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IL-36 Promotes Systemic IFN-I Responses in
Severe Forms of Psoriasis

Marika Catapano1,11, Marta Vergnano1,11, Marco Romano2, Satveer K. Mahil3,
Siew-Eng Choon4, A. David Burden5, Helen S. Young6, Ian M. Carr7, Helen J. Lachmann8,
Giovanna Lombardi2, Catherine H. Smith3, Francesca D. Ciccarelli9,10, Jonathan N. Barker3 and
Francesca Capon1
Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a
key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on
systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue,
we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our
attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36
signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals
display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the asso-
ciation between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We
also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV.
Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic
cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-a production. This effect was mediated by
the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings
identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.
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INTRODUCTION
IL-36a, -b, and -g (hence IL-36) are group of IL-1 family cy-
tokines that are mainly produced by keratinocytes, monocytes,
and dendritic cells (Bassoy et al., 2018). IL-36 signaling plays
an important role in epithelial immune homeostasis, and its
deregulation has been repeatedly implicated in the patho-
genesis of psoriasis vulgaris (PV), a common and chronic,
immune-mediated skin disorder (Bassoy et al., 2018).
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Numerous studies have shown that IL-36 responses are
elevated in PV skin (Mahil et al., 2017; Quaranta et al., 2014;
Swindell et al., 2015) where they stimulate chemokine pro-
duction and amplify the effects of IL-17 signaling (Mahil
et al., 2017). Animal studies have also demonstrated that
IL-36 promotes the activation of dendritic cells and the po-
larization of T lymphocytes into T helper type 17 cells
(Tortola et al., 2012). Thus, the mechanisms whereby IL-36
contributes to cutaneous inflammation have been exten-
sively investigated. The effects of IL-36 on circulating leu-
kocytes, however, remain poorly understood.

We and others have shown that recessive mutations of the
IL-36 receptor antagonist (IL36RN) are associated with
generalized pustular psoriasis (GPP), a disease variant char-
acterized by severe extracutaneous symptoms (Marrakchi
et al., 2011; Onoufriadis et al., 2011). Patients with GPP
suffer from flares of skin pustulation that are often accom-
panied by systemic upset (fever, elevation of acute phase
reactants, and neutrophilia) (Burden and Kirby, 2016). This
suggests that IL-36 signaling is likely to influence immune
responses beyond the skin.

Extracutaneous comorbidities are also well-documented in
PV, as individuals suffering from severe disease are at high
risk of psoriatic arthritis, metabolic syndrome, and athero-
sclerosis (Burden and Kirby, 2016; Fang et al., 2016; Shah
et al., 2017). Therefore, it has been proposed that PV is a
systemic disease, manifesting with skin, joint, and vascular
inflammation (Davidovici et al., 2010; Reich, 2012).

In this context, we hypothesized that abnormal IL-36
signaling has extracutaneous effects in both GPP and PV,
driving acute systemic flares in the former and contributing to a
state of chronic systemic inflammation in the latter. To explore
s. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is
pen access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Transcription profiling of GPP and PV whole blood uncovers a IFN-I signature that correlates with IL-36 activity. (a) Identification of genes that are

differentially expressed in GPP. Horizontal and vertical lines represent significance and fold change thresholds, respectively. The genes underlying the IFN

score are in red. (b) Higher expression of IL-36 dependent genes in whole blood of patients with GPP and PV, compared with controls. (c) Transcriptional

modules enriched among genes upregulated in GPP. The FDR for each module is reported, with the underlying upregulated genes shown as gray cells.

(d) Enriched pathways detected among genes over-expressed in GPP. (e) Key transcriptional factors driving gene over-expression in GPP. (f) Overlap between the

genes that are upregulated in GPPand IFNpathies. (g) Elevated IFN score in whole-blood samples of patients with GPPand PV, compared with controls. (h) IL-36

and IFN scores are significantly correlated, in both patients with GPPand PV. Dashed regression lines are plotted with 95% confidence intervals (gray areas). The

data in (b) and (g) are presented as mean � SD; *P < 0.05, **P < 0.01 (unpaired t test). CTR, control; FDR, false discovery rate; GPP, generalized pustular

psoriasis; iNOS, inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase; PV, psoriasis vulgaris; SD, standard deviation; TLR, toll-like receptor.
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this model, we integrated the transcription profiling of patient
leukocytes with ex-vivo IL-36 stimulations. We show that IL-36
potentiates toll-like receptor (TLR) 9 activation and enhances
the production of IFN-I, a cytokine that contributes to systemic
immunity, arthritis, and atherosclerosis.
RESULTS
Expression profiling identifies a IFN-I signature in
generalized pustular psoriasis and psoriasis vulgaris whole-
blood samples

