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Abstract

Developmental system drift is a likely mechanism for the origin of hybrid incompatibilities

between closely related species. We examine here the detailed mechanistic basis of hybrid

incompatibilities between two allopatric lineages, for a genotype-phenotype map of develop-

mental system drift under stabilising selection, where an organismal phenotype is con-

served, but the underlying molecular phenotypes and genotype can drift. This leads to

number of emergent phenomenon not obtainable by modelling genotype or phenotype

alone. Our results show that: 1) speciation is more rapid at smaller population sizes with a

characteristic, Orr-like, power law, but at large population sizes slow, characterised by a

sub-diffusive growth law; 2) the molecular phenotypes under weakest selection contribute to

the earliest incompatibilities; and 3) pair-wise incompatibilities dominate over higher order,

contrary to previous predictions that the latter should dominate. The population size effect

we find is consistent with previous results on allopatric divergence of transcription factor-

DNA binding, where smaller populations have common ancestors with a larger drift load

because genetic drift favours phenotypes which have a larger number of genotypes (higher

sequence entropy) over more fit phenotypes which have far fewer genotypes; this means

less substitutions are required in either lineage before incompatibilities arise. Overall, our

results indicate that biophysics and population size provide a much stronger constraint to

speciation than suggested by previous models, and point to a general mechanistic principle

of how incompatibilities arise the under stabilising selection for an organismal phenotype.

Author summary

The process of speciation is of fundamental importance to the field of evolution as it is

intimately connected to understanding the immense bio-diversity of life. There is still rel-

atively little understanding of the underlying genetic mechanisms that give rise to hybrid

incompatibilities with results suggesting that divergence in transcription factor DNA

binding and gene expression play an important role. A key finding from the field of evo-
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devo is that organismal phenotypes show developmental system drift, where species main-

tain the same phenotype, but diverge in developmental pathways; this is an important

potential source of hybrid incompatibilities. Here, we explore a theoretical framework to

understand how incompatibilities arise due to developmental system drift, using a tracta-

ble biophysically inspired genotype-phenotype for spatial gene expression. Modelling the

evolution of phenotypes in this way has the key advantage that it mirrors how selection

works in nature, i.e. that selection acts on phenotypes, but variation (mutation) arise at

the level of genotypes. This results, as we demonstrate, in a number of non-trivial and test-

able predictions concerning speciation due to developmental system drift, which would

not be obtainable by modelling evolution of genotypes or phenotypes alone.

Introduction

The detailed genetic mechanisms by which non-interbreeding species diverge is still poorly

understood. Darwin, inspired by John Herschel, called it that “mystery of mysteries” [1]; he

struggled to understand how natural selection could give rise to hybrid inviability or infertility

between populations without producing such incompatibilities within the populations. A solu-

tion to this problem was conceived independently by Dobzhansky, Muller and Bateson in

which cross-mating would combine alleles at different loci that are incompatible due to epi-

static interactions (Dobzhansky Muller incompatibilities, DMI) [2–4]. Consider a common

ancestor with alleles ab across two loci, which after a period of allopatric divergence give rise

to two lineages which have fixed genotypes Ab and aB, respectively. Interbreeding between

these two populations would result in the heterozygotic hybrid genotype Aa|Bb, combining

the potentially incompatible A and B, a combination that could not arise in either population

mating separately.

Assuming that any combination of alleles that have not been “tested” by the process of evo-

lution represents a potential incompatibility, Orr predicted that the number of incompatibili-

ties between pairs of alleles in a sufficiently large genome would increase with the number of

substitutions separating the two lineages (K) as K (K−1)� K2 [5]. Similarly, the number of

untested combinations involving n loci would increase as� Kn, suggesting that, with evolu-

tionary time, potential incompatibilities would become increasingly dominated by more com-

plex epistatic interactions [5]. This would occur, firstly, because there are a larger number of

combinations, and secondly, because there are more ways for separate lineages to evolve

around incompatible genotypes when there is a larger number of loci. It is unclear, however,

how the simplistic assumptions of this model fare with increased biological realism. Not all

possible untested hybrids are equally likely to result in real incompatibilities. Selection acting

on each separate lineage affects the substitutions that occur and their likely contributions to

reproductive isolation. In particular, evolutionary constraints have a strong effect on the devel-

opment of more complex DMIs, making it uncertain whether their role is as important as

suggested by Orr’s combinatorial argument. This highlights the need for considering more

realistic models that better capture the salient aspects of the underlying biology, whilst remain-

ing sufficiently simple for tractable evolutionary modelling and simulation.

In recent years a form of epistasis has been described in a number of organisms whereby

closely related species have similar organismal phenotypes but are produced by very different

developmental mechanisms [6–9]. This cryptic “developmental system drift” [10, 11] could be

an important source of hybrid incompatibilities that cause reproductive isolation [12, 13].

Developmental system drift is an example of a more general characteristic of biological systems
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where many genotypes can correspond to the same phenotype; this redundancy of the map-

ping from genotype to phenotype results in a number of non-trivial behaviours which do not

arise on fitness landscapes which consider evolution of phenotypes or genotypes indepen-

dently [14–25]. The degree of redundancy can be represented as the “sequence entropy”, cor-

responding to the log of the number of genotypes corresponding to a given phenotype, in

analogy to the similar expression in statistical mechanics [17, 25–27].

To explore the role of developmental system drift on speciation, we examine the growth of

Dobzhansky-Muller incompatibilities using a simple genotype-phenotype map that models

the development of spatial patterning of gene expression. The model, introduced by [17]

allows for cryptic genetic variation and changes in molecular phenotypes while maintaining

organismal phenotype under stabilising selection. In addition, we introduce a novel computa-

tional method to decompose hybrid DMIs so we can examine the behaviour of the fundamen-

tal pair-wise and higher order incompatibilities. We show that including biologically relevant

elements gives rise to a number of novel phenomenon that could not arise with models based

only on the fitness of genotypes or phenotypes. Our results show that small populations

develop hybrid incompatibilities more quickly, due to the pressure of sequence entropy in

small populations meaning the common ancestor harbours on average a larger drift load. For

large populations, we find hybrid incompatibilities arise more slowly, with a growth law char-

acteristic of a sub-diffusion of the hybrid binding energies, indicative of kinetic traps in the

molecular substitution process due to roughness to the fitness landscape [17]. Strikingly, we

find that for moderate population sizes it is the molecular phenotypes under weakest selection

that give rise to earliest incompatibilities, since in the common ancestor they are more likely to

be already maladapted. Finally, we find that unlike Orr’s prediction that complex DMIs should

be abundant, pair-wise interactions between loci dominate the growth of DMIs, showing that

biophysics provides a stronger constraint than pure combinatorics.

A simple genotype-phenotype map to model developmental system drift

The genotype-phenotype map we use is a modification of the one described in [17]. The evolu-

tionary task set for the gene regulation module is to turn an exponentially decaying morpho-

gen gradient (M) across a field of cells in an embryo into a sharp step function profile of a

downstream transcription factor T with its transition at the mid-point of the embryo, as

shown in Fig 1. This is accomplished by having the morphogen and an RNA Polymerase R
bind to two adjacent non-overlapping binding sites in the cis-regulatory region (C) region of

the transcription factor, the promoter P, and a single binding site B adjacent to it; transcription

occurs whenever the polymerase binds to the promoter, although both proteins can bind to

both binding sites dependent on their binding affinities. Binding to the regulatory region is

cooperative due to stabilising interactions between the two proteins when bound at the two

adjacent sites. The sequences of M and R at the DNA binding sites are represented by binary

strings of length ℓpd = 10. The corresponding DNA binding sites B and P are also represented

by binary strings of the same length. Interactions between a pair of proteins are similarly repre-

sented by binary strings of length ℓpp = 5. We assume an exponential morphogen concentra-

tion profile [M](x, α), as a function of the position of embryonic cells, x; the decay rate of the

morphogen α is represented as a continuous variable, with a relative probability of mutation

corresponding to an effective string of length ℓα = 10 bases. This results in a genome G, of total

length ℓG = 60. Protein-DNA and protein-protein binding strengths are determined by the

number of mismatches between corresponding strings on the two interacting molecules,

where for protein-DNA binding the cost of a mismatch is �pd = 2kBT and for protein-protein

interactions �pp = 1kBT, where kBT is Boltzmann’s constant multiplied by room temperature
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(298K). We assume that there is a fixed concentration [R] of polymerase, in each cell. We then

follow [28] and assume that the concentration of the transcription factor in a cell at position x
([T](x)) is simply proportional to the probability of the polymerase being bound to the pro-

moter, where this is calculated using standard methods of equilibrium statistical mechanics

allowing for all configurations of protein species bound at these two binding sites, as well as

none being bound (see Methods for details). The fitness contribution F of the overall pattern-

ing phenotype ranges from 0 to κF depending on how well expression of the transcription fac-

tor is confined to the anterior half of the embryo, as shown in Fig 1 (bottom left), where κF is a

measure of the relative contribution of this trait to the fitness of the organism. We define a

population-scaled fitness contribution 2NeκF, where Ne is the effective population size; for

