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Abstract Several enzymes can simultaneously interact with multiple intracellular metabolites,

however, how the allosteric effects of distinct ligands are integrated to coordinately control

enzymatic activity remains poorly understood. We addressed this question using, as a model

system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator

fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but

addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2

tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual

information derived from molecular dynamics trajectories to identify residues that mediate FBP-

induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which

activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues

involved in FBP-induced allostery that enable the integration of allosteric input from Phe and

provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric

inputs.

DOI: https://doi.org/10.7554/eLife.45068.001

Introduction
Allostery refers to the regulation of protein function resulting from the binding of an effector to a

site distal to the protein’s functional centre (the active site in the case of enzymes) and is a crucial

mechanism for the control of multiple physiological processes (Shen et al., 2016; Nussinov and

Tsai, 2013). The functional response of enzymes to allosteric ligands occurs on the ns - ms time

scale, preceding other important regulatory mechanisms such as changes in gene expression or sig-

nalling-induced post-translational modifications (PTMs) (Gerosa and Sauer, 2011), thereby enabling

fast cellular responses to various stimuli. Despite the demonstrated importance of protein allostery,

the investigation of underlying mechanisms remains a challenge for conventional structural

approaches and necessitates multi-disciplinary strategies. Latent allosteric pockets can emerge as a
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consequence of protein flexibility (Bowman and Geissler, 2012; Keedy et al., 2018) making their

identification elusive. Even for known allosteric pockets, an understanding of the molecular mecha-

nisms that underpin the propagation of free energy between an identified allosteric site and the

active site can be complicated because of the involvement of protein structural motions on a variety

of time scales (Motlagh et al., 2014). Furthermore, many proteins contain several allosteric pockets

and can simultaneously bind more than one ligand (Iturriaga-Vásquez et al., 2015;

Macpherson and Anastasiou, 2017; Sieghart, 2015). Concurrent binding of allosteric ligands can

modulate the functional response of a protein through the action of multiple allosteric

pathways (del Sol et al., 2009), however, it remains unclear whether such allosteric pathways oper-

ate independently, or integrate, either synergistically or antagonistically, to control protein function.

Altered allosteric regulation has a prominent role in the control of tumour metabolism, as well as

a number of other pathological processes (Nussinov and Tsai, 2013; Macpherson and Anastasiou,

2017; DeLaBarre et al., 2014). Changes in glycolysis observed in some tumours have been linked

to aberrant allosteric regulation of glycolytic enzymes including phosphofructokinase, triose phos-

phate isomerase and pyruvate kinase. Pyruvate kinases (PKs) catalyse the transfer of a phosphate

from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) and produce pyruvate and adeno-

sine triphosphate (ATP). There are four mammalian isoforms of pyruvate kinase: PKM1, PKM2, PKL

and PKR. PKM2 is highly expressed in tumour cells and in many proliferative tissues, and has critical

roles in cancer metabolism that remain under intense investigation (Allen and Locasale, 2018;

Anastasiou et al., 2011; Christofk et al., 2008a; Dayton et al., 2016), as well as in controlling sys-

temic metabolic homeostasis and inflammation (Palsson-McDermott et al., 2015; Xie et al., 2016;

Qi et al., 2017).

In contrast to the highly homologous alternatively spliced variant PKM1, which is thought to be

constitutively active, PKM2 activity in cancer cells is maintained at a low level by the action of various

allosteric ligands or post-translational modifications (PTMs) (Chaneton and Gottlieb, 2012). Low

PKM2 activity promotes pro-tumorigenic functions, including divergence of glucose carbons into

biosynthetic and redox-regulating pathways that support proliferation and defence against oxidative

stress (Anastasiou et al., 2011; Christofk et al., 2008a; Anastasiou et al., 2012; Lunt et al., 2015).