We reasoned that GPP would represent an ideal model in
which to investigate the systemic effects of IL-36, because of
the well-established link with IL36RN mutations (Marrakchi
et al., 2011; Onoufriadis et al., 2011) and enhanced IL-36
activity (Johnston et al., 2017). Therefore, we undertook
whole-blood RNA sequencing in nine affected individuals
and seven healthy controls (Supplementary Table S1).
Whereas the deconvolution of transcription profiles showed
that leukocyte frequencies were comparable in cases versus
controls (Supplementary Table S2), differential expression
analysis identified 111 genes that were over-expressed (fold
change � 1.5; false discovery rate [FDR] < 0.05) in patients
(Figure 1a, Supplementary Table S3). Genes that can be
induced by IL-36 (IL1B, PI3, VNN2, TNFAIP6, and SER-
PINB1) were collectively upregulated in cases versus controls
(P ¼ 0.019) (Figure 1b). Notably, the analysis of a publicly
available PV dataset (Wang et al., 2014) identified a moder-
ate, but statistically significant, over-expression of the same
genes in patient whole blood (P ¼ 0.001) (Figure 1b), sug-
gesting that IL-36 may have systemic effects in PV.

To further explore the biological significance of our find-
ings, we mapped the genes upregulated in GPP to the blood
co-expression modules described by Li et al (2014). We
found that the over-expressed genes were significantly
enriched among modules related to innate immune activa-
tion (e.g., enriched in activated dendritic cells, FDR < 0.005)
and antiviral responses (e.g., IFN-I response; FDR < 0.05)
(Figure 1c). These findings were validated by Ingenuity
Journal of Investigative Dermatology (2020), Volume 140
Pathway Analysis (Qiagen, Aarhus, Denmark), which identi-
fied IFN signaling as the most significantly enriched pathway
(FDR < 5x10-6) (Figure 1d). An upstream regulator analysis
also highlighted IRF7, STAT1, and STAT3 as the transcrip-
tional activators that are most strongly associated with
gene over-expression (FDR < 10-10 for all) (Figure 1e,
Supplementary Table S4). Proteins are critical mediators of
IFN signal transduction and IFN-a production by plasmacy-
toid dendritic cells (pDCs) (Honda et al., 2005).

Finally, the analysis of two publicly available datasets (Liu
et al., 2012; Rodero et al., 2017) demonstrated a significant
overlap (P < 10-10) between the genes that are upregulated in
GPP and those that are over-expressed in autoinflammatory
syndromes caused by abnormal activation of IFN-I responses
(Figure 1f). Notably, no overlap was found with the upregu-
lated genes detected in cryopyrin associated periodic syn-
drome (CAPS), a disease caused by excessive IL-1 activity,
which was analyzed as a negative control (Supplementary
Figure S1). Thus, the presence of a IFN-I signature in GPP
leukocytes is supported by several lines of evidence.

To further investigate the relevance of these observations,
we built an IFN score by measuring the aggregate expression
of five genes (IFI6, IFIT3, IFITM3, OASL, and PLSCR1), which
were upregulated in the GPP dataset and annotated as IFN-I
dependent in the Interferome database (Rusinova et al.,
2013). The score was elevated in GPP cases compared with
controls. A similar increase was observed in the publicly
available PV dataset (Figure 1g). We found that the IFN score
documented in GPP and PV significantly correlated with the
upregulation of IL-36 related genes (P < 0.01) (Figure 1h).
Thus, we have shown that systemic IFN-I responses are
abnormally active in psoriasis, which may be linked to
increased IL-36 production.

IFN-I signature is driven by gene upregulation in neutrophils

The presence of heterogeneous cell populations in whole
blood can complicate the interpretation of transcription
profiling experiments. Therefore, we, sought to validate our
results through an independent analysis of a single cell type.
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We focused our attention on neutrophils because they play a
critical role in systemic inflammation and can be activated by
IFN-I (Zimmermann et al., 2016).