2NeκF< 1 the effects of selection are weak, and are conversely strong when 2NκF> 1. We also

assume that there is a boundary at F = F�, below which the organism is unviable. We simulate

evolution as continuous time Markov process. After evolving a single population for a given

number of generations, we form two replicates of the population that evolve independently,

representing the process of allopatric speciation. At various time points following this imposed

isolation, we consider the fitness and viability of various outcrossings between the two popula-

tions. A DMI occurs when the fitness contribution of a particular hybrid drops below F�.

Fig 1. An overview of the genotype-phenotype map. The gene regulatory module has as input a morphogen concentration [M](x) that varies approximately

exponentially across a 1-dimensional embryo of length L, and outputs a transcription factor [T](x). Spatial gene regulation of T is achieved via a simple Hamming

model of protein DNA binding as shown. Fitness is determined by weighting any gene expression in the anterior half of the embryo as positive, and any in the

posterior half as negative (as shown bottom left). We show idealised expression profiles that give maximum fitness when gene expression is confined only to the

anterior half (bottom middle), and minimum fitness when there is no discrimination between anterior and posterior (bottom right); these translate to log-fitnesses of

F = 0 and F = −1, respectively (see Methods).

https://doi.org/10.1371/journal.pcbi.1007177.g001
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Results

Evolutionary properties of genotype-phenotype map on each lineage

The properties of a similar genotype-phenotype map have been previously explored [17]. An

important property of this genotype-phenotype map is that only a single mechanism of pat-

terning is found, in which the polymerase (R) binds with intermediate affinity to the promoter

(P) but with high affinity to the morphogen (M), while the morphogen binds to the morpho-

gen binding site (B) only above a critical morphogen concentration. This results in a spatial

switch once the morphogen falls below this concentration; evolution then fine tunes the rela-

tionship between the protein-DNA binding energies, the protein-protein binding energy and

the steepness of the morphogen gradient α to turn off transcription at the mid-point of the

embryo. Despite a single global solution there are many different combinations of the protein-

DNA and protein-protein binding energies and α that give good patterning, and each of these

correspond to many possible genotypes (G). Of the different possible binding energies, we find

that EMB;ERP;
~ERM (binding energy of M to B, R to P, and R to M, respectively, calculated by the

equivalent of Eq 3 in the Methods) are under strong selection, whilst the other possible binding

energies are essentially neutral with weak selective effects. At large population sizes it is found

that the evolutionary dynamics exhibits what is known as quenched-disorder in statistical

physics, where energy phenotypes that are less constrained take different random values

between independent evolutionary runs with no further substitutions; this indicates an under-

lying roughness to the fitness landscape and that these weakly selected traits are trapped in a

local optimum [17].

A key property determining the rate at which incompatibilities arise is the distribution of

common ancestor phenotypes as a function of the population-scaled fitness contribution 2NeκF,

as shown in Fig 2. For a given value of κF, we see that for large population sizes (2NκF� 10) the

distribution is what we would expect from conventional evolutionary theory on a fitness land-

scape with a fitness maximum. In contrast, as the population size is decreased, we find the

distribution shifts to lower fitness values to the point when selection is weak (2NκF� 1) the dis-

tribution is poised at the inviability boundary. This effect arises due to genetic drift at low popu-

lation sizes pushing populations towards marginally fit phenotypes that correspond to the

largest number of genotypes, that is, with the largest sequence entropy.

Decomposition of DMIs

Our genome is composed of 4 loci: 1) the R locus corresponding to the polymerase sequence,

2) the Morphogen (M) locus, 3) the C locus which corresponds to the sequences for the cis-

regulatory region of the transcription factor and 4) the α locus, which is the morphogen gra-

dient steepness α. Hybrids between the two lineages are constructed by independent reas-

sortment of these loci assuming complete linkage within each locus and no linkage between

them. We define a hybrid genotype by a 4 letter string where each letter corresponds to one

of the loci defined above and takes one of two cases correspond to whether the allele is from

the 1st line or 2nd line; for example, the hybrid rMCa corresponds to R locus having an allele

from the 1st lineage, M locus with the allele from the 2nd lineage, the transcription factor

(cis-regulatory) C locus from the 2nd lineage and α locus the allele from the 1st lineage.

Note that the underlying sequence of each hybrid changes as different substitutions are

accepted in each lineage; the notation only refers to alleles fixed at any point in time. We

can represent all combinations of the four loci drawn from the two parents (RMCA, RMCa,

RMcA, etc.) as points on a four-dimensional Boolean hypercube. In total there are 24

− 2 = 14 hybrids.

Biophysics and population size constrains speciation
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In Fig 3, we plot a typical time series of how the fitness of two different hybrids (Rmca(a &

b) and RMcA(c & d) changes over a divergence time μt separating a pair of lineages, for 2NκF =

1 (a & c) and 2NκF = 10 (b & d), where μ = ℓGμ0 is the mutation rate for all base pairs in all

loci. 2NκF> 1 indicates strong selection, whilst 2NκF� 1 indicates weak selection where

Fig 2. Histogram of the fitness of populations over single long runs as a function of the population scaled fitness contribution 2NκF.

https://doi.org/10.1371/journal.pcbi.1007177.g002

Fig 3. Plot of the times series of two hybrids Rmca(a & b) and Rmca(c & d) at population scaled fitness contributions of 2NκF = 1 (a & c) and 2NκF = 10 (b & d).

Times when the fitness of a hybrid drop below the critical value F� (dashed line) correspond to DMIs.

https://doi.org/10.1371/journal.pcbi.1007177.g003
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genetic drift dominates (For reference, in human populations it has been estimated that� 20

− 30% of mutations are weakly selected [29, 30], compared to in Drosophila< 10% [30].). We

see that the fitness of hybrids generally decreases in a stochastic fashion; when the log-fitness

of a hybrid drops below the threshold F� (indicated by the dashed line), a DMI arises as is indi-

cated by a vertical log-fitness line (F = −1) for that hybrid. As can be seen in Fig 3, at any

given time a changing subset of the fourteen possible hybrids might be incompatible.

