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Comparison of whole blood and 
spleen transcriptional signatures 
over the course of an experimental 
malaria infection
Carlos Talavera-López1,5, Yaw Bediako1,2,5, Jing-wen Lin1,3,5, John Joseph Valletta4, 
Mario Recker   4 & Jean Langhorne1*

Although the spleen is broadly accepted as the major lymphoid organ involved in generating immune 
responses to the erythrocytic stages of the malaria parasite, Plasmodium, human splenic tissue is not 
readily available in most cases. As a result, most studies of malaria in humans rely on peripheral blood 
to assess cellular immune responses to malaria. The suitability of peripheral blood as a proxy for splenic 
immune responses is however unknown. Here, we have simultaneously analysed the transcriptomes 
of whole blood and spleen over 12 days of erythrocytic stage Plasmodium chabaudi infection in 
C57BL/6 mice. Using both unsupervised and directed approaches, we compared gene expression 
between blood and spleen over the course of infection. Taking advantage of publicly available datasets, 
we used machine learning approaches to infer cell proportions and cell-specific gene expression 
signatures from our whole tissue transcriptome data. Our findings demonstrate that spleen and blood 
are quite dissimilar, sharing only a small amount of transcriptional information between them, with 
transcriptional differences in both cellular composition and transcriptional activity. These results suggest 
that while blood transcriptome data may be useful in defining surrogate markers of protection and 
pathology, they should not be used to predict specific immune responses occurring in lymphoid organs.

Malaria represents a serious public health and economic problem and remains one of the leading causes of death 
in the developing world. After a number of years of apparent decline, the incidence of Malaria has begun to 
increase with over 200 million cases reported worldwide in 20171,2. The eradication of malaria is a major public 
health goal and the development of an effective vaccine will be crucial to this effort. Although it is widely accepted 
that the majority of immune processes involved in the control of Plasmodium infection occur in the spleen3,4, 
studies requiring human splenic tissue are not practical. Instead, most studies rely on the detection of immune 
signatures in peripheral blood to evaluate the performance of vaccine candidates5,6, or to identify markers of 
protective immunity or pathology in humans7–9. Despite this obvious discrepancy and mounting evidence of 
tissue-specific differences in gene expression during immune responses10,11, there has not been a comprehensive 
analysis of simultaneous measurements from blood and spleen over the course of a Plasmodium infection to eval-
uate how similar or dissimilar the immune signatures in these two tissues are.

Recent advances in high throughput technologies have facilitated the quantification of whole transcriptomes 
for a number of different tissues12 and cells types13, and have revealed significant tissue-to-tissue genomic and 
transcriptional variation. Furthermore, high levels of within-tissue heterogeneity have been demonstrated by 
single cell sequencing of multiple tissues14, and related to differences in biological behaviour in health and dis-
ease15,16. It is therefore important to evaluate how closely transcriptional measurements from peripheral blood 
reflect the immune processes occurring in the spleen.

One concern when using blood transcriptomics as a surrogate to measure host immune responses taking place 
in the lymphoid organs such as the spleen, is that blood and lymphoid organs have different cellular composition 
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and it is difficult to determine whether the transcriptomic differences are due to this, or to different transcrip-
tional profiles within cell populations. Furthermore, whole blood transcriptomics does not provide information 
on the transcriptomes of individual immune cell populations. For studies in experimental models such as mice, it 
is possible to isolate and compare individual cell populations from different tissues directly. However, for human 
studies this is not often possible, as in most cases, (especially those involving young children), the volumes of 
extracted blood preclude isolation of individual cell populations.

In order to investigate the utility and relevance of using transcriptomic signatures in blood as a proxy for 
immune responses in lymphoid tissue, we have used a mouse model of blood-stage malaria. We have compared 
the transcriptomic profiles of whole blood and of spleen and used computational deconvolution to determine 
cell-specific transcriptomic signatures. Specifically, we have used the malaria model of Plasmodium chabaudi 
infection in C57BL/6 mice to compare the transcriptomes of whole blood and spleen during first 12 days of an 
erythrocytic-stage infection using mouse microarrays. To this end, we used an integrative approach applying 
statistical learning methods to analyse these transcriptomes, exploring the day-to-day transcriptional changes 
occurring in each tissue, allowing us to distinguish between conserved and tissue-specific immune responses to 
infection. We also inferred the cellular composition of each tissue, allowing us to monitor the signature of tran-
scriptional activity of individual immune cell populations within blood or spleen.