We obtained fresh blood samples from 8 GPP cases and 11
controls (Supplementary Table S1). After neutrophil isolation
and RNA sequencing, we detected 200 upregulated genes
(Figure 2a, Supplementary Table S5). The analysis of tran-
scriptional networks identified IFN-I response as the most
significantly enriched module (FDR < 10-12), followed by
innate antiviral response and antiviral IFN signature (FDR <
10-10) (Figure 2b). Ingenuity Pathway Analysis also demon-
strated a marked enrichment of pathways related to
IFN signaling (FDR < 10-11) (Figure 2c) and highlighted IRF7
and STAT1 as the most likely drivers of gene upregulation
(FDR < 10-30) (Figure 2d, Supplementary Table S6). In
keeping with these findings, IFN scores were elevated in GPP
cases compared with controls (P ¼ 0.02) (Figure 2e). These
observations validate the results obtained in whole blood and
suggest that the IFN-I signature is driven at least in part, by
gene upregulation in neutrophils.

IFN-I signature can be validated in extended generalized
pustular psoriasis and psoriasis vulgaris datasets

We next sought to validate the IFN-I signature through the
analysis of further affected individuals.

We examined neutrophils obtained from 17 GPP cases
(including eight newly recruited cases) and 16 patients with
PV suffering from severe disease (average Psoriasis Area and
www.jidonline.org 819
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Severity Index, 17.9). We also analyzed two control groups,
including 9 individuals affected by CAPS and 26 healthy
volunteers. Real-time PCR demonstrated that the IFN score
was significantly increased in GPP and PV cases compared
with healthy controls (P < 0.005). Conversely, and in keeping
with the specificity of our observations, the scores of patients
with CAPS were within the normal range defined in unaf-
fected individuals (Figure 3a).

Notably, medical records showed that patients with GPP
with high IFN scores were more likely to experience systemic
flares than those with low scores (88% vs. 33%; P ¼ 0.049).
Likewise, the prevalence of psoriatic arthritis was higher
among patients with PV with high IFN scores (67% vs. 18%;
P ¼ 0.03) (Figure 3b).

Thus, the IFN-I signature detected by RNA sequencing can
be validated in independent PV and GPP samples, where it is
associated with extracutaneous morbidity.

IL-36 receptor is expressed on the surface of plasmacytoid
dendritic cells

We next hypothesized that IL-36 has a direct effect on IFN-I
producing cells. To investigate this possibility, we systemati-
cally examined the surface expression of the IL-36 receptor
(IL36R) in innate immune cells. Similar to published findings
(Foster et al., 2014), we found that IL36R was barely
detectable on the surface of healthy neutrophils (Figure 4a),
suggesting that the effects of IL-36 on these cells are mediated
by the activation of different immune population(s).

We also showed that IL36Rþ cell numbers were low
among innate lymphoid cells (Figure 4b) and in monocytes
(Figure 4c). Higher IL36R levels were observed in myeloid
dendritic cells and pDCs (Figure 4d, Supplementary
Figure S2), with the largest percentage of IL36Rþ cells
detected in the pDCs of patients with GPP (Figure 4e). Thus,
we have shown that IL36R is robustly expressed in pDCs,
which are the main producers of IFN-a (a member of the IFN-
I family) in the immune system.

IL-36 potentiates IFN-a production in response to toll-like
receptor 9 stimulation

Based on the results obtained in the previously mentioned
experiments, we hypothesized that IL-36 potentiates IFN-I
Journal of Investigative Dermatology (2020), Volume 140
production by pDCs. To investigate, we pretreated pe-
ripheral blood mononuclear cells obtained from healthy
donors with IL-36 or vehicle. We then stimulated the cells
with CpG-containing DNA (CpG), a TLR-9 ligand, which
induces IFN-a release by pDCs. Finally, we measured the
upregulation of the IFN signature genes as a readout of
IFN-I production. Whereas CpG increased the expression
of most signature genes, its effect was more pronounced in
cells that had been preincubated with IL-36 (P < 0.05 for
IFIT3, OASL, and PLSCR1) (Figure 5a). This observation
was validated by direct measurements of IFN-a produc-
tion, showing increased cytokine release following IL-36
pretreatment (Figure 5b). Finally, flow cytometry docu-
mented an increased proportion of IFNaD pDCs among
the cells that had been stimulated with IL-36 and CpG,
compared with those that had been exposed to CpG alone
(Figure 5c). Thus, multiple experimental readouts support
the notion that IL-36 upregulates TLR-9edependent IFN-a
release.

