME1 level was quantified on Applied Bio-
systems 7500 Fast Real-Time PCR System (Thermo Fisher Scientific). Signals were
normalised over ACT1. Primer sequences are listed in Supplementary Table 1.

Western blotting. Proteins were extracted from cells fixed with 5% trichloroacetic
acid by lysing cells in protein breakage buffer (50 mM Tris at pH 7.5, 1 mM EDTA,
27.5 mM DTT) with 0.5 mm glass beads (BioSpec) on the Mini-Beadbeater-96
(BioSpec). Samples were denatured in SDS loading buffer (62.5 mM Tris (pH 6.8),
2% β-mercaptoethanol, 10% glycerol, 3% SDS and 0.017% Bromophenol Blue) and
separated by SDS-PAGE in Tris-glycine buffer (25 mM Tris base, 192 mM glycine,
0.1% SDS). V5-epitope tagged proteins were detected using anti-V5 primary
antibodies (Invitrogen, 1:2000, mouse) and IRDye 800CW (LI-COR, 1:15000) or
HRP-conjugated (GE Healthcare, 1:8000) secondary antibodies. For equal loading
Hxk1 protein levels were determined using anti-hexokinase primary antibodies
(Stratech Scientific, 1:2000, rabbit), and IRDye 680RD (LI-COR, 1:15000) or HRP-
conjugated (GE Healthcare, 1:8000) secondary antibodies. Images were acquired on
the Odyssey CLx imaging system (LI-COR) or by ECL Prime (GE Healthcare)
using Amersham Imager 600 (GE Healthcare). Uncropped versions of the western
blots presented in Fig. 1e, g, Supplementary Fig. 4a are provided in the Source
Data file.

Nuclei/DAPI counting. Samples were fixed in 80% ethanol and stained with 1 µg/
mL 4′,6-diamidino-2-phenylindole (DAPI) in PBS buffer. Cells with two, three or
four DAPI masses were considered meiosis, while cells harbouring one DAPI mass
were counted as NO meiosis. At least 200 cells were analysed for each sample.

Microscopy. For single molecule RNA fluorescence in situ hybridisation
(smFISH), cells were fixed with formaldehyde and washed with Buffer B (1.2 M
sorbitol, 0.1 M potassium phosphate dibasic, pH 7.5). To spheroplast the cells,
samples were treated with 40 µg/mL Zymolyase-100T (MP Biomedicals) and
57.2 mM β-mercaptoethanol in Buffer B at 30 °C. Spheroplasted cells were washed
and smFISH probes recognising IME1 (AF594) and ACT1 (Cy5)16 were hybridised
overnight in hybridisation buffer (10% dextran, 2 mM vanadyl-ribonucleoside
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complex (New England BioLabs), 0.02% RNAse-free BSA, 1 mg/mL E. coli tRNA,
2×SSC and 10% formamide) at 30 °C. Cells were washed with wash buffer (2×SSC,
10% formamide), stained with 1 µg/mL DAPI in wash buffer and re-suspended in
2×SSC. Subsequently, cells were spun down and re-suspended prior to imaging in
anti-fade GLOX with 1% catalase (Sigma) and 1% glucose oxidase (Sigma)27.
Images were acquired using the Eclipse Ti–E inverted microscope system (Nikon)
using the 100× oil objective with the ORCA-FLASH 4.0 camera (Hamamatsu) and
NIS-elements software (Nikon). Cells were imaged at every 0.3 µm along the z-axis
using the built-in z-axis drive and a total of 25 images were taken for each z-stack.
Signals from all the planes were merged into a 2D image by applying maximum
intensity z-projection in ImageJ 1.52a60. Only cells with ACT1 signals were con-
sidered for IME1 quantification using the StarSearch software (http://rajlab.seas.
upenn.edu/StarSearch/launch.html).

For the quantification of sfGFP expressed in pIME1-WT and pIME1-bsΔ
presented in Fig. 3d, cells were induced to sporulate using the standard protocol
and samples were taken from the sporulation culture at indicated time points.
Harvested cells were fixed with formaldehyde and re-suspended prior to imaging
in a buffer containing 16.6 mM potassium phosphate monobasic, 83.4 mM
potassium phosphate dibasic and 1.2 M sorbitol. Imaging was carried out on the
Eclipse Ti–E inverted microscope system (Nikon) using the 100× oil objective
with the ORCA-FLASH 4.0 camera (Hamamatsu) and NIS-elements software
(Nikon). sfGFP signals in each cell were quantified using the ImageJ 1.52a
software60.

For determining the localisation of mNeonGreen-tagged TFs described in
Fig. 6c. and Supplementary Fig. 6c, cells were induced to sporulate with the
standard protocol. Subsequently, cells were imaged at 0 h in SPO and 4 h in SPO.
Images were acquired using the same imaging system and set up described for
quantification of sfGFP expressed in pIME1-WT and pIME1-bsΔ cells. Signals from
whole cell and cell nucleus were quantified in the ImageJ 1.52a software and with
use of the nuclear marker (2xmCherry-SV40NLS)60. Signal from the cytosol was
inferred from the difference between whole cell signal and nuclear signal.

IME1 promoter motif analysis. TF binding sites presented in Fig. 2a, Supple-
mentary Figs. 3 and 4b were predicted by scanning the IME1 promoter with the
curated TF motifs in the YeTFaSCo database (version 1.02)61. Binding sites were
predicted to have at least 75% of the maximum possible score, with the exception of
the Sut1 binding site which was predicted with a 70% threshold. The Sko1 binding
site was identified manually by scanning the promoter sequence for the consensus
motif TGACG as described in ref. 61.

Statistical analyses. Data statistics and statistical analyses indicated in the figure
legends were computed using GraphPad Prism version 8.2.0 for Windows,
GraphPad Software, San Diego, CA, USA, www.graphpad.com. Data from the
smFISH and imaging experiments presented in Figs. 1h, 3d, 4a, c and 5a, d were
analysed using unpaired parametric two-tailed Welch’s t test with 95% confidence.
The H3 ChIP data presented in Fig. 4b and Supplementary Fig. 5a and the IME1
expression data presented in Fig. 7b were analysed by two-way ANOVA using the
uncorrected Fisher’s LSD method with 95% confidence. p Values are indicated in
the figures, where ns stands for non-significant, *= ≤0.05, **= ≤0.01, ***
= ≤0.001, ****= ≤0.0001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Supplementary Figs. 1–8 and Supplementary Table 1 are available in the supplementary
information. A reporting summary for this article is available as a Supplementary
Information file. The source data underlying Figs. 1b–I, 2b, c, 3b–d, 4a–c, 5a–e, 6a–c,
7a–c and 8b–d and Supplementary Figs. 1, 2b, 4a, 5a, b, 6a, c, 7a, b and 8 are provided as
a Source Data file. All data are available from the corresponding author upon reasonable
request.
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