Results
Transcriptome analysis reveals distinct responses to acute blood-stage P. chabaudi infection 
in blood and spleen.  The acute blood-stage infection of Plasmodium chabaudi chabaudi AS (PcAS) from 
which these blood and spleen samples were taken is described in detail in a previous publication17. Briefly, after 
inoculation of 105 PcAS-infected red blood cells (iRBC) parasites were detected within four days in peripheral 
blood, reaching a peak parasitemia of approximately 25% iRBC eight days after initiation of infection; thereafter, 
parasitemia was controlled to subpatent levels by day 20. To investigate whether blood and spleen demonstrated 
similar or different immune responses during the acute phase of the infection, we performed a simultaneous tran-
scriptome analysis of both tissues at days 2, 4, 6, 8, 10 and 12 post-infection (d2, d4, d6, d8, d10 and d12 respec-
tively). Age-matched naïve samples collected at d0 and d12 were used as naïve controls to exclude transcriptional 
changes due to time.

Unsupervised analysis of differentially expressed genes in spleen and blood.  Separate analyses of blood and spleen 
transcriptomes do not readily allow for identification of genes and pathways that are shared between the two 
tissues. Therefore, we generated a merged normalised expression matrix for both tissues that allowed us to more 
directly compare the transcriptomic profiles of the two organs. Principal component analysis (PCA) reveals a 
distinctive distribution of data points for blood and spleen (Fig. 1a). Blood samples from naïve mice and from d4 
are closer to each other than the same time points from spleen, suggesting that the spleen has an earlier transcrip-
tional response to the infection. Later time points show divergence in opposite directions, indicating that these 
tissues feature distinct transcriptional programs during P. chabaudi infection. Differential expression analysis of 
the merged datasets comparing each time-point against their respective naïve control, identified 2975 significant 
DEGs (Area under the curve (AUC) > 0.85 and a logFC > 2) with each tissue presenting its own day-to-day signa-
ture (Fig. 1b and Supplementary File 1). Notably, in this merged analysis we noticed that while the spleen presents 
a distinct transcriptional pattern not present in the blood, it also mirrored part of the transcriptional signature 
observed in blood but at a lower expression level.

Pathway analysis of differentially expressed genes in spleen and blood.  We next explored the functions ascribed 
to the DEG for each time point. DEG for each specific time-point in both tissues were then assigned to Reactome 
pathways using ToppFun18. Although 2975 DEG were identified, only 1151 DEG could be assigned to gene 
ontology (GO) categories or into biological pathways because of a lack of statistical support for goodness-of-fit 
into a given process, or because some of the microarray gene identifiers could not be found in current mouse 
genome annotations. The 1151 DEG were entered into the Reactome biological pathways module implemented 
in ToppFun and those that were significant (Hits > 10, Benjamini-Hochberg corrected q-value < 1e-05) were 
selected for further analysis. Given the diversity of the identified pathways, we grouped them into four catego-
ries: “Immunity”, “Proliferation”, “Migration” and “Metabolism” and computed the number of hits within all the 
processes contained in each category. Those processes that did not present a clear definition in any of the four 
categories were grouped as “Others” (Fig. 2 and Supplementary File 2). Blood and spleen share these categories; 
however, the relative number of hits and temporal distribution within each tissue is different. For instance, the 
spleen exhibits a strong metabolic signature between d8 and d12, which is only detectable at d10 in the blood. 
Genes associated with “Migration” are observed at d4 in the blood but appear much later (d8) in the spleen, 
perhaps indicating trafficking cells from blood to the spleen. All time points, except d8 in blood (which had no 
significant associations with any biological pathways), present an “Immunity” signature, but as can be seen in 
Supplementary File 2, the gene content of the shared pathways in the two tissues is, to a large extent, distinct.