Small-molecule activators, which render PKM2 constitutively active by overcoming endogenous

inhibitory cues, attenuate tumour growth, suggesting that regulation of PKM2 activity, rather than

increased PKM2 expression per se, is important (Anastasiou et al., 2011; Anastasiou et al., 2012;

Wang et al., 2017a; Kim et al., 2015). Therefore, PKM2 has emerged as a prototypical metabolic

enzyme target for allosteric modulators and this has contributed to the renewed impetus to develop

allosteric drugs for metabolic enzymes, which are expected to specifically interfere with cancer cell

metabolism while sparing normal tissues (DeLaBarre et al., 2014).

The structure of the PKM2 protomer comprises N-terminal, A, B and C domains (Figure 1). Vari-

ous ligands that regulate PKM2 activity bind to sites distal from the catalytic core, nestled between

the A and B domains. The upstream glycolytic intermediate fructose 1,6-bisphosphate (FBP) binds to

a pocket in the C-domain (Dombrauckas et al., 2005) and increases the enzymatic activity of PKM2,

thereby establishing a feed-forward loop that prepares lower glycolysis for increased levels of incom-

ing glucose carbons. Activation of PKM2 by FBP is associated with a decreased KM for the substrate

PEP (KM
PEP), while the kcat remains unchanged (Chaneton et al., 2012; Boxer et al., 2010;

Jiang et al., 2010; Yacovan et al., 2012), although some reports also find an elevated

kcat (Morgan et al., 2013; Akhtar et al., 2009) and the reason for this discrepancy remains

unknown. Additionally, several amino acids regulate PKM2 activity by binding to a pocket in the A

domain TIM-barrel core (Chaneton et al., 2012; Yuan et al., 2018; Eigenbrodt et al., 1983). L-ser-

ine (Ser) and L-histidine (His) increase, whereas L-phenylalanine (Phe), L-alanine (Ala), L-tryptophan

(Trp), L-valine (Val) and L-proline (Pro) decrease KM
PEP. Similar to FBP, the reported effects on kcat

vary (Chaneton et al., 2012; Morgan et al., 2013; Yuan et al., 2018; Gosalvez et al., 1975). Fur-

thermore, succinyl-5-aminoimidazole-4-carboxamide-1-ribose 50-phosphate (SAICAR) (Keller et al.,

2012) and the triiodothyronine (T3) hormone (Morgan et al., 2013) bind to unidentified PKM2 pock-

ets to increase and decrease, respectively, the affinity for PEP.

Many of these allosteric effectors have been shown to regulate PKM2 activity by changing the

equilibrium of PKM2 between one of three states – a low activity monomer, a low activity tetramer

(T-state), and a high activity tetramer (R-state) – with some studies reporting the existence of low

activity dimers (Dombrauckas et al., 2005; Morgan et al., 2013; Gavriilidou et al., 2018;
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Figure 1. Overview of PKM2 structure and allosteric ligand binding sites. (A) Domain structure of PKM2 monomer (PDBID: 3BJT) depicting orthosteric

and allosteric sites discussed in this work. (B) Published crystal structures of PKM2 bound to FBP, Phe or Ser (PDBID shown in parentheses). (C) Phe and

Ser bind to the same pocket in PKM2. Close-up view of the Phe (top) and Ser (bottom) binding pockets with key contact residues [Asn(N)44, Thr(T)45,

Asn(N)70, Arg(R)106, His(H)464] shown in stick configuration. Dashed lines indicate hydrogen bonds between PKM2 residues and Phe or Ser.

Figure 1 continued on next page
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Yan et al., 2016; Ashizawa et al., 1991a; Hofmann et al., 1975; Mazurek, 2011). FBP promotes,

whereas T3 prevents, tetramerisation (Dombrauckas et al., 2005; Morgan et al., 2013; Kato et al.,

1989). The mode of PKM2 regulation by amino acids is unclear. Some reports suggest that Ala pro-

motes the formation of inactive PKM2 dimers (Hofmann et al., 1975; Felı́u and Sols, 1976), whereas

others show that Phe, Ala and Trp stabilise the T-state tetramer (Morgan et al., 2013; Yuan et al.,

2018). In addition to allosteric effectors, PTMs can also influence the oligomerisation of PKM2 proto-

mers, although the effects of PTMs on the enzyme mechanism remain elusive. Nevertheless, cellular

PKM2 activity is often inferred from the oligomeric state PKM2 is found to adopt (Anastasiou et al.,

2012; Wang et al., 2017a; Wang et al., 2017b; Lim et al., 2016; Hitosugi et al., 2009; Lv et al.,

2013; Christofk et al., 2008b). Collectively, current evidence suggests that a link between enzyme

activity and oligomerisation state exists and, while not well understood, it may play a role in PKM2

regulation.