Total number and type of DMIs. To decompose the pattern of hybrid DMIs into funda-

mental pair-wise, 3-way and 4-way incompatibilities, we use a parsimonious method (Material

& Methods) which finds the minimum total number of fundamental DMIs types that can

explain the pattern of DMIs observed. As shown in Fig 4a, on a 4-dimensional Boolean hyper-

cube, a pair-wise incompatibility is represented by a face of the cube (blue square), a 3-way

incompatibility by a single edge (green line) and a 4-way incompatibility by a single point (red

circle). This arises because, for example, as in Fig 4a, a 2-point DMI ICa means any genotype

which features this sub-genotype Ca must, by definition, also be a DMI; the alleles on the

remaining loci not involved in the DMI, can take any value and so form a 2D subspace, which

is a whole face of the Boolean 4-cube. Similarly, a 3-point DMI, such as ImcA as shown, con-

strains the sub-genotype of 3 loci to be incompatible and the remaining locus can take any

value forming an edge (r ! R in the example) of a 4D Boolean hypercube. A 4-point DMI

must be a single point in a 4D Boolean hypercube (e.g. IrmCA as shown). In Fig 4b, we show an

example where the pattern of hybrid incompatibilities, shown by red crosses, can be explained

in three different ways, each with only 2 DMIs: 1) ICa + IRca, 2) IRa + IrCa, 3) ICa + IRa; two is

the minimum number of DMIs, as there is no way to explain the pattern seen with a single

Fig 4. Decomposition of hybrid DMIs on a Boolean hyper 4-cube. Each point on the 4-cube represent each possible hybrid genotype across 4 loci, including the

genotype of each parental lineage, where each red cross represents an incompatible hybrid genotype. As shown in a) the fundamental types of DMIs, where a blue

square or face identify a subspace of genotypes that correspond to a 2-way DMI, a single green edge or line corresponds to a 3-way DMI and a red open circle

corresponds to a single isolated 4-way DMI. b) A more complicated pattern of hybrid DMIs and their decomposition into fundamental types.

https://doi.org/10.1371/journal.pcbi.1007177.g004
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pair-wise, 3-way or 4-way DMI. We assume each of these is, a priori, equally likely and so the

total number of pair-wise incompatibilities is calculated as an average over the different ways

we can explain the observed pattern of hybrid DMIs; in the example in Fig 4b, we therefore

have a total number of 2-way DMIs of n2 = 4/3 and 3-way DMIs n3 = 2/3, giving a total num-

ber of n = n2 + n3 = 2 DMIs, which is the minimum number of DMIs needed to explain the

pattern of hybrid incompatibilities.

Using this method, we plot the total number of each type of DMI versus divergence time in

Fig 5, where the panels correspond to different population scaled fitness contributions from

2NeκF = 0.1 to 2NeκF = 100. We see clearly that as the population size is decreased the rate at

which incompatibilities arise increases. This effect results from the shift in distribution of fit-

ness to poorer values for smaller populations in Fig 2; this means that the common ancestor is

more likely to be slightly maladapted (higher mutational load) for smaller populations, and so

fewer substitutions are required before hybrid incompatibilities arise. This effect was also

found for simple models of protein-DNA binding [26, 27], but arose as a result of direct selec-

tion for high binding affinity, which also corresponds to low sequence entropy as there are

exponentially fewer ways of binding with no or only a few mismatches between protein and

DNA. In this work there is only selection on the overall patterning phenotype, yet remarkably

we find analogous behaviour due to the effect of sequence entropy of this phenotype.

Pair-wise incompatibilities dominate reproductive isolation. As is clearly shown by Fig

5, pair-wise incompatibilities dominate for all population sizes, though at larger population

sizes the difference is smaller, and particularly at shorter times. These results should be con-

trasted with the prediction of Orr that 2-way: 3-way: 4-way incompatibilities should arise in

Fig 5. Plot of the total number of DMIs vs divergence time, together with their decomposition into the total number of 2-way, 3-way, 4-way DMIs, for various

scaled populations sizes. For 2NκF� 20 the solid lines correspond to fits of the simulation data to Eq 1, while for 2NκF� 50 correspond to fits to Eq 2.

https://doi.org/10.1371/journal.pcbi.1007177.g005
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the ratio 12 : 24 : 14 (for L = 4 loci); so for example, there should be double the number of

3-way incompatibilities to pair-wise.

It is possible that this bias could arise by the development of a random set of incompatibili-

ties that would preferentially decompose into sets of 2-way DMIs. In order to consider this

possibility, we randomly assigned a set of incompatibilities and analysed them using our

decomposition procedure. Contrary to the observed results,, we find that this decomposition

results in the largest number of 4-way DMIs, followed by 3-way and then 2-way DMIs (S1

Text). This is as expected as when the probability that a hybrid is incompatible is small, by ran-

dom chance, we should expect to see isolated incompatible hybrid genotypes, which would be

explained by 4-way DMIs; the fact that our results show that 2-way DMIs are dominant, even

at early times, means that whole faces of the Boolean hypercube are found to incompatible,

which is not likely to arise in a random model. Hence overall, these results show that contrary

to Orr’s prediction that higher order DMIs should be easier to evolve, higher order DMIs

evolve more slowly and are in smaller number compared to pair-wise DMIs.

Quantification of power law growth of DMIs for small populations. We find that for

small population sizes 2-way, 3-way and 4-way DMIs all increase as a power law at small times,

indicated by a straight line on a log-log plot, in agreement with [5, 31], who predicted that n-

way DMIs should increase as� tn. To more quantitatively assess the exponent, we fit the data

for 2NκF� 20 using the phenomenological equation:

IðtÞ ¼
I0t

T þ t
1 � exp � ðt=tÞg� 1
� �

ð1Þ

which has the asymptotic form of I(t)� tγ for t� τ and t� T and an opposite limit of I(t!
1) = I0. We see that for the total number of DMIs and for 2-way, 3-way and 4-way DMIs, this

form fits the data well at intermediate and small population sizes. We tabulate the power law

exponent derived from these fits in Table 1. We see that the total number of DMIs and 2-way

DMIs have a power law exponent close to γ = 2, which is consistent with the Orr model. The

4-way DMIs have a larger exponent than the 3-way DMIs, which is larger than the 2-way

DMIs, also in agreement with Orr’s model, although the values of the exponent are substan-

tially lower than n for the 3-way and 4-way DMIs.

Sub-diffusive growth of DMIs for large populations. For large population sizes there is

no clear power law, which is again consistent with previous simulations [27] and also theoreti-

cal calculations [26]; when high fitness corresponds to high binding affinity, so that the com-

mon ancestor distribution is peaked away from the inviability boundary, large populations

have a small drift load, meaning that DMIs arise when hybrid energy traits diffuse to the

boundary. One such analytically tractable model was investigated in [26] and predicted that

the number of DMIs is a complementary error function, which has an asymptotic form

IðtÞ �
ffiffiffiffi
4mt
p

K� e� ðK�Þ2=4mt, which due to the essential singularity as t! 0 has the property of

negative curvature on a log-log plot. However, neither this form nor its multidimensional

Table 1. Table of values of the exponent γ characterising the power law of growth of DMIs at short times and

small scaled population sizes.

2NκF 0.1 1 10 20

Total γ 1.94 ± 0.05 1.99 ± 0.05 1.95 ± 0.05 2.00 ± 0.12

2-way 1.93 ± 0.05 1.98 ± 0.06 1.84 ± 0.06 1.97 ± 0.13

3-way 2.66 ± 0.13 2.81 ± 0.17 2.76 ± 0.24 2.14 ± 0.15

4-way 3.17 ± 0.19 3.43 ± 0.41 3.14 ± 0.24 2.93 ± 0.19

https://doi.org/10.1371/journal.pcbi.1007177.t001
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generalization fit the simulation data well (not shown). A functional form that is a good fit to

the data at large populations sizes is

IðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðmtÞb
q

K�
e� ðK�Þ

2=4ðmtÞb ;
ð2Þ

which arises when considering fractional Brownian processes with exponent β [32]; normal

diffusion or Brownian motion arises when β = 1, while β< 1 corresponds to subdiffusive

behaviour, while β> 1 is superdiffusive. It is clear by examining the exponent β in Table 2

from fits of the data in Fig 5 at large population size (2NκF� 50) that the DMIs arise as a result

of a sub-diffusive process, where 2-way, 3-way and 4-way DMIs have an exponent β� 1/3 for

2NκF = 50 and β� 1/4 for 2NκF = 100. The most likely mechanism that would give rise to sub-

diffusive behaviour is a broad spectrum of times between substitutions; even though in the

simulations the kinetic Monte Carlo scheme is based on a Poisson process for a given geno-

typic state G, the distribution of rates could vary significantly as populations explore the fitness

landscape. This would be consistent with the results in [17], which reveal the underlying fitness

landscape of this spatial patterning genotype-phenotype map to be rough, which could lead to

broad distribution of substitution rates in each lineage and effective sub-diffusive behaviour of

the hybrids. Finally as expected the average number of substitutions needed at large population

sizes is large, with values of K� ranging from 6 to 9, and increases with increasing population

size, as expected; it also increases very moderately with increasing n, which would be consis-

tent with an increase in dimensionality of higher order DMIs. Interestingly, these values of K�

would indicate that the fraction of viable genotypes is very small,� 2K�=2‘G � 10� 13, where

ℓG = 60 is the number of effective binary sites in this genotype-phenotype map.