Given the overlapping nature of the gene content within different pathways and by extension the four catego-
ries we created, we focused only on those genes related to the “Immunity” group and computed the non-redundant 
number of DEG that were allocated to each pathway at each time point for both tissues. We identified a total of 
447 immune-related, non-redundant genes, 322 of these are unique to the spleen, 116 unique to blood, and only 
10 genes are shared between both tissues at any time point (Fig. 3a and Supplementary File 3). We next asked how 
many of the genes were shared and how many were specific to spleen or blood on each day (Fig. 3b). At d2 there 
are only three genes, (Acox3, Tsc22d3 and Txnip), that are shared. At d4, although both blood and spleen demon-
strate increased levels of transcriptional activity compared to naïve controls, only Stat1 is shared between the 
two. Overall, between d4 and d12, increasing numbers of “Immunity” genes are expressed in both tissues, but in 
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general there are a greater number of genes expressed in the spleen. Only six genes (Bag1, Cat, Dynll1, Psmd4 and 
Sec. 13) are shared at d10. The temporal expression dynamics of the immune-related genes shared between blood 
and spleen are detailed in Fig. 3c and it is interesting to note that despite the genes being shared, they demonstrate 
distinct patterns of expression over time in each tissue.

The diversity of pathways that were observed on each day meant that there were few of them present at more 
than one time-point. Within the non-redundant “Immunity” category, the “Signalling by Interleukins” pathway 
(as identified by Reactome) was the only pathway that was present at more than one time point during the infec-
tion, with sufficient significance at d2 (Hits = 20, Benjamini-Hochberg q-value = 6.61e-16) and d6 (Hits = 24, 
Benjamini-Hochberg q-value = 1.54e-11). Interleukin-signalling is essential for activation and regulation of the 
immune response and is therefore a good indicator of the host response to infection. At these two timepoints (d2 
and d6), several genes within Interleukin-signalling pathways are represented in both spleen and blood (i.e. IL-1, 
IL-2, lL-3, IL-4 and 13, IL-10, IL-12 and IL-7). In keeping with previous results, there are more genes differentially 
expressed in the spleen and despite being associated with the same signalling pathway, each tissue features a dis-
tinct set of genes. (Fig. 3d and Supplementary File 4).

Investigation of specific genes and/or pathways in spleen and blood.  Unsupervised analysis of differentially 
expressed genes in spleen and blood has shown that overall the transcriptome of blood and spleen before and 
during a P. chabaudi infection is different. It is however possible that a more directed analysis of particular 

Figure 1.  Merged expression matrix analysis shows distinct transcriptional patterns in blood and spleen over 
the course of acute P. chabaudi infection. (a) Principal component analysis of gene expression values from blood 
(yellow) and spleen (blue). (b) Gene expression signatures between the two tissues (B = blood, S = spleen) in the 
time-series composed of the top 10 significant differentially expressed genes (power > 0.7; −1.5 < logFC > 1.5) 
from the merged expression matrix. Colour scale represents expression value Z scores.
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molecules might indicate some common immune pathways. Given that our analysis identified “Signalling by 
interleukins” to be a significant component of both splenic and blood transcriptional responses to P. chabaudi 
we decided to employ a directed approach to compare cytokine responses within each tissue. We investigated the 
expression profile of a panel of chemokines and cytokines that has been previously described in both mice and 
humans19, comparing their relative expression in blood and spleen. From a total of 117 genes, encoding chemok-
ines, cytokines or their receptors, we were able to identify 51 in each tissue microarray (Fig. 4). Interestingly, 
in agreement with the unsupervised analysis, we found that the expression profiles of these cytokines differed 
quite significantly between blood and spleen over the course of the P. chabaudi infection. The spleen exhibits 
a strong, progressive activation signature featuring many pro-inflammatory and Th-1 cytokines (i.e: Tnf, IL-2, 
lL-10 and Ifng) and chemokine receptors (i.e: Cxcr6, Cxcl16) beginning at d4 through d6, after which the signa-
ture appears to switch, with enhanced levels of Th2 cytokines (including IL-13 IL-5 and IL-9). Blood on the other 
hand, demonstrates a weaker more heterogeneous activation signature from d4 that remains steady through the 
time points investigated. IL-10 is thought to be a key cytokine in regulating immunopathology in malaria20, and 
It is interesting to note that although lL10 transcripts were expressed at high levels in the spleen from d4, they 
remained undetectable in the blood for the complete time course. Therefore, even this directed analysis of expres-
sion of specific immune molecules failed to reveal a significant number of genes shared between blood and spleen.