In vitro, PKM2 can bind concurrently to multiple allosteric effectors that might either reciprocally

influence each other’s action or exert independent effects on enzymatic activity. A PKM2 mutant

that cannot bind FBP can still be activated by Ser and, conversely, a mutant that abolishes Ser bind-

ing can be activated by FBP (Chaneton et al., 2012), suggesting that amino acids could work inde-

pendently from FBP to regulate PKM2. However, inhibitory amino acids that bind to the same

pocket as Ser fail to inhibit the enzyme in the presence of FBP indicating a dominant influence of the

latter (Yuan et al., 2018; Sparmann et al., 1973). Similarly, FBP can overcome PKM2 inhibition by

T3 (Kato et al., 1989). FBP has also been shown to attenuate, but not completely prevent, inhibition

of PKM2 by Ala (Ashizawa et al., 1991b). Together, these observations highlight PKM2 as a suitable

model system to study how inputs from multiple allosteric cues are integrated to regulate enzymatic

activity. Such insights may also have implications for metabolic regulation in vivo. Nevertheless, it

remains unclear whether simultaneous binding of PKM2 to more than one ligands is functionally rele-

vant in cells, because little is known about the intracellular concentrations of allosteric effectors rela-

tive to their binding affinities for PKM2.

Here, we first measure intracellular concentrations of key allosteric regulators and their respective

affinities for PKM2, and provide evidence that, in cells, PKM2 is saturated with FBP. We then show

that FBP binding in vitro alters the outcome of Phe binding on PKM2 oligomerisation and activity

compared to apo-PKM2. Using a novel computational framework to predict residues implicated in

allosteric signal transmission from molecular dynamics (MD) simulations, we identify a network of

PKM2 residues that mediates allosteric activation by FBP. Intriguingly, mutagenesis of some of these

residues interferes with the ability of Phe to hinder PKM2 regulation by FBP but does not perturb

FBP–induced activation itself. These residues, therefore, integrate inputs from Phe in FBP-bound

PKM2 and underlie the functional synergism between ligands that bind to distinct pockets in regulat-

ing PKM2 activity.

Results

Simultaneous binding of multiple ligands to PKM2 is relevant for its
regulation in cells
To explore whether simultaneous binding of FBP and amino acids is likely to occur and therefore to

be relevant for the regulation of PKM2 in cells, we assessed the fractional saturation of PKM2 bound

to FBP, Phe and Ser, in proliferating cancer cells (Figure 2). To this end, we first measured the affin-

ity of PKM2 for FBP, Phe and Ser in vitro, using fluorescence emission spectroscopy and microscale

thermophoresis. Similar to previous reports (Christofk et al., 2008a; Gavriilidou et al., 2018) we

found that purified recombinant PKM2 remained bound to FBP, to varying degrees (Figure 2—fig-

ure supplement 1), despite extensive dialysis, suggesting a high binding affinity. We, henceforth,

used PKM2 preparations with <25% molar stoichiometry of residual FBP to PKM2 and refer to these

preparations with no added ligands as PKM2apo*.