IL-36 upregulates PLSCR1, a known toll-like receptor 9
transporter

We next sought to define the mechanisms whereby IL-36
enhances cytokine production downstream of TLR-9. A
closer inspection of the peripheral blood mononuclear cell
stimulation results showed that IL-36 treatment upregulates
PLSCR1, even in the absence of CpG. The gene encodes
phospholipid scramblase 1, a protein that regulates TLR-9
trafficking to the endosomal compartment (Talukder et al.,
2012).

To further explore the link between IL-36 and PLSCR1, we
first validated our initial observation in additional donors
(Figure 6a). Next, we demonstrated that IL-36 treatment in-
creases PLSCR1 protein levels in isolated pDCs, showing a
direct effect of the cytokine on these cells (P < 0.05)
(Figure 6b). Finally, we investigated the mechanism whereby
IL-36 up regulates PLSCR1. As expected for an IFN signature
gene, an analysis of the PLSCR1 promoter uncovered a STAT1
binding site. Because IL-36 can signal through mitogen-
activated protein kinases (Bassoy et al., 2018), and that
there have been reports of cross-talk between STAT1 and
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mitogen-activated protein kinase signaling (Zhang et al.,
2004), we reasoned that the latter pathway was likely to be
involved. Real-time PCR experiments confirmed this hy-
pothesis because the SB-203580 mitogen-activated protein
kinase inhibitor abolished the effect of IL-36 on PLSCR1
expression (Figure 6c).

Thus, we have demonstrated that IL-36 can act directly on
pDCs, where it upregulates PLSCR1, in a mitogen-activated
protein kinaseedependent fashion.
CD11cþ). (e) Histogram showing the percentage IL36Rþ cells in each leukocyte

matched controls. Results are presented as mean � SEM. No significant differenc

minus 1; IL36R, IL-36 receptor; GPP, generalized pustular psoriasis; mDC, myel

standard error of the mean.
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DISCUSSION
Whereas PV has been historically described as a dermato-
logical condition, the importance of extracutaneous comor-
bidities are increasingly recognized (Armstrong et al., 2013).
Notably, the prevalence of most comorbid conditions in-
creases with the severity and the duration of the disease
(Burden and Kirby, 2016; Egeberg et al., 2017). Therefore,
there is a dose-dependent association between cutaneous
and extracutaneous inflammation, which suggests a shared
population. Data were obtained in at least three GPP cases and three sex-

es were observed between GPP cases and healthy donors. FMO, fluorescence

oid dendritic cell; Mo, monocytes; pDC, plasmacytoid dendritic cell; SEM,
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systemic pathogenesis. The underlying pathways, however,
remain poorly understood.

Here, we demonstrated that IL-36 signaling is enhanced in
the leukocytes of patients with PV, where abnormal IL-36
activity correlates with IFN-I over-expression. Whereas
many genes that are induced by IL-36 are also upregulated by
IL-1, this set of shared targets does not include mediators of
IFN-I production (Swindell et al., 2018). Accordingly, we
found that IFN signature genes are not over-expressed in
CAPS, a condition caused by excessive IL-1 signaling. Thus,
IL-1 is unlikely to play a significant role in promoting IFN-I
responses in psoriasis.

Several studies have found that IFN-I is a mediator of
vascular inflammation, which promotes the recruitment of
leukocytes to atherosclerotic plaques (Goossens et al., 2010;
Niessner et al., 2007). Experiments carried out in animal
models have also shown that TLR-9edependent IFN-I pro-
duction is a key driver of systemic autoimmunity (Di Domizio
et al., 2012).

In keeping with these observations, signatures of excessive
IFN-I activity have been documented in various diseases
presenting with prominent systemic involvement. One
example is systemic lupus erythematosus, a disorder associ-
ated with skin and joint inflammation, accelerated athero-
sclerosis, and upregulation of genes such as IFI6 and OASL
(El-Sherbiny et al., 2018). Three independent studies have
reported that IL-36 serum levels correlate with disease ac-
tivity in systemic lupus erythematosus (Chu et al., 2015;
Ismail et al., 2018; Mai et al., 2018), which further re-
inforces the link between IL-36 and IFN-I. Our work adds to
these observations and provides mechanistic insights into the
underlying pathways.