Overall our results show that the transcriptomes of whole blood and spleen over the 12 days of an erythrocytic 
infection of P. chabaudi are quite distinct. While there is some similarity in the immune pathways activated by the 
infection, the gene composition of these pathways is unique to each organ.

Deconvolution of transcriptomic data reveals significant differences in cellular composition 
between spleen and blood.  Blood and spleen differ quite significantly in terms of cellular composition21 
and this influences their respective transcriptomic profiles. Our analyses of the DEGs of whole blood and spleen 
revealed many transcriptional differences with only few similarities between the two tissues, suggesting that one 
tissue was not an obvious surrogate for the other. However, our analysis up to this point does not account for the 
differences in cell composition between blood and spleen. As such we are unable to assess whether cell compo-
sition alone is responsible for the transcriptional profile differences between blood and spleen or if individual 
cell populations are also transcriptionally different between the two organs over the course of infection. The 
commonly accepted method for cell proportion estimation is flow cytometry, but it is not always possible to use 
this method in human field studies. For easier translation to the human setting, we therefore used a statistical 
learning approach using support vector regression to estimate the cellular proportions of immune cells in each 
tissue from the microarray expression data. We did this by building a mouse cell-specific transcriptional signa-
ture using publicly available transcriptome microarray datasets of purified immune cell populations from the 
Immunological Genome (ImmGen) project22 (See methods). This approach allowed us to define the proportions 
of several well-characterised immune cell types and compare the changes in cellular composition that occur in 
blood and spleen over the course of a P. chabaudi infection.

Determination of cell proportions in blood and spleen from transcriptome.  We used the signature of 512 genes 
from the ImmuCC study23 to define our cell populations and we grouped them as follows: CD4+ T cells (CD4+ 
Naïve, CD4+ Memory, CD4+ Follicular, Th1, Th2 and Th17), CD8+ T cells (CD8+ Naïve, CD8+ Effector, CD8+ 

Figure 2.  Pathway analysis of transcriptional signatures in blood and spleen over course of P. chabaudi 
infection. Differentially expressed genes (DEG) were queried against the Reactome pathways and those 
pathways with hits (number of DEGs matching the number of genes in a given pathway) that were significant 
(Benjamini-Hochberg q-value < 1e-5) were grouped into four major categories based on the nature of the 
biological process and those pathways with ambiguous classification were grouped under “Others”.
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Memory), B cells (B Naïve, B Memory and Plasma cells), γδT cells, NK cells (Resting and activated NK), Myeloid 
cells (Macrophages, Monocytes and Dendritic cells (DCs)), granulocytes (Neutrophils, Eosinophils and Mast 
Cells).