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.45068.002
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Figure 2. PKM2 allosteric effector concentrations in cells predict saturating binding of FBP and sub-saturating binding of Phe and Ser. (A) Intracellular

concentrations of FBP ([FBP]ic) measured using liquid-chromatography mass spectrometry (LC-MS), from HCT116 (colorectal carcinoma), LN229

(glioblastoma) and SN12C (renal cell carcinoma) cells cultured in RPMI media containing 11 mM glucose (Gluc+), or 0 mM (Gluc–) for 1 hr. Statistical

significance was assessed using a Wilcoxon rank-sum test. Asterisk (*) marks significant changes (p-value<0.05). (B) Phase diagram for intracellular FBP

Figure 2 continued on next page
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The KD
FBP was (25.5 ± 148.1) nM, after accounting (see Materials and methods) for the amount of

co-purified FBP (Figure 2—figure supplement 2A,B). Owing to the high PKM2 concentration (5 mM)

used in the assay relative to the measured affinity (see Materials and methods for details), the error

in the estimated KD
FBP was substantial (Figure 2—figure supplement 2B). Nevertheless, the upper-

limit estimate for the KD
FBP from ten replicate binding experiments was 174 nM, supporting the idea

that FBP is a high-affinity ligand. The KD
Phe and KD

Ser were (191.0 ± 86.3) mM and (507.5 ± 218.2)

mM, respectively (Figure 2—figure supplement 3 and Table 1).

We next calculated the predicted fractional saturation range of PKM2 with FBP, Ser and Phe in

cells. To this end, we determined the intracellular concentration of PKM2, using targeted proteo-

mics, and the range of intracellular concentrations of FBP, Ser and Phe (denoted as [X]ic, where X is

the respective metabolite), using metabolomics, in three human cancer cell lines (see

Figure 2 continued

binding to PKM2 computed for a range of [FBP] and [PKM2] values using 174 nM as the upper-limit estimate of the KD
FBP, obtained as shown in

Figure 2—figure supplement 2. Colour scale represents fractional saturation of PKM2 with ligand. A fractional saturation of 0 indicates no FBP bound

to PKM2 and a fractional saturation equal to one indicates that each FBP binding site in the cellular pool of PKM2 would be occupied. Experimental

fractional saturation values were estimated from [FBP]ic obtained from (A) and [PKM2]ic was determined using targeted proteomics (see

Materials and methods and Supplementary file 1). The predicted fractional saturation for each of the three cell lines (four technical replicates) is shown

as shaded open circles in the phase diagram. (C) Intracellular concentrations of Phe ([Phe]ic) and Ser ([Ser]ic) measured as in (A), in HCT116, LN229 and

SN12C cells cultured in Hank’s Balanced Salt Solution (HBSS) without amino acids (aa-), HBSS containing 100 mM Phe and 500 mM Ser (F100 S500), or

HBSS containing 500 mM Phe and 100 mM Ser (F500 S100). The low concentrations of Phe and Ser are similar to human serum

concentrations (Tardito et al., 2015). [Phe]ic and [Ser]ic were not affected by extracellular glucose concentration (Figure 2—figure supplement 4A),

neither did extracellular Phe and Ser concentrations influence [FBP]ic (Figure 2—figure supplement 4B). Statistical significance was assessed as in (A).

(D) Phase diagram for Phe computed as in (B) using [Phe]ic from (C). (E) Phase diagram for Ser computed as in (B) using [Ser]ic from (C). (F) PKM2 activity

in lysates of HCT116 cells cultured in RPMI (Gluc+). Measurements were repeated following the addition of either 0.1, 0.5 or 1.0 mM of exogenous FBP.

Initial velocity curves were fitted using Michaelis-Menten kinetics and the absolute concentration of PKM2 in the lysates was estimated using

quantitative Western blotting (Figure 2—figure supplement 5B), to calculate PKM2 specific activity. (G) PKM2 activity in HCT116 cell lysates as in (F),

but with addition of exogenous Phe. (H) Plot of kcat/KM versus [Phe] from (G) revealing a dose-dependent inhibitory effect of Phe on the activity of

PKM2 in HCT116 lysates.

DOI: https://doi.org/10.7554/eLife.45068.003

The following figure supplements are available for figure 2:

Figure supplement 1. Detection of residual FBP in purified recombinant PKM2 preparations.

DOI: https://doi.org/10.7554/eLife.45068.004

Figure supplement 2. FBP binds to PKM2 with nM affinity.