Our computational and experimental results implicate
pDCs as the most likely mediators of IL-36 activity. First, we
identified IRF7 as one of the most significant drivers of dif-
ferential gene expression in GPP. Second, we demonstrated
that IL36R levels are highest in pDCs, especially among pa-
tients with GPP. Notably, it has long been established that
pDCs accumulate within psoriatic skin lesions, where they
contribute to early disease processes alongside slanDC
(Hänsel et al., 2011; Nestle et al., 2005). It has also been
reported that IL36R is abundantly expressed in various classes
of skin-resident dendritic cells (Dietrich et al., 2016). Thus, it
is tempting to speculate that IL-36 mediated pDC activation
may also have a pathogenic role in skin.

Our results show that the effects of IL-36 on pDCs are
mediated, at least in part, by PLSCR1 upregulation. A PLSCR1
small interfering RNA knockout inhibits IFN-I production by
human pDCs (Talukder et al., 2012), so it is reasonable to
hypothesize that an increase in gene expression would have
the opposite effect. Whereas the PLSCR1 induction observed
in our IL-36 stimulation experiments was modest (1.5-2.0
www.jidonline.org 823
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fold), it might be sufficient to activate a feed-forward loop
whereby upregulated PLSCR1 promotes the production of
IFN-I, which in turn induces further PLSCR1 transcription.
Self-amplifying loops are a key feature of IFN-I signaling
because they are required for robust antiviral responses (Hall
and Rosen, 2010).

We cannot exclude the possibility that additional IL-36
responsive genes or cell types may also contribute to the
upregulation of IFN-I. However, we have found that IL-36
does not affect the expression of TLR9 or that of key down-
stream genes (IRF1, IRF3, IRF7; data not shown). We have
also observed that genes driving other antiviral pathways
(DDX58/RIG-I, IFIH1/MDA5, TMEM173/STING) are not
upregulated in PV or GPP whole blood.

Whereas our pDC stimulations were carried out with a
synthetic TLR-9 agonist, the identity of the agents that cause
IFN-a production in patients remains to be determined. In
lesional skin, pDCs are activated by self-nucleic acids released
by apoptotic keratinocytes and bound to the LL-37 antimi-
crobial peptide (Lande et al., 2007). Our transcriptomic data,
however, suggests that this mechanism is unlikely to be rele-
vant at the systemic level. Whereas CAMP (the gene encoding
LL-37) was upregulated in psoriatic skin, it was not over-
expressed in GPP or PV whole blood. Moreover, there was
no correlation between CAMP whole-blood expression and
the upregulation of IFN-I genes (r < 0.1). Thus, the agents that
activate the circulating pDC of patients with psoriasis may be
different from those that are present in skin.

In conclusion, we have identified an IL-36/TLR-9 axis
which upregulates systemic IFN-I production in psoriasis
(Figure 6d). In patients with GPP, the effects of IL-36 signaling
are amplified by inherited IL36RN mutations, a phenomenon
which is likely to account for the severe nature of systemic
flares. In PV, the T helper type 17-dependent upregulation of
IL-36 cytokines is associated with a less pronounced tran-
scriptional signature and with signs of chronic systemic
inflammation.

Because IL-36 is down-regulated by IL-17 inhibitors, such
as secukinumab (Kolbinger et al., 2017), it is possible that
treatment of psoriasis with IL-17 antagonists might also
modulate IFN-I production. Notably, the effects of direct IL-
36 inhibition are currently being investigated in clinical tri-
als, with promising results obtained in a phase I study
(Bachelez, 2018). In this context, our work suggests that IL-36
antagonists have the potential to improve systemic IFN-I
upregulation and extracutaneous manifestations of psoriasis.

METHODS
Human subjects

The study was performed according to the principles of the Decla-

ration of Helsinki. Patients were ascertained at St John’s Institute of

Dermatology and Royal Free Hospital (London, United Kingdom),

Glasgow Western Infirmary (Glasgow, United Kingdom), Salford

Royal Foundation Trust (Manchester, United Kingdom), and Hospital

Sultanah Aminah (Johor Bahru, Malaysia). The study was approved

by the ethics committees of participating institutions, and written

informed consent was obtained from all participants.