Figure 3.  Distribution of shared and tissue-specific genes differentially expressed in blood and spleen over 
the course of P. chabaudi infection. (a) Number of tissue-specific (Blood = 116, Spleen = 322) and shared (10) 
immune-related DEGs. (b) Subclassification of tissue-specific and shared genes by day in log scale. (c) Heatmap 
of expression values (−2 < Z-score > 2) for the 10 immune-related genes shared between blood and spleen over 
the course of infection. (d) Reactome “Interleukin signalling” diagram showing the number of tissue-specific 
genes present in each process irrespective of the day of infection. Given the high level of diversity in the number 
of immune processes at each time point, Interleukin signalling was selected because it was the only process 
present at more than one time point (4 and 6 d.p.i) and had the highest significance.
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As infection with P. chabaudi changes the proportions of immune cell populations in different tissues21, we 
first evaluated the predictive accuracy of our estimates of cell proportions on uninfected C57BL/6 mice using 
the coefficient of determination (r2) and the root-mean-square error (RMSE) as metrics for cell classification 
and model accuracy. In this way we were able to assess how well our signature was differentiating each cell type 
(Supplementary File 5). We observed that the performance of the model was robust for both naïve spleen (d0 
r2 = 0.60, RMSE = 0.81) and naïve blood (d0 r2 = 0.56, RMSE = 0.83) and performed reasonably well for the 
infected time points in spleen (d2 r2 = 0.59, RMSE = 0.81, d4 r2 = 0.45, RMSE = 0.89, d6 r2 = 0.53, RMSE = 0.85, 
d8 r2 = 0.79, RMSE = 0.72, d10 r2 = 0.75, RMSE = 0.74, d12 r2 = 0.44, RMSE = 0.90) and blood (d2 r2 = 0.58, 
RMSE = 0.81, d4 r2 = 0.56, RMSE = 0.82, d6 r2 = 0.61, RMSE = 0.78, d8 r2 = 0.56, RMSE = 0.82, d10 r2 = 0.48, 
RMSE = 0.87, d12 r2 = 0.52, RMSE = 0.85). We compared our cell proportion estimates with those already 
reported in the literature, and we observed good consistency between our predictions and flow cytometry esti-
mates for immune cells available from the literature and from previously published studies from blood-stage P. 
chabaudi infections. For example, the observed proportion for B cells in naïve C57BL/6 spleen (S0) is estimated to 
be between 44–68%21,24,25 and our estimate is 62.5%. Similarly, our estimate is 46.6% in naïve blood (B0) is in line 
with published reports of blood B cell frequencies of between 35–58%. Estimates of smaller populations were also 
in agreement with expected frequencies. NK cells for instance have been reported to represent between 1–5% of 
splenic leukocyte populations and 4–7% of peripheral blood leukocytes in the mouse25 and our estimates for naive 
spleen and blood were between 2.6% and 6.9% respectively. Extending the analysis to include transcriptomic data 
from each organ over the course of infection, we found that the tissues showed marked differences in the pro-
portions of the different cell populations during the first 12 days of the P. chabaudi infection (Fig. 5) as described 
previously for this infection using flow cytometry21,24. In the spleen, there was a reduction in the proportion of 
CD4+ T cells and an increase in B cells at days 8–10 post-infection as well as a marked increase in the proportion 
of myeloid cells at d12 post-infection. This expansion in the myeloid compartment has been observed previously 
in P. chabaudi infection and was found by us to be predominantly due to an increased number of monocytes26. 
The blood showed a substantial reduction in the proportion of B cells at days 6 and 8 post-infection with a pro-
portional increase in NK cells and myeloid cells. Using computational methods, we have therefore quantified the 
cellular composition of blood and spleen and demonstrated that each tissue exhibits distinct cellular responses 
over the course of a P. chabaudi infection.

Figure 4.  Directed comparison of cytokine expression in blood and spleen over the course of infection. A 
previously described19 set of 117 chemokines and cytokines was scanned against the merged microarray 
expression matrix and the resulting 51 genes were visualised based on their expression value in each tissue. 
Colour scale represents expression value Z scores.
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Cell-specific transcriptional profiles describe the behaviour of each tissue in response to infec-
tion.  Given the demonstrated differences in cellular composition between blood and spleen, it is necessary 
to assess differences in transcriptional activity between the two tissues independently of changes in cell num-
ber. To do this, we needed to shift from bulk whole-tissue analyses and instead compare the transcriptomic 
signatures of individual cell populations. Using the cell-specific signatures we defined above, we matched the 
differentially expressed genes from each tissue at any time point, to gene sets for each of the deconvolved popu-
lations using the ImmGen ‘coexpression’ module from ToppFun. Those that had a significant match (Hits > 20, 
Benjamini-Hochberg q-value < 1e-10) were further analysed over the course of infection (See methods).

Focusing on B cells, CD4+ T cells, CD8+ T cells, Myeloid cells and NK cells it is clear that each cell type 
expresses a distinct set of genes and expression profiles in each tissue over the course of infection (Supplementary 
File 6 and Fig. 6), possibly indicating that immune cell populations express unique tissue-specific transcriptional 
programmes. More specifically, most splenic cell populations show the first signs of activation on d4, upregulat-
ing a relatively restricted number of genes. Transcriptional activity continues to rise over subsequent days with a 
progressive increase in the number of genes upregulated up through d12. The same cell populations in the blood 
however appear to exhibit a different pattern of activation. There appears to be more baseline activity, with a 
number of genes already transcribed in naïve mice (d0), increasing gradually through d2 and 4, peaking at d6. In 
contrast to the spleen, the later time points feature significant downregulation of a large number of genes, starting 
on d8 and progressing through d12.