DOI: https://doi.org/10.7554/eLife.45068.005

Figure supplement 3. Affinities of Phe and Ser for PKM2.

DOI: https://doi.org/10.7554/eLife.45068.006

Figure supplement 4. Acute (1 hr) modulation of glucose and Phe/Ser concentration in the media does not affect intracellular concentrations of Phe/

Ser or FBP, respectively.

DOI: https://doi.org/10.7554/eLife.45068.007

Figure supplement 5. PKM2 activity in cell lysates can be significantly modulated by exogenous amino acids but not by FBP.

DOI: https://doi.org/10.7554/eLife.45068.008

Table 1. Apparent steady-state binding constants of PKM2 for FBP, Phe and Ser.

Titrated ligand Constant ligand KD
apparent

FBP – (21.4 ± 9.0) nM

Ser (5 mM) (12.5 ± 7.7) nM

Phe (1.5 mM) (8.1 ± 5.6) nM

Phe – (191.0 ± 86.3) mM

FBP (50 mM) (132.0 ± 11.7) mM

Ser – (507.5 ± 218.2) mM

FBP (50 mM) (462.0 ± 97.1) mM

DOI: https://doi.org/10.7554/eLife.45068.009
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Materials and methods). In the presence of high (11 mM) extracellular glucose, [FBP]ic varied

between 240–360 mM across the three cell lines (Gluc+, Figure 2A and Table 2), a concentration

range between 1380- and 2070-fold in excess of its binding affinity upper-limit estimate to PKM2.

The calculated fractional saturation of PKM2 with FBP was 0.99 (Figure 2B) and remained

unchanged even in cells cultured in the absence of glucose (Gluc-), when [FBP]ic decreased to as low

as 20 mM. In the presence of near-physiological extracellular concentrations of Phe or Ser (Phe100 or

Ser100), [Phe]ic and [Ser]ic across the three lines ranged between 220–580 mM for Phe and 2000 -

6000 mM for Ser (Figure 2C and Table 2), close to their respective binding affinities for PKM2. The

predicted fractional saturation range was 0.53–0.75 and 0.81–0.92 for Phe and Ser, respectively

(Figure 2D,E). The range of predicted fractional saturations in complete absence of amino acids (-

aa) or 5x physiological concentrations was 0.05 (-aa) to 0.90 (Phe500) for Phe (Figure 2D) and 0.18 (-

aa) to 0.98 (Ser500) for Ser (Figure 2E). Under our experimental conditions, modulation of glucose

concentration in media did not affect the concentrations of Phe or Ser, and vice versa (Figure 2—fig-

ure supplement 4). Together, these calculations predict that, in a range of physiologically relevant

extracellular nutrient concentrations, FBP binding to PKM2 is near-saturating, whereas that of amino

acids is not.

Consistent with the prediction of near-saturating PKM2 occupancy by FBP, addition of exogenous

FBP to lysates of HCT116 cells cultured in both Gluc+ and Gluc- media caused little increase in

PKM2 activity (Figure 2F and Figure 2—figure supplement 5A,B). Addition of exogenous Phe (at

physiological intracellular concentrations) to HCT116 lysates resulted in inhibition of PKM2 activity

(Figure 2G) and a dose-dependent decrease in kcat/KM (Figure 2H). Addition of exogenous Ser to

HCT116 lysates reversed the inhibition of PKM2 activity by Phe, consistent with competitive binding

between Ser and Phe for the same PKM2 pocket (Yuan et al., 2018) (Figure 2—figure supplement

5B,C).

Together, these observations support the concept that, during steady-state cell proliferation

under typical culture conditions, a significant fraction of PKM2 is bound to FBP; they also suggest

that amino acids can reversibly bind to and regulate PKM2 activity predominantly in the background

of pre-bound FBP.