Molecular phenotypes under weakest selection dominate DMIs at larger population

sizes. The DMI decomposition algorithm allows examination of the behaviour of different

types of pair-wise, 3-way and 4-way DMIs. The different pair-wise DMIs can easily be identified

with the different molecular binding energy phenotypes that combine together to form the over-

all organismal phenotype. The plot in Fig 6 shows how the number of DMIs grows for the three

most dominant pair-wise DMIs Irm, Irc and Imc (pair-wise DMIs involving the α locus are

orders of magnitude smaller—see S1 Text), as a function of the scaled divergence time ℓ0μt,
where ℓ0 = 5 for Irm and ℓ0 = 10 for Irc and Imc, cancelling how mutations are more likely to hit

longer regions of the genome [27]. Strikingly, we find that contrary to what might seem intui-

tive, it is the molecular interactions under weakest selection that dominate the number of DMIs,

particularly for larger population sizes. For 2NκF>= 50, we see at early times Irc> Irm> Imc,

Table 2. Table of values of the parameters characterising the sub-diffusive growth of DMIs for large scaled popula-

tion sizes; β = 1 corresponds to normal diffusive motion, β< 1 to sub-diffusion and β> 1 super-diffusion, while

K� corresponds roughly to the number of substitutions required to reach the inviable region.

2NκF 50 100

Total β 0.47 ± 0.03 0.33 ± 0.02

K� 6.58 ± 0.12 7.37 ± 0.26

2-way β 0.32 ± 0.01 0.25 ± 0.01

K� 6.71 ± 0.07 7.51 ± 0.18

3-way β 0.33 ± 0.01 0.22 ± 0.01

K� 7.53 ± 0.10 8.09 ± 0.27

4-way β 0.31 ± 0.02 0.25 ± 0.02

K� 7.50 ± 0.28 8.66 ± 0.39

https://doi.org/10.1371/journal.pcbi.1007177.t002
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which is the same order of increasing selective constraint on each of these molecular interac-

tions (S1 Text). This has a simple explanation: at a sufficiently large population size such that

none of the selective constraints on different molecular phenotypes is neutral, in the common

ancestor the molecular interaction strengths under weakest selection will have the largest drift

load and hence fewer substitutions are needed for incompatibilities to arise in hybrids. This is

precisely as observed in simple models of transcription factor DNA binding, where the incom-

patibilities arise more quickly where binding is under weak selection for high affinity [27].

In the converse limit, when population sizes are sufficiently small that all molecular pheno-

types are neutral (up to the truncation threshold), we find only small differences between the

rise of each of the pair-wise incompatibility types; this is again consistent with simple models

of transcription factor DNA binding, where the phenotypic distribution of binding energies

is dominated by their sequence entropy and not fitness at small population sizes and there is

only a weak dependence on sequence length [27]. In the S1 Text, we show this is also true of

the higher order DMIs, where it is purely the sequence-entropy constraints of each DMI type

which controls the dynamics of incompatibilities and fitness has little bearing; however, as the

population size is increased this degeneracy is lifted and each of the DMIs exhibits individual

behaviour.

Discussion

There is still very little understood about the underlying genetic basis that gives rise to repro-

ductive isolation between lineages. Gene expression divergence is thought to be a strong deter-

minant of the differences between species [33–37] with a growing body of evidence for their

Fig 6. Plot of the spectrum 2-way DMIs vs scaled divergence time for different scaled population sizes. Here the divergence time for each pair-wise DMI is scaled

by the number of base-pairs involved in each interaction in order to remove the effect that interactions with a larger number of base-pairs mutate at a larger rate in

proportion to their length; for Irm, ℓ0 = 5, and for Irc and Imc, ℓ0 = 10.

https://doi.org/10.1371/journal.pcbi.1007177.g006
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direct role in speciation, particularly through transcription factors [38–42]. In particular, tran-

scription factors mediate the control of gene expression and the ultimately body plans of

organisms through complicated gene regulatory networks. Studies in drosophila and nema-

todes have shown in closely diverged species conserved body plans yet plasticity in the under-

lying molecular architectures between them [7–11, 43].

This evidence suggests that divergence in the regulatory networks controlling gene expres-

sion and body plans in allopatric lineages is likely to be an important mechanism of speciation

in many higher organisms, yet we do not yet have a quantitative evolutionary framework to

model such processes, which can then be used to make predictions. A key challenge is to link

changes at the genetic level, where mutations arise, to their outcomes on changes in pheno-

type, where selection actually acts. Although in the past century we have made great strides in

our understanding of evolution through the modern synthesis of Fisher, Wright, Kimura and

many others [44–48], this has focussed on the evolution of either genotypes or phenotypes sep-

arately. However, in recent years there has been increasing attention on the development of

more realistic fitness landscapes, and how this affects the evolutionary process. For example, in

biologically realistic systems, often many genotypes correspond to the same phenotype; this

redundancy of the mapping from genotype to phenotype results in a number of non-trivial

and emergent behaviours which do not arise on fitness landscapes which consider evolution of

phenotypes or genotypes independently [14–24].

Role of free fitness in genotype-phenotype maps

One important and well explored example is the evolution of transcription factor DNA bind-

ing [15, 16, 22, 26, 27, 49, 50], where the genotype-phenotype map from sequence to binding

affinity can be explicitly enumerated under simplifying assumptions [51, 52]. These investiga-

tions show that for small populations dominated by genetic drift, evolution does not optimise

fitness. Rather, there is a trade off between the high fitness of a small number of sequences that

bind well and the exponentially larger number of sequences that bind less well. The result is

the maximisation of a combination of fitness and the number of sequences that correspond to

that phenotype. We can take advantage of analogies with statistical mechanics and represent

this combination as the “free fitness”, where the log of the number of sequences is the

“sequence entropy” of a phenotype [15, 26, 27, 53]. In this formulation, the effective popula-

tion size is analogous to an inverse temperature for a physical system connected to a heat-bath,

where decreasing population size increases the effect of drift and the importance of sequence

entropy relative to fitness.

When the free fitness framework is applied to the role of transcription factor DNA binding

in allopatric speciation, our previous work gave rise to a simple prediction: incompatibilities

arise more quickly for smaller, drift-dominated, populations [26, 27], supporting previous

computational studies by Tulchinsky et al. [54], that showed decreased hybrid fitness for

smaller populations. This can be understood as a result of the greater importance of sequence

entropy for small populations, resulting in common ancestors with a higher drift load, which

are therefore closer to incompatible regions. As a result, fewer substitutions are required for

the development of hybrid incompatibilities [26, 27]. Conversely, those transcription factor

binding site pairs under weaker selection, at a fixed population size, will give rise to incompati-

bilities more quickly, as they are more susceptible to drift and in the common ancestor will

have a larger drift load.

In this paper, we examine speciation in a more realistic genotype phenotype map. For the

first time we examine how incompatibilities arise in allopatry for a simple evolutionary model

of developmental system drift, where a higher level organismal spatial patterning phenotype is
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maintained by stabilising selection, whilst the underlying molecular binding energy pheno-

types and ultimately the sequences that determine them, the genotype, are allowed to drift in

the evolutionary simulations. Earlier analyses of this model demonstrated the evolution of a

number of non-trivial features such as a balance between fitness and sequence entropy decid-

ing the course of evolution at small population sizes and a roughness to the fitness landscape

for phenotypes which have high fitness [17]. Importantly here, unlike in previous works [26,

27] we do not directly select for high binding affinity, but only on the organismal level pheno-

type, but as we discuss, we find the same population size dependence, as well as a number of

other novel phenomenon to the speciation process, which would not be obtainable by model-

ling selection only at the level of phenotypes or genotypes. The results show that biophysics

and effective population size provide a much stronger constraint than previous simple model-

ling of the dynamics of hybrid incompatibilities would suggest [5, 31].