A closer look at these genes revealed that indeed very few genes are shared between the same cell populations 
from the two tissues. (Fig. 7 and Supplementary File 6). The majority of differentially expressed genes are ascribed 
to B cells (Spleen = 329, Blood = 185) and myeloid cells (Spleen = 242, Blood = 175), followed by CD8+ T cells 
(Spleen = 196, Blood = 145). We also observed a large fraction of genes associated with γδT cells (Spleen = 196, 
Blood = 145). Although the DE genes for each cell population in blood and spleen are largely mutually exclusive, 
only a small number of genes are shared between the two tissues for each cell type (Table 1 and Supplementary 
File 6), where Asf1b, IL-18rap, Icos and Ifng are the most shared genes between blood and spleen in multiple cell 
types. In summary, analysis of deconvolved cell–specific transcriptomes of the major immune cell populations 
in blood and spleen reveals very little similarity in gene expression between spleen and blood during P. chabaudi 
infection.

Figure 5.  Inference of immune cell proportions from bulk microarray data. Each time-point was deconvolved 
into seven major immune cell populations using the ImmuCC signature. The myeloid group is composed 
of dendritic cells, macrophages and monocytes, while the granulocyte group is composed of Neutrophils, 
Eosinophils and Mast cells. Cells with proportions < 0.01% (T reg, Th1, Th2, Th17) were grouped into ‘Others’.

https://doi.org/10.1038/s41598-019-52388-y


8Scientific Reports |         (2019) 9:15853  | https://doi.org/10.1038/s41598-019-52388-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
It is widely accepted that the main lymphoid organ involved in the immune response against blood-stage malaria 
parasites is the spleen3,4. However, since it is not feasible to obtain spleen biopsies for the purposes of studying 
malaria in humans, blood is routinely used (including in studies by the authors) as a surrogate to study the 

Figure 6.  Comparison of cell-specific transcriptional signatures in blood and spleen over the course of 
infection. Differentially expressed genes (DEG) associated with five major cell types were visualised using 
heatmaps of their expression Z-scores (blue = −3, yellow = 0, red = +3). DEG from each tissue, irrespective of 
their time allocation were scanned against the ImmGen Phase 1 microarray signature and those with a match 
were used to build a heatmap and display temporal expression patterns.
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Figure 7.  Distribution of shared and tissue-specific differentially expressed genes associated with each cell type. 
Number of differentially expressed genes associated with seven major immune cell populations expressed in 
either blood (pink) or spleen (blue). The number of genes that are expressed at one or more timepoints in both 
tissues is shown in yellow.

B cells
CD4+ T 
cells

CD8+ T 
cells

γδ T 
cells Granulocytes

Myeloid 
cells

Agfg1 Agfg1 Asf1b Asf1b Creg1 Asns

Asf1b Asns Atp10a Asns Cyb5r1 Cox6a1

Asns Cst7 Aurka Aurka Il18rap Creg1

Aurka Gata3 Aurkb Aurkb Lcn2 Cyb5r1

Aurkb Gimap7 Birc5 Birc5 Myo1f Lcn2

Birc5 Icos Cdca2 Cdca2 Nqo1 Mthfd2

Cdca2 Il18rap Cdca8 Cdca8 S100a9 Myo1f

Cdca8 Lgals1 Cenpa Cenpa Ndufa1

Cst7 Plk1 Crip2 Cox6a1 Pbk

Gata3 Rgs16 Cst7 Cox6b1 Plk1

Gimap7 Stat1 Gata3 Cst7 S100a9

Icos Thy1 Gimap7 Gata3 Slamf8

Il18rap Zap70 Icos Gimap7

Kif22 Ifng Gstp1

Lgals1 Il18rap Icos

Mcm3 Kif22 Igf2bp3

Ncaph Lgals1 Il18rap

Ndufb6 Mcm3 Kif22

Pbk Myo1f Lgals1

Plk1 Ncaph Mcm3

Rgs16 Pbk Ncaph

Stat1 Pfkp Ndufa1

Sytl3 Plk1 Ndufb6

Tcf19 Sytl3 Pbk

Thy1 Tcf19 Plk1

Zap70 Thy1 Rpa3

Zap70 Slc14a1

Sytl3

Tcf19

Thy1

Zap70

Table 1.  Immune cell associated genes expressed in both blood and spleen over the course of infection.
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immune response to Plasmodium infection27–31. Furthermore, most studies in humans are cross-sectional and 
involve transcriptomic analysis carried out at a single time point, which only provides a snapshot of a dynamic 
and complex immune response.