Nine unrelated patients with GPPand seven healthy controls were

recruited for whole-blood RNA sequencing, whereas neutrophil

RNA sequencing was carried out in 8 patients with GPP and 11
Journal of Investigative Dermatology (2020), Volume 140
healthy controls. Five controls and six cases were common to both

studies (Supplementary Table S1). For the validation of neutrophil

RNA sequencing results, fresh blood was obtained from 17 GPP, 26

control, 9 CAPS, and 17 PV individuals (Supplementary Table S7).

All patients with PV suffered moderate-to-severe disease (Psoriasis

Area Severity Index > 10) and were recruited from the same center

(severe psoriasis service, St John’s Institute of Dermatology). Patients

presenting with joint pain were referred to an expert rheumatologist,

who diagnosed psoriatic arthritis, when applicable. The IL36RN

gene was screened in all GPP cases and mutations were identified in

four individuals (Supplementary Table S1).

RNA sequencing data analysis

The raw sequence data generated in house and that retrieved from

public repositories (Supplementary Table S8) were processed with

the same computational pipeline (described in Supplementary

Materials) to standardize the data analysis process. Genes were

considered upregulated if the fold change exceeded 1.5 (FDR <

0.05). When RNA sequencing and microarray data were compared,

the analysis focused on the 100 genes that were most significantly

upregulated in each sample to account for the different sensitivity of

the two platforms.

Genes upregulated in GPP were used as input for pathway and

upstream regulator enrichment analyses (Ingenuity Pathway Anal-

ysis). STAT1-, STAT3-, and IRF7-centered networks were visualized

with the igraph version 1.0.1 R package.

The transcriptional modules that were active in our datasets were

selected from the library published by Li et al (2014). The enrich-

ment test function was then applied to the lists of upregulated genes.

The IFN score was built using the five IFN-I dependent genes that

were most upregulated in GPP whole blood (PLSCR1, OALS, IFI6,

IFIT3, and IFITM3). Because IL-36 dependent genes have not been

systematically characterized in leukocytes, the IL-36 score was

based on the analysis of five genes, which were strongly induced by

IL-36 in keratinocytes (Mahil et al., 2017) and robustly expressed in

whole blood (IL1B, PI3, VNN2, TNFAIP6, and SERPINB1). Both

scores were derived by normalizing reads per kilo base per million

mapped reads values to a calibrator sample and then computing the

median expression of the five genes.

Statistics

Differences between patient and control cytokine scores were

assessed using an unpaired t test or 1-way analysis of variance, as

appropriate. To account for donor variability in cytokine responses,

IL-36/CpG stimulations were analyzed with non-parametric

methods (Wilcoxon signed rank test for comparisons between two

groups and Friedman test for comparison between three groups)

because these do not assume equal variance among samples. The

correlation between cytokine scores was calculated using Spearman

method. The significance of overlaps observed in Venn diagrams was

computed with a hyper-geometric test and confirmed by bootstrap

analysis. Fisher exact test was used to compare the clinical features

of patients with high and low IFN scores.
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RNA sequencing

Total RNA was isolated from whole blood collected in Tem-
pus Blood RNA Tube using a Tempus Spin RNA Isolation Kit
(ThermoFisher Scientific, Waltham, MA). Samples were sub-
jected to globin depletion using a GLOBINclear Kit (Ther-
moFisher Scientific). Neutrophil RNA was isolated with
GeneJET RNA Purification Kit (ThermoFisher Scientific).

Whole-blood RNA was sequenced on a HiSeq 3000
Illumina platform (Illumina, San Diego, CA), obtaining 150
base pair paired-end reads. Neutrophil RNA was sequenced
on a NextSeq 500 Illumina platform obtaining 75 base pair
single-end reads. The quality of the sequence data was
assessed using FastQC (Illumina). Alignment against the
HG38 human genome was implemented in TopHat (Kim
et al., 2013) with indexes generated by Botwie2. Read
counts, produced by HTseq-count, were used as input for
the differential expression analysis, which was performed
with DESeq2 (Love et al., 2014) (R package, version 16.2),
using sex as a co-variate.