Small populations characterised by power law growth of incompatibilities,

large populations by diffusive growth

A key result we find is that small populations are characterised by a power law growth of

incompatibilities with time, vs large populations a diffusive law (discussed below). Thus we

suggest that empirical evidence of power law growth in incompatibilities is a signature of allo-

patric speciation at small population sizes. The Orr model of the growth of hybrid incompati-

bilities predicts that incompatibilities grow as a power law of the divergence time between

allopatric lineages [5, 31], where the exponent represents the number of genes participating in

the interaction (e.g. 2 for a 2-way incompatibility). The results of our model also yield this pre-

diction, but only when populations sizes are sufficiently small. There is, however, an alternative

model for the power law behaviour to the combinatoric argument made by Orr. As argued in

[27], at small population sizes, where genetic drift is dominant and there is a large drift load,

common ancestor populations are poised close to the incompatibility boundary and the

growth of DMIs at short times is determined by the likelihood that a few critical substitutions

arrive quickly, which is given by a Poisson process; if the critical number of substitutions is K�

then for short times we would expect PIðtÞ � ðmtÞ
K�

and so given that at least n substitutions

are needed for a n-way incompatibility, we would expect K� � n. In this paper, we introduced

a new method to decompose DMIs into their fundamental pair-wise, 3- and 4-way incompati-

bilities, and find that for more complex incompatibilities (more loci involved) the larger the

exponent of their power law growth. However, we find the exponents we measure for 3- and

4-way incompatibilities are smaller than the predicted exponents of 3 and 4 respectively. We

suggest this could be due, as shown in the S1 Text, to the greater number of higher order DMIs

arising just by chance, leading to an overestimation of 3- and 4-way DMIs at short times,

where at short times a smaller exponent corresponds to a larger number (i.e. τn−1 > τn for τ<
1, where τ is some dimensionless timescale).

Examining the growth of incompatibilities at large population sizes, we see there is a char-

acteristic negative curvature on a log-log plot, predicted theoretically by [26], indicating that,

as the number of substitutions needed for incompatibilities is large, the changes in the hybrid

traits can be approximated by a diffusion process. However, we find that a simple model of dif-

fusion does not fit the simulation data well; instead a model of sub-diffusion, that would arise

if there are a number of kinetic traps giving a broad distribution of substitution times, does fit

the data well. This is consistent with the finding that the genotype-phenotype map has a rough

fitness landscape, which is only revealed at sufficiently large population sizes [17]. However, it

is not clear whether we would observe quenched disorder and sub-diffusive behaviour with
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more realistic biophysical models that include a larger alphabet size with 20 amino acids and 4

nucleotides.

Incompatibilities arise more rapidly in small populations

We also find that incompatibilities arise more rapidly in smaller populations, which is an

emergent effect due to the genotype-phenotype map, giving a bias in degeneracy of different

phenotypes; lower fitness and less sharp patterning organismal phenotypes have many more

sequences than higher fitness, sharper patterning, phenotypes. In smaller drift-dominated

populations, this means there is bias towards phenotypes of small sequence entropy (log

degeneracy) that counteracts the tendency of natural selection to favour phenotypes of high fit-

ness. Consequently, the common ancestor in small populations is more likely to be slightly

maladapted and less substitutions are needed before hybrids develop incompatibilities. These

predictions are consistent with empirical evidence for an inverse correlation of speciation rates

with effective population size; the net rates of diversification from phylogenetic trees [55–57]

indicate smaller populations speciate more quickly, as well from inferred times for post-zygotic

isolation to arise [58–60], where for example mammals and cichlids, which have effective pop-

ulation sizes of order 104 [61– 64], develop reproductive isolation more quickly than birds,

which have effective populations sizes of order 106 [65]. This model and the similar results

obtained for transcription factor DNA binding [26, 27] provide a robust explanation of how

stabilising selection can give rise to this population size effect in speciation, which do not

require passing through fitness valleys as do models based on the founder effect [66–69].

Universal phenomenon? Interplay between sequence entropy and

specificity of fit phenotypes

However, the results for this genotype-phenotype map for developmental system drift are par-

ticularly noteworthy compared to the previous results on transcription factor DNA binding, as

they are obtained without directly selecting for high affinity, low sequence entropy, binding

phenotypes; here we only select on the organismal spatial patterning phenotype, but nonethe-

less we find small populations develop hybrid incompatibilities more quickly through a similar

mechanism of the interplay between fitness, sequence entropy and populations size. Although

studies with more complex genotype-phenotype maps will be required, we suggest this points

towards a broad principle, where the specificity required of a phenotype to be functional and

of high fitness will mean that it will be coded by fewer genotypes. For example, in simple

models of protein stability, the empirical observation that all proteins tend to be marginally

stable, can be explained by the fact that as the stability of a protein is increased the number of

sequences that give that stability decreases rapidly [19]; assuming high fitness corresponds to

maximum stability, this phenotype is highly specified, as only a few sequences will meet the

requirement that all inter-chain interactions in the protein are favourable.

Molecular phenotypes under weakest selection dominate DMIs at larger

population sizes

Another property that emerges from this model not obtainable by simply modelling transcrip-

tion factor DNA binding is that certain molecular phenotypes are more important than others

in giving rise to incompatibilities. One particular feature of this model is that the selective con-

straints on the different molecular binding energy phenotypes emerge through the evolution-

ary process of stabilising selection on the organismal phenotype, and are not specified by the

model. Most strikingly, and counterintuitively, the model predicts that molecular phenotypes
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that are under the weakest selective constraints (but not strictly neutral) dominate by giving

rise to the earliest incompatibilities for intermediate and large population sizes. Remarkably,

here this emerges as a consequence of stabilising selection on the organismal phenotype and

not due to selection imposed for good binding affinity as in previous works [27].

We note that these results have been obtained by changing the population size whilst keeping

the strength of selection on the organismal trait κF fixed. It would be tempting to use these

results to suggest that overall those traits in a genome under weakest selection would give rise to

the earliest incompatibilities and hence dominate allopatric speciation. However, the question

of the how the dynamics of hybrid incompatibilities changes as the strength of selection changes

is a subtle one, which we leave to future work; in this model a reduction in κF has the effect of

changing the phenotypic regions of incompatibility, with non-trivial consequences. It should

also be noted, the role of sequence entropy in giving a strong population size dependence to the

rate of reproductive isolation; if we consider only a peaked phenotypic landscape without a

sequence entropy bias, a reduction in population size would only lead to a broadening of the

phenotypic distribution and not a change in the mean of the distribution, and so a much weaker

effect, as the common ancestor will still be typically far from incompatible regions. On the other

hand with strong (exponential) degeneracy biases, the mean phenotype of the common ancestor

changes strongly giving the large population size effect seen, which is as demonstrated in Fig 2.

Biophysics dominates combinatorics: Pair-wise incompatibilities dominate

reproductive isolation

Another finding of significance is that pair-wise or 2-way DMIs dominate compared with

higher order DMIs (3- and 4-way in this model with 4 loci). This is in contrast to Orr’s theoret-

ical argument that predicts a very specific ratio of 2-way: 3-way: 4-way DMIs, equal to 12: 24:

14, which assumes that the fraction of viable paths from the common ancestor to the current

day species increases as we consider higher order DMIs [5]. This argument partly rests on the

assumption that the number of inviable genotypes remains fixed as a larger number of loci are

considered, which would seem a very strong assumption. Despite its simplicity, the genotype-

phenotype map in this paper has many of the key features required for higher levels of epistasis,

with protein-DNA binding, protein-protein binding and control of the morphogen steepness,

all interacting in a non-linear fashion to produce a single gene expression patterning phenotype

and so there is clearly the potential for the Orr prediction to be verified; in contrast, we find the

converse and our results show there is no bias towards 3-way DMIs, in fact showing instead

that the ratio of 2-way to 3-way DMIs is at short times many orders of magnitude larger. This

suggests, in this simple, but still relatively complex model, that biophysical constraints are far

more important than a purely combinatorial argument would suggest. Evidence could be

obtained from more detailed studies similar to [6, 70], where a power law with an exponent

greater than 2 would indicate higher-order DMIs are dominant; currently this evidence sug-

gests a quadratic growth law, however, a study with more time-points or species-pairs would

provide more confidence. An alternative approach would be to look for linkage disequilibrium

between unlinked regions of hybrid genomes, such as was found with hybrids of two species of

swordtail fish [71], and though computationally challenging and requiring large numbers of

parallel datasets, compare this against evidence for pervasiveness of higher order epistasis.