Here we used the Plasmodium chabaudi mouse model of malaria and profiled both blood and spleen transcrip-
tomes during an acute phase of infection, providing a unique opportunity to analyse and compare similarities 
and differences between the transcriptional responses occurring in each tissue over the course of the infection.

We found very few similarities between the transcriptomes of blood and spleen over the course of the infec-
tion. To identify shared genes or pathways better, we generated a merged normalised expression matrix for both 
tissues that allowed us to compare more directly the transcriptomic profiles of the two organs. In keeping with 
the results from the discrete analysis we found very little similarity between the transcriptomic profiles of blood 
and spleen. The two tissues did appear to share a number of immunological pathways, however closer analysis 
revealed that the gene content and expression kinetics of these pathways was tissue-specific. In an attempt to 
reveal any similarities between the two tissues, we conducted a directed analysis, comparing the levels of cytokine 
transcripts between spleen and blood over the course of the infection. Once again, spleen and blood were found 
to be quite distinct, with the spleen exhibiting a strong pro-inflammatory signature through d6 and then switch-
ing to a “Th2- type” response. The blood on the other hand had a much weaker and more heterogeneous expres-
sion profile that was maintained over the course of the infection. While some of the transcriptomic differences 
between blood and spleen can be attributed to differences in cellular composition, a comparison of cell-specific 
transcriptomic profiles, (generated through computational deconvolution) revealed significant differences in gene 
expression within the same major cell populations isolated from the two tissues.

One disadvantage of our study is the use of a microarray platform, which limits the scope of analyses that can 
be performed. However, for many crucial analyses, including cellular deconvolution which we perform in our 
study, microarray and RNA-Seq often yield very similar results. Indeed, using these microarray data we were 
able to identify differences in cellular proportions between the two tissues over the course of the infection to an 
acceptable level of accuracy. Ideally, the analysis of immune cell-specific signatures should be carried out using 
single cell RNA-Seq (scRNA-Seq) datasets from naïve and stimulated cells, since this is the most accurate way to 
know which genes are being expressed by which specific cellular population32. However, such analyses will not 
be feasible at the present time in the field for both practical and financial reasons. Our study provides evidence of 
the utility of using machine learning techniques together with comprehensive time-series transcriptomic data to 
facilitate the identification of important immune components during this rodent malaria infection.

Overall, our study indicates that blood and spleen have limited similarities during a P. chabaudi infection. This 
is an important observation as it suggests that information gained from signatures identified using whole blood 
transcriptomic analyses as a proxy for the response in the spleen (or other lymphoid tissue) as is done in many 
field studies, may be incomplete or even misleading. Given the impracticability of using human lymphoid tissue 
for most studies, we need to assess in which way blood transcriptomes are useful. Their value might lie in defining 
surrogate biomarkers of protection or immune pathology rather than in identifying specific components of the 
host response taking place in lymphoid organs.

Methods
Mice and parasites.  All of the RNA samples described here were derived from a previously published exper-
iment from our laboratory17. Briefly, female C57BL/6 aged 6–8 weeks from the SPF unit at the Francis Crick 
Institute Mill Hill Laboratory were housed under reverse light conditions (light 19.00–07.00, dark 07.00–19.00 
GMT) at 20–22 °C, and had continuous access to mouse breeder diet and water. Mice were infected with a cloned 
line of Plasmodium chabaudi chabaudi AS, as described33. Infections were initiated by intraperitoneal (i.p.) 
injection of 105 iRBC derived from cryopreserved stocks. Over the 12 days of the infection, the percentage of 
RBC infected (parasitemia) were monitored on Giemsa-stained thin blood films and the infection was as previ-
ously described for P. chabaudi AS17. All experimental work was carried out in accordance with the UK Animals 
(Scientific Procedures) Act 1986, under UK Home Office licence 80/2538 and 70/8326 to Jean Langhorne, and 
was approved by The Francis Crick Institute Ethical Committee.