Cell isolation and culture

Neutrophils were purified using the MACSxpress Whole
Blood Neutrophil Isolation Kit (Miltenyi Biotec, Bergisch
Gladbach, Germany). Peripheral blood mononuclear cells
(PBMCs) were isolated using Ficoll-Paque PLUS (GE Health-
care, Little Chalfont, United Kingdom). Plasmacytoid den-
dritic cells were purified from PBMCs using a Plasmacytoid
Dendritic Cell Isolation Kit (Miltenyi Biotec). PBMCs and
Plasmacytoid dendritic cells were cultured at a density of
2.5 � 106 cells/ml and 2.5 � 105 cells/ml, respectively, in
RPMI Glutamax (Gibco, Waltham, MA) supplemented with
10% fetal bovine serum and 1% penicillin-streptomycin.
Cells were stimulated with 50 ng/ml IL-36a (Bio-Techne,
Minneapolis, MN) for 6 hours and with 1.6 ng/ml ODN-A
CpG (InvivoGen, San Diego, CA) for another6 hours. For
IFN-a and PLSCR1 flow cytometry analysis, Brefeldin A
(BioLegend, San Diego, CA) was added to the stimulated cells
at a 1:1,000 dilution after 9 hours. Response to stimulation
was measured by real-time PCR, ELISA, or flow cytometry.

Real-time PCR and ELISA

RNA samples were isolated with the GeneJET RNA Purifica-
tion Kit (ThermoFisher Scientific). Following reverse tran-
scription with the nanoScript2 kit (PrimerDesign,
Southampton, United Kingdom), gene expression was
assessed by real-time PCR using PrecisionPLUS Master Mix
with SYBR and ROX (PrimerDesign) in conjunction with the
following primer pairs:

IFI6: 50-TTTCTTACCTGCCTCCACCC-30; 50-CCATCTATCA
GCAGGCTCCG-30
IFIT3: 50-TTGGTGACCTCACTCATGATGG-30; 50-GCACAG
ACCTAACAGCACCC-30

IFITM3: 50-CACTGGGATGACGATGAGCA-30; 50-TCGCC
TACTCCGTGAAGTCTA-30;

OASL: 50-GGAACCTGGAAGGACAGACG-30; 50-GTACCA
GCAGAGGGCACG-30

PLSCR1: 50-AGGAGGATACCCAACTGGCA-30; 50-CGGCA
GCCAGAGAACTGTTTTA-30

IL1B: 50-GCCCTAAACAGATGAAGTGCTC-30; 50-GAACCA
GCATCTTCCTCAG-30.

The IFN score was derived by computing the median
relative quantification of the five signature genes, (PLSCR1,
OALS, IFI6, IFIT3, and IFITM3) according to the method
described by Rice et al. (2013). The production of IFN-a was
measured using the Human IFN-alpha ELISA kit (Bio-Techne).
For whole-blood and PBMC samples, transcript levels were
normalized to B2M expression, whereas RPL13A was used
for neutrophils.

Flow cytometry

The purity of neutrophil isolated for RNA sequencing was
measured by staining cells with anti-CD45, anti-CD15, anti-
CD16, anti-CD3, anti-CD24, and anti-CD19 antibodies. IL-
36 receptor surface expression and IFN-a levels were
measured by staining PBMCs with LIVE/DEAD Fixable Near-
IR (Invitrogen, Waltham, MA), Fc and monocyte blocker
(BioLegend), antibody against the protein of interest and an
antibody cocktail for monocytes (anti-CD3, anti-CD20, anti-
CD19, anti-CD16, anti-CD14, anti-CD56) or dentritic cells
and innate lymphoid cells (lineage, HLA-DR, CD123,
CD11c, and CD127). IL-36 receptor expression on neutro-
phils was determined by staining for the receptor as well as
CD15, CD16, and CD14. PLSCR1 expression was measured
by staining purified plasmacytoid dendritic cell with anti-
CD123, anti-HLA-DR, anti-CD11c, and anti-PLSCR1. Cells
were acquired on a BD Fortessa LSR or a BD FACSCanto II
instrument (Becton Dickinson, Franklin Lakes, NJ). All data
was analyzed using FlowJo version 10 software (Becton
Dickinson). The details of all antibodies are reported in
Supplementary Table S9.
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Supplementary Figure S1. Lack of evidence for an IFN signature in the

leukocytes of patients. Venn diagrams showing the overlap between the

genes that are upregulated in GPP and in the CAPS datasets analyzed by

Canna et al. (CAPS-1) and Balow et al. (CAPS-2). Neither overlap was

statistically significant. CAPS, cryopyrin associated periodic syndrome; GPP,

generalized pustular psoriasis.
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Supplementary Figure S2. IL-36

receptor surface expression measured

as mean fluorescence intensity. Data

are presented as the mean (� SEM) of

measurements obtained in three

unrelated healthy donors. ILC, innate

lymphoid cell; Mo, monocyte; SEM,

standard error of the mean.
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Supplementary Table S7. Details of Individuals Analyzed for IFN Score Validation