Although recent results of [72], would seem to contradict our conclusions, their finding of

extensive complex epistasis relates to higher order interactions between sites within a single

locus, coding for protein stability or enzymatic activity, whereas our work relates to epistasis

between multiple loci. Similarly, the results of hybrid incompatibilities within RNA molecules

[73], which show a ‘spiralling complexity’ of DMIs would appear to be of limited biological
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relevance to allopatric speciation in higher organisms, as these are related to epistasis within a

single locus, which are unlikely to segregate into different recombinants in a hybrid.

Symmetry breaking at large population sizes

Finally, for small populations we find clustering in the behaviours of growth of different types

of DMIs, in particular, 3-way DMIs (S1 Text), which can be explained by the different

sequence entropy constraints on different molecular phenotypes. This degeneracy is then lifted

at larger population sizes and each n-way DMI takes on a different identity in their pattern of

growth; this has strong analogy to physical phenomenon in statistical physics where con-

straints of symmetry dominate at large temperatures, in a regime where noise is important,

but at smaller temperatures this symmetry is broken.

Future directions

A clear future direction to investigate would be the effect of multiple transcription factors

binding to enhancer regions to control gene expression [74–76] in large gene networks, where

there is potential scope for complex epistasis across many loci coding for a large number of

transcription factors. However, as our results show, despite the possibility and a prior expecta-

tion of a larger number of triplet interactions, pair-wise interactions dominate; for complex

transcriptional control, if pair-wise interactions between proteins, and proteins and DNA

dominate, for example in determining the binding affinity of transcriptional complexes, then

our conclusions would hold. As we broaden the scope to large gene regulatory networks, there

is no strong and direct empirical evidence for pervasive higher order epistasis in their function,

which could give rise to higher order incompatibilities being dominant [77]. Specifically,

although there is evidence that higher order incompatibilities have arisen in natural popula-

tions [78–81], nonetheless a survey of these findings suggest there is no evidence for their

dominance [81] as would be predicted by Orr and would be consistent with our findings that

point towards biophysics providing a stronger constraint.

Conclusions

Overall, our results point to a basic principle, where developmental system drift or cryptic

variation [7, 10, 11, 43], play a key role in speciation; basic body plans or phenotypes are con-

served, but co-evolution of the components and loci of complicated gene regulatory networks

can change differently in different lineages, giving incompatibilities that grow in allopatry.

Here, we suggest a universal mechanism, where the rate of growth of incompatibilities is con-

trolled by the drift load, or distribution of phenotypic values, of the common ancestor, which

in turn is determined by a balance between selection pushing populations towards phenotypes

of higher fitness and genetic drift pushing them towards phenotypes that are more numerous

(higher sequence entropy); this basic mechanism would predict in general that traits under

weaker selection will dominant the initial development of reproductive isolation. In particular,

although in principle more complicated regulation could give rise to more complex patterns of

epistasis [5], our findings suggest that more simple, pair-wise, incompatibilities dominate the

development of reproductive isolation between allopatric lineages under stabilising selection.

Methods

Details of the GP map

We model the binding energies of proteins to DNA using the “two-state” approximation [51,

52], which assumes that the binding energy of each amino acid-nucleotide interaction at the
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binding interface is additive and to a good approximation controlled by the number of mis-

matches, which each have the same penalty in binding affinity. The various protein-DNA

binding energies in the main text are then given by the Hamming distance between the respec-

tive sequences. We assume these energies E are measured relative the background free energy

of specific and non-specific binding all other sites in the genome, such that the probability of a

given transcription factor being bound to a single site is p = 1/(1+e(E−μ)/kBT), where μ is the

chemical potential (�log(concentration)) of the TF [17, 26, 82]. For example, the binding

energy between the morphogen (M) and the first binding site (B) is given by

EMB ¼ �pd rðgm; gBÞ ð3Þ

where ρ(gm, gB) is the Hamming distance between the protein binding sequence (gm) for the

morphogen and the sequence for a first regulatory binding site (gB), where �pd is the cost in

energy for each mismatch. We assume �pd = 2kBT as a typical value for the mis-match energy,

which are found to be in the range 1−3kBT [51, 52]. Similarly the co-operative protein-protein

binding energy, for example between RNAP and the morphogen is ~ERM is

~ERM ¼ �ppð‘pp � rðgR; �gMÞÞ ð4Þ

where gR is the sequence involved in protein-protein interactions for the polymerase, and �gM

represents the equivalent binary sequence for the morphogen, flipped about its centre, which

mimics the chirality of real proteins and prevents the co-operative stability from always being

maximum for homo-dimers. The parameter �pp is the stability added for each favourable

hydrophobic interaction between amino acids, which we assume to be �pp = −kBT. Given ℓpp =

5 this gives interactions consistent with typical literature values of −2 to −7kBT for hydropho-

bic interactions between proteins [28, 83].

The morphogen concentration profile is approximately exponential; the exact profile we

use is

½M�ðxÞ ¼ ½M0�
coshðaðx � LÞÞ

sinhðaLÞ
ð5Þ

where this arises from solving the reaction-diffusion equation with reflecting boundary condi-

tions and is valid for all α.

Probability of RNAP being bound to promoter

To calculate this probability, we use the canonical ensemble of statistical mechanics, for which

the partition function Z is most simply expressed in terms of a spin-like variable, which repre-

sents the occupation of each binding site, sj ¼ f0;R;Mg,

Z ¼
X

sP

X

sB

e� ðEsPPþEsBB � msP � msBþ
~EsPsB Þ=kBT

with E0j ¼ 0, ~Eii0 ¼ 0, for either i = 0 or i0 = 0 and μ0 = 0, where msj
¼ kBT ln ½sj� represents the

chemical potentials of the protein species at the jth binding site with [σj] being the concentra-

tion of species σj and 0 represents a free binding site. Formally this construction is known as a

3−state Pott’s model. So given a ‘genome’ G = [gR, gr, gM, gm gP, gB] from which the protein-

DNA and protein-protein binding energies are calculated (Eij and ~Eii0 , respectively), pRP is

given schematically by

pRP ¼ pðsB � R ↱Þ ¼
1

Z
ðð0 � R ↱Þ þ ðM � R ↱Þ þ ðR � R ↱ÞÞ ð6Þ
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where, for example,

ðM � R↱Þ � e� ðERPþEMB � mR � mMþ~ERMÞ=kBT

is the Boltzmann factor for co-operative binding of the morphogen and RNAP to R. Note that

we ignore in the partition sum protein-protein binding when not bound to DNA, since these

co-operative binding energies tend to be relatively weak compared to DNA binding.