Infection and microarray data.  Blood and spleens were collected at the same time from C57BL/6 mice that 
were intraperitoneally infected with 105 P. chabaudi AS infected red blood cells at days 2, 4, 6, 8, 10 post-infection 
and from uninfected mice at times corresponding to days 0 and 12 of infection as described17. Total splenic RNA 
was extracted using RiboPure Kit (Ambion) following the manufacture’s protocol. cRNA samples were prepared 
from 300 µg globin reduced blood RNA or total splenic RNA using Illumina TotalPrep RNA Amplification Kit 
(Ambion) and hybridized to Illumina Mouse WG-6 v2.0 Beadarrays (consisting of 45,281 probe sets representing 
30,854 genes) according to the manufacturer’s protocols. At each step, the quantity and quality of the RNA sam-
ples was verified using NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific) and Caliper LabChip GX 
(Caliper Life Sciences).

Blood transcriptomic data were previously published (GEO accession: GSE93631), and gene expression data 
from spleens were submitted under GEO accession number GSE123391.

Microarray analysis.  Microarrays were normalised using the limma package. The normalised expression 
matrix for each tissue was used as input for dimensionality reduction using Principal Component Analysis (PCA) 
with the irlba package in R using the prcomp_irlba() function to find approximate single vectors in a sparse 
matrix34.

For differential expression analysis we used the Standard AUC classifier implemented in the R Seurat toolkit35. 
In brief, for each gene in the expression matrix a classifier is built that will classify between two time-points and 
this classifier is evaluated with an Area Under the Curve (AUC). An AUC value of 1 means that the expression 
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values of this gene alone can perfectly distinguish between the two groups being compared using the classifier, a 
value of 0.5 indicates that the gene cannot distinguish between the two groups being compared and a value of 0 
indicates that the gene assumes that the two groups are the same.

The comparison was done in two steps, where expression values in each time point were first compared against 
their naive and those genes that were unique to the time point and had a classification power above 0.7 were 
designed as DEG between the time-point and its naive, then we took these DEGs and compare them against each 
time point in the time series until a set of unique DEG for that time point with a classification power above 0.85 
and a logFC > 2 was selected. All the scripts for the analysis can be found on GitHub: https://github.com/car-
tal/spleen_vs_blood_microarray. DEGs were analysed functionally using the ToppFun tool from the ToppGene 
server as follows: We proceeded with these DEG and fit them into biological pathways that were significant (a hit 
number > 10 and a Bonferroni-Hochberg corrected q-value < 1e-5) using ToppFun, and the resulting pathways 
were grouped for simplicity into five main categories: Metabolism, Proliferation, Migration, Immunity and Others. 
Genes from the Reactome database that were associated with immune processes were compared against each 
other to identify tissue-specific and shared genes across the entire time-series.

Characterisation of immune cellular proportions.  To estimate the cellular proportions of immune cells 
in each tissue from the microarray data, we used the ImmuCC signature to infer mouse immune cell propor-
tions23. We performed cellular deconvolution the ImmuCC signature with the support vector regression (SVR) 
implemented in CIBERSORT36, using 1000 permutations without quantile normalisation. Cellular proportions 
were accepted if they had a Pearson correlation coefficient r2 > 0.45 and a Root Mean Squared Error RMSE < 0.9 
for the evaluation of the SVR model.

Generation of an immune cell-specific transcriptional signature.  We scanned the differentially 
expressed genes from each tissue irrespective of the time of infection against the characterised signatures of 
mouse immune cell types under different conditions from the ImmGen Stage 1 microarray dataset for cells iso-
lated from lymphoid organs and blood as implemented in ToppFun (Supplementary File 7). Since these data 
contains signatures associated to the naïve and stimulated states of immune cells, it allows for the comprehensive 
characterisation of the mouse immune response. The output files from ToppFun were processed using a Python 
script (https://github.com/cartal/spleen_vs_blood_microarray) to select those signatures associated mouse 
immune cell populations that were significant (Hit > 20, Benjamini – Hochberg q-value < 1e-10). These genes 
were later used to create heatmaps to visualise their temporal behaviour.

Data availability
The datasets generated during and/or analysed during the current study are available in github: https://github.
com/cartal/spleen_vs_blood_microarray. Microarray data: MIAIME-compliant data are deposited in GEO: 
accession number GSE93631 (blood) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93631 and 
accession number GSE123391 (spleen).
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