Group
Individuals with
Active Disease Sex Average Age, y Treatment

CAPS 4/9 3M, 6F 44.6 cankinumab (n ¼ 7), anakinra (n ¼ 2)

GPP 11/17 2M, 15F 56.5 adalimumab (n ¼ 3), certolizumab (n ¼ 1), infliximab (n ¼ 2),
ustekinumab (n ¼ 1), acitretin (n ¼ 1), ciclosporin (n ¼ 2),

MTX (n ¼ 1), prednisolone (n ¼ 1), topical treatment (n ¼ 4), no treatment (n ¼ 1)

PV 17/17 13M, 4F 42.5 apremilast (n ¼ 1), etanercept (n ¼ 1), infliximab (n ¼ 1),
ixekizumab (n ¼ 1), secukinumab (n ¼ 1), ustekinumab (n ¼ 4),

MTX (n ¼ 1), topical treatment (n ¼ 6), PUVA (n ¼ 1)

Control NA 3M, 23F 46.4 NA

Abbreviations: CAPS, cryopyrin associated periodic syndrome; F, female; GPP, generalized pustular psoriasis; M, male; NA, not applicable; PV, psoriasis
vulgaris; MTX, Methotrexate

The percentage of patients receiving systemic treatment was comparable in the PV-only and PV with psoriatic arthritis groups.

Supplementary Table S8. Details of Publicly Available Datasets

Dataset Disease Ethnicity Tissue Platform Identifier

CAPS-1 NOMID European Whole blood RNAseq GSE57253

CAPS-2 CAPS European Whole blood microarray Suppl. Material, PMID: 23223423

IFNpathy-1 IFN-I mediated autoinflammation European Whole blood RNAseq E-MTAB-5735

IFNpathy-2 CANDLE European Whole blood microarray data provided by authors

PV Psoriasis vulgaris European Whole blood RNAseq GSE67785

All patients had active disease. Raw data were downloaded from the Gene Expression Omnibus as CEL (CAPS-2 and IFN-pathy2) or FASTQ files. The former
was analyzed with the limma package, whereas the latter were processed with the standardized pipeline described in Supplementary Materials and
Methods).

Supplementary Table S9. Flow Cytometry Antibodies

Target Dilution Cat number Fluorochrome Supplier

CD16 1:20 48-0168-42 Efluor450 ThermoFisher

1:22 130-098-101 APC Miltenyi Biotec

CD56 1:33 318316 Alexa Fluor 700 BioLegend

CD19 1:20 302242 BV510 BioLegend

1:22 555412 FITC BD

CD20 1:33 130-096-649 PE-Cy7 Miltenyi Biotec

CD14 1:20 555398 PE BD

CD3 1:33 317306 FITC BioLegend

1:22 130-098-162 FITC Miltenyi Biotec

CD127 1:20 351320 PE-Cy7 BioLegend

HLA-DR 1:33 307636 BV421 BioLegend

CD11c 1:20 301638 BV650 BioLegend

CD123 1:30 306030 BV711 BioLegend

Lineage markera 1:10 B29559 PE Beckman Coulter

CD15 1:33 301904 FITC BioLegend

1:22 130-098-010 PE Miltenyi Biotec

IL36R 1:10 BAF Streptavidin BD

Streptavidinb 1:100 405207 APC BioLegend

CD45 1:22 130-098-139 VioBlue Miltenyi Biotec

CD24 1:22 130-099-935 APC Vio770 Miltenyi Biotec

PLSCR1 1:50 ab180518 Rabbit-IgG Abcam

Rabbit IgGc 1:100 406416 Alexa Fluor 488 BioLegend

IFN-a 1:10 130-092-602 APC Miltenyi Biotec

aCD3/CD14/CD19/CD20/CD56.
bTarget of secondary biotinylated antibody used for IL36R detection.
cTarget of secondary antibody used for PLSCR1 detection.
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