Monte Carlo scheme for speciation simulations

We use a kinetic Monte Carlo scheme to simulate the evolutionary process for the genome G
and α on two independent lineages, assuming a fixed effective population size of N, and that

we are in the regime of small effective population size (ℓG μ0N� 1, where μ0 is the base-pair

mutation rate). This means the population is represented by a single fixed sequence (or num-

ber for α) for all of the loci at each time-point, where effectively mutations are either instantly

fixed or eliminated. Specifically, we use the Gillespie algorithm [84], to simulate evolution as a

continuous time Markov process; at each step of the simulation the rate of fixation of all one-

step mutations from the currently fixed alleles (wild type) is calculated, and one of these muta-

tions is selected randomly in proportion to their relative rate. Time is then progressed by K−1

ln(u), where K is the sum of the rates of all one-step mutants and u is a random number drawn

independently between 0 and 1, which ensures the times at which substitutions occur is Pois-

son distributed, as we would be expected for a random substitution process. The rates are

based upon the Kimura probability of fixation [85]:

k ¼ m0N
1 � e� 2dF

1 � e� 2NdF
� m0

2NdF
1 � e� 2NdF

; ð7Þ

where δF is the change of fitness of a mutation at a particular location, given by fitness function

defined in the main text, and μ0N is the rate at which mutations arise in the population; the lat-

ter approximation in Eq 7 assumes δF� 1. Note that although in the simulations we use the

full form for the fixation probability, fitness effects are typically small (δF� 1) in the simula-

tions, so the substitution rates only depend on the population-scaled fitness changes 2NδF
which, for a given mutation, is proportional to 2NκF. Finally, we allow continuous ‘mutations’

in the morphogen steepness parameter α, chosen from a Gaussian distribution of standard

deviation δα = 0.5 and assign it an 10 effective base-pairs, which are used when assigning rela-

tive weight in the kinetic Monte Carlo scheme, where the total number of base-pairs is ℓG = 60.

We determine the Malthusian or log fitness of the spatial gene regulation, from the resulting

concentration profile [TF](x) by use of a functional that promotes expression of the TF in the

anterior half, whilst penalising expression in the posterior half, with truncation selection below

a critical value F�:

F ¼

(
kF ln ðWÞ if kF ln ðWÞ > F�

� 1 if kF ln ðWÞ < F�
ð8Þ

where,

W½½TF�ðxÞ� ¼

R L=2

0
½TF�ðxÞdx �

R L
L=2
½TF�ðxÞdx

L
2
max xf½TF�ðxÞg

: ð9Þ

where we use a value of F� = −1.6 × 10−3, which corresponds a value of W � 0:2, when κF =

10−3. Strictly, an inviability on a lineage or a hybrid should correspond to W ¼ 0 or F� = −1,
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however, these values were chosen to so that a reasonable number of incompatibilities arise in

a simulation; for comparison the typical maximum of the integral W � 0:6. In this paper, we

explore how the changing the population scaled strength of selection (2NκF) affects the rate of

reproductive isolation, by keeping κF fixed and varying N accordingly. Note that although here

the exact form of the fitness is slightly different to the one used in [17], the qualitative behav-

iour is the same (S1 Text).

The speciation simulations consist of two replicate simulations starting with the same com-

mon ancestor and with the same fitness function. We draw the common ancestor from the

equilibrium distribution for G and α. To do this we start from a random initial genome, and

run one long simulation for 100,000 substitutions for a fixed scaled population size 2NκF, in

order to effectively equilibrate the system (typically 10,000 substitutions are required to adapt

to an ensemble of fit states). This represents a reference equilibrium state; different random

draws from the equilibrium distribution then consist of running the simulation for a further

100 substitutions.

Decomposing DMIs

Given a pattern of hybrid incompatibilities, for example, as shown in Fig 4, if there is a 2-way

DMI (e.g. between C and α loci, which we denote ICa), then all four hybrid-genotypes contain-

ing this DMI (e.g. RMCa, RmCa, rMCa, rmCa) are inviable; these genotypes define a two-

dimensional subspace (or face) of the hypercube. Similarly, the points (e.g. rmcA, RmcA,

which we denote ImcA) containing a 3-way DMI form a one-dimensional subspace (or line),

while a 4-way DMI takes up only a single point in the four-dimensional hypercube. These dif-

ferent 2-way, 3-way and 4-way DMIs are the fundamental incompatibility types which we seek

to explain the pattern of hybrid inviable genotypes observed, for example, as in Fig 4a.

However, this decomposition is hugely underdetermined, as there are only 24 − 2 = 14 possi-

ble hybrids (not including the well-adapted genotypes of line 1 and line 2) and a total of Imax =

3L + 1 − 2L+1 = 50, different fundamental incompatibilities, for L = 4 loci. This arises as the total

number of n−point DMIs is ð2n � 2Þ L
n

� �
, as there are L

n

� �
combinations ofN loci amongst L

total loci and then considering a binary choice of alleles across both lines, there are a total of 2n

allelic combinations or states, 2 of which are the fit allelic combinations where all alleles come

from one lineage or the other giving 2n − 2. For example, between each pair of loci there are

22 − 2 = 2 mismatching combinations of alleles (e.g. rM and Rm) that could give DMIs and
L
2

� �
¼ LðL � 1Þ=2 ¼ 6 pairwise interactions. A similar argument would give a total of 24 3-way

DMIs as there are 23 − 2 = 6 mismatching combinations of alleles at 3 loci (e.g., excluding rmc
and RMC) and L

3

� �
¼ 4 3-way interactions and similarly, 14 L

4

� �
¼ 14 for 4-way interactions. In

total, the max number of DMIs is Imax ¼
PL

n¼2
ð2n � 2Þ L

n

� �
¼ 3L þ 1 � 2Lþ1, which for L = 4

loci is Imax = 50.

The approach we take is to find only those combinations of fundamental DMIs that have

the smallest total number that can explain the pattern of hybrid incompatibilities, which from

a Bayesian perspective would have the smallest Occam factors [86]; for instance, as shown in

Fig 4b the list of 6 incompatible hybrid genotypes rmCa, rMCa,RmCa,RMCa,Rmca,RMca,

shown by red crosses, can be explained most parsimoniously by three different minimal com-

binations of fundamental DMIs, each with only 2 DMIs (see main text).
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49. Mustonen V, Lässig M. Evolutionary population genetics of promoters: predicting binding sites and func-

tional phylogenies. Proceedings of the National Academy of Sciences of the United States of America.

2005; 102(44):15936–15941. https://doi.org/10.1073/pnas.0505537102 PMID: 16236723

50. Haldane A, Manhart M, Morozov AV. Biophysical fitness landscapes for transcription factor binding

sites. PLoS computational biology. 2014; 10(7):e1003683. https://doi.org/10.1371/journal.pcbi.

1003683 PMID: 25010228

51. von Hippel PH, Berg OG. On the specificity of DNA-protein interactions. Proc Natl Acad Sci U S A.

1986; 83(6):1608–1612. https://doi.org/10.1073/pnas.83.6.1608 PMID: 3456604

52. Gerland U, Moroz JD, Hwa T. Physical constraints and functional characteristics of transcription factor-

DNA interaction. Proc Natl Acad Sci U S A. 2002; 99(19):12015–12020. https://doi.org/10.1073/pnas.

192693599 PMID: 12218191

53. Iwasa Y. Free fitness that always increases in evolution. Journal of Theoretical Biology. 1988; 135

(3):265—281. https://doi.org/10.1016/S0022-5193(88)80243-1 PMID: 3256719

54. Tulchinsky AY, Johnson NA, Watt WB, Porter AH. Hybrid incompatibility arises in a sequence-based

bioenergetic model of transcription factor binding. Genetics. 2014; 198(3):1155–1166. https://doi.org/

10.1534/genetics.114.168112 PMID: 25173845

55. Coyne JA, Orr HA. The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci. 1998;

353(1366):287–305. https://doi.org/10.1098/rstb.1998.0210 PMID: 9533126

56. Barraclough TG, Nee S. Phylogenetics and speciation. Trends in Ecology & Evolution. 2001; 16

(7):391–399. https://doi.org/10.1016/S0169-5347(01)02161-9

57. Nee S. Inferring speciation rates from phylogenies. Evolution. 2001; 55(4):661–668. https://doi.org/10.

1554/0014-3820(2001)055%5B0661:ISRFP%5D2.0.CO;2 PMID: 11392383

58. Fitzpatrick BM. Rates of evolution of hybrid inviability in birds and mammals. Evolution. 2004; 58

(8):1865–1870. https://doi.org/10.1554/04-190 PMID: 15446440

59. Stelkens RB, Young KA, Seehausen O. The accumulation of reproductive incompatibilities in African

cichlid fish. Evolution. 2010; 64(3):617–633. https://doi.org/10.1111/j.1558-5646.2009.00849.x PMID:

19796149

60. Cooper A, Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evi-

dence. Science. 1997; 275(5303):1109–1113. https://doi.org/10.1126/science.275.5303.1109 PMID:

9027308

61. Van Oppen MH, Turner G, Rico C, Deutsch J, Ibrahim K, Robinson R, et al. Unusually fine–scale

genetic structuring found in rapidly speciating Malawi cichlid fishes. Proceedings of the Royal Society of

London B: Biological Sciences. 1997; 264(1389):1803–1812. https://doi.org/10.1098/rspb.1997.0248

Biophysics and population size constrains speciation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007177 July 23, 2019 22 / 24

https://doi.org/10.1038/ng.77
http://www.ncbi.nlm.nih.gov/pubmed/18278046
https://doi.org/10.1126/science.282.5393.1501
http://www.ncbi.nlm.nih.gov/pubmed/9822383
https://doi.org/10.1126/science.1133953
https://doi.org/10.1126/science.1133953
http://www.ncbi.nlm.nih.gov/pubmed/17124320
https://doi.org/10.1126/science.1181756
http://www.ncbi.nlm.nih.gov/pubmed/19933102
https://doi.org/10.1073/pnas.1608337113
https://doi.org/10.1016/j.tig.2016.11.003
https://doi.org/10.1016/j.tig.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27914620
https://doi.org/10.1002/ece3.573
https://doi.org/10.1002/ece3.573
http://www.ncbi.nlm.nih.gov/pubmed/23789069
http://www.ncbi.nlm.nih.gov/pubmed/17246615
https://doi.org/10.2307/3211856
https://doi.org/10.1073/pnas.0505537102
http://www.ncbi.nlm.nih.gov/pubmed/16236723
https://doi.org/10.1371/journal.pcbi.1003683
https://doi.org/10.1371/journal.pcbi.1003683
http://www.ncbi.nlm.nih.gov/pubmed/25010228
https://doi.org/10.1073/pnas.83.6.1608
http://www.ncbi.nlm.nih.gov/pubmed/3456604
https://doi.org/10.1073/pnas.192693599
https://doi.org/10.1073/pnas.192693599
http://www.ncbi.nlm.nih.gov/pubmed/12218191
https://doi.org/10.1016/S0022-5193(88)80243-1
http://www.ncbi.nlm.nih.gov/pubmed/3256719
https://doi.org/10.1534/genetics.114.168112
https://doi.org/10.1534/genetics.114.168112
http://www.ncbi.nlm.nih.gov/pubmed/25173845
https://doi.org/10.1098/rstb.1998.0210
http://www.ncbi.nlm.nih.gov/pubmed/9533126
https://doi.org/10.1016/S0169-5347(01)02161-9
https://doi.org/10.1554/0014-3820(2001)055%5B0661:ISRFP%5D2.0.CO;2
https://doi.org/10.1554/0014-3820(2001)055%5B0661:ISRFP%5D2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/11392383
https://doi.org/10.1554/04-190
http://www.ncbi.nlm.nih.gov/pubmed/15446440
https://doi.org/10.1111/j.1558-5646.2009.00849.x
http://www.ncbi.nlm.nih.gov/pubmed/19796149
https://doi.org/10.1126/science.275.5303.1109
http://www.ncbi.nlm.nih.gov/pubmed/9027308
https://doi.org/10.1098/rspb.1997.0248
https://doi.org/10.1371/journal.pcbi.1007177


62. Fiumera A, Parker P, Fuerst P. Effective population size and maintenance of genetic diversity in cap-

tive-bred populations of a lake Victoria cichlid. Conservation Biology. 2000; 14(3):886–892. https://doi.

org/10.1046/j.1523-1739.2000.97337.x

63. Jorde LB, Bamshad M, Rogers AR. Using mitochondrial and nuclear DNA markers to reconstruct

human evolution. Bioessays. 1998; 20(2):126–136. https://doi.org/10.1002/(SICI)1521-1878(199802)

20:2<126::AID-BIES5>3.0.CO;2-R PMID: 9631658

64. Gattepaille L, Günther T, Jakobsson M. Inferring past effective population size from distributions of coa-

lescent times. Genetics. 2016; 204(3):1191–1206. https://doi.org/10.1534/genetics.115.185058 PMID:

27638421

65. Sawai H, Kim HL, Kuno K, Suzuki S, Gotoh H, Takada M, et al. The origin and genetic variation of

domestic chickens with special reference to junglefowls Gallus g. gallus and G. varius. PloS one. 2010;

5(5):e10639. https://doi.org/10.1371/journal.pone.0010639 PMID: 20502703

66. Lande R. Effective deme sizes during long-term evolution estimated from rates of chromosomal rear-

rangement. Evolution. 1979; 33(1Part1):234–251. https://doi.org/10.1111/j.1558-5646.1979.tb04678.x

PMID: 28568063

67. Lande R. Expected time for random genetic drift of a population between stable phenotypic states. Proc

Natl Acad Sci U S A. 1985; 82(22):7641–7645. https://doi.org/10.1073/pnas.82.22.7641 PMID:

3865184

68. Barton NH, Charlesworth B. Genetic Revolutions, Founder Effects, and Speciation. Annual Review of

Ecology and Systematics. 1984; 15(1):133–164. https://doi.org/10.1146/annurev.es.15.110184.

001025

69. Barton N, Rouhani S. The frequency of shifts between alternative equilibria. Journal of theoretical biol-

ogy. 1987; 125(4):397–418. https://doi.org/10.1016/S0022-5193(87)80210-2 PMID: 3657219

70. Moyle LC, Nakazato T. Hybrid incompatibility “snowballs” between Solanum species. Science. 2010;

329(5998):1521–1523. https://doi.org/10.1126/science.1193063

71. Schumer M, Cui R, Powell DL, Dresner R, Rosenthal GG, Andolfatto P. High-resolution mapping

reveals hundreds of genetic incompatibilities in hybridizing fish species. Elife. 2014; 3:e02535. https://

doi.org/10.7554/eLife.02535

72. Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. Should evolutionary geneticists worry about higher-

order epistasis? Current opinion in genetics & development. 2013; 23(6):700–707.

73. Kalirad A, Azevedo RB. Spiraling complexity: a test of the snowball effect in a computational model of

RNA folding. Genetics. 2017; 206(1):377–388. https://doi.org/10.1534/genetics.116.196030 PMID:

28007889

74. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, et al. Transcriptional regulation by the

numbers: models. Curr Opin Genet Dev. 2005; 15(2):116–124. https://doi.org/10.1016/j.gde.2005.02.

007 PMID: 15797194

75. Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nature

Reviews Genetics. 2012; 13(9):613–626. https://doi.org/10.1038/nrg3207 PMID: 22868264

76. Levo M, Segal E. In pursuit of design principles of regulatory sequences. Nature Reviews Genetics.

2014; 15(7):453–468. https://doi.org/10.1038/nrg3684 PMID: 24913666

77. Taylor MB, Ehrenreich IM. Higher-order genetic interactions and their contribution to complex traits.

Trends in genetics. 2015; 31(1):34–40. https://doi.org/10.1016/j.tig.2014.09.001 PMID: 25284288

78. Orr HA, Irving S. Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseu-

doobscura Bogota-USA hybridization. Genetics. 2001; 158(3):1089–1100. PMID: 11454758

79. Cabot EL, Davis AW, Johnson NA, Wu CI. Genetics of reproductive isolation in the Drosophila simulans

clade: complex epistasis underlying hybrid male sterility. Genetics. 1994; 137(1):175–189. PMID:

8056308

80. Palopoli MF, Wu CI. Genetics of hybrid male sterility between drosophila sibling species: a complex

web of epistasis is revealed in interspecific studies. Genetics. 1994; 138(2):329–341. PMID: 7828817

81. Fraïsse C, Elderfield J, Welch J. The genetics of speciation: are complex incompatibilities easier to

evolve? Journal of evolutionary biology. 2014; 27(4):688–699. https://doi.org/10.1111/jeb.12339
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