Phe inhibits FBP–bound PKM2 without causing PKM2 tetramer
dissociation
To investigate how allosteric ligands regulate PKM2, we measured their effects, first alone and then

in combination, on PKM2 enzyme activity and oligomerisation. FBP activated PKM2 in a dose-depen-

dent manner, with an apparent AC50 = (118.1 ± 19.0) nM (Figure 3A), consistent with the nM bind-

ing affinity estimate above. FBP decreased the KM
PEP to (0.23 ± 0.04) mM, compared to the absence

of any added ligands (PKM2apo*) [KM
PEP = (1.22 ± 0.02) mM] (Figure 3B and Table 3). Similarly, addi-

tion of Ser resulted in a decrease of the KM
PEP to (0.22 ± 0.04) mM, whereas Phe increased the KM

PEP

to (7.08 ± 1.58) mM. None of the three ligands changed the kcat. These results are consistent with

previous reports (Dombrauckas et al., 2005; Chaneton et al., 2012; Ikeda and Noguchi, 1998)

that FBP, Phe and Ser change the KM
PEP but not the kcat and therefore act as K-type

modulators (Reinhart, 2004) of PKM2.

In the presence of FBP, addition of Phe resulted in a decrease in the kcat of PKM2 from 349.3 s�1

to 222.3 s�1 (p=0.0075), and a simultaneous increase in the KM
PEP [(0.65 ± 0.03) mM] compared to

PKM2FBP (Figure 3B and Figure 3—figure supplement 1). Further analysis of the kinetic data

showed that in the absence of FBP, Phe acted as a hyperbolic-specific (Baici, 2015) inhibitor (Fig-

ure 3—figure supplement 2A), whereas, with FBP, Phe inhibition of PKM2 changed to a hyperbolic-

mixed (Baici, 2015) mechanism (Figure 3—figure supplement 2B). In contrast, Ser caused no

changes to either the KM
PEP or kcat in the presence of FBP (Figure 3B). Given that Phe and Ser bind

to the same pocket (Yuan et al., 2018), we focused on Phe as an amino acid modulator of PKM2 for

further investigations into the functional interaction between the amino acid and FBP binding

pockets.

To explore the possibility that Phe modifies FBP binding and vice versa, we measured the binding

affinities of each ligand alone, or in the presence of the other. Phe caused a small but not statistically

significant (p=0.150) increase in the binding affinity of FBP (KD
FBP) (Figure 3C), and, conversely, satu-

rating amounts of FBP did not change the measured KD
Phe (Figure 3D). These measurements
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Table 2. Intracellular concentrations of FBP, Phe and Ser in cancer cell lines.

Metabolite Media condition Cell line [Metabolite]ic (mM) Fractional saturation

FBP Gluc-

(RPMI)
HCT116 38.4 ± 16.6 0.99 ± 0.00

LN229 73.4 ± 18.4 0.99 ± 0.00

SN12C 19.9 ± 7.5 0.98 ± 0.00

Gluc+

(RPMI)
HCT116 238.4 ± 67.4 0.99 ± 0.00

LN229 302.0 ± 75.3 0.99 ± 0.00

SN12C 355.1 ± 66.2 0.99 ± 0.00

Gluc+ aa-

(HBSS)
HCT116 337.2 ± 185.5 0.99 ± 0.00

LN229 257.0 ± 33.9 0.99 ± 0.00

SN12C 236.8 ± 41.1 0.99 ± 0.00

Gluc+ Phe500 Ser100

(HBSS)
HCT116 384.5 ± 41.8 0.99 ± 0.00

LN229 277.3 ± 83.4 0.99 ± 0.00

SN12C 300.3 ± 89.1 0.99 ± 0.00

Gluc+ Phe100 Ser500

(HBSS)
HCT116 400.9 ± 82.2 0.99 ± 0.00

LN229 372.2 ± 106.0 0.99 ± 0.00

SN12C 286.4 ± 73.6 0.99 ± 0.00

Phe Gluc-

(RPMI)
HCT116 256.3 ± 65.8 0.56 ± 0.06

LN229 231.6 ± 22.6 0.55 ± 0.03

SN12C 100.4 ± 24.6 0.34 ± 0.06

Gluc+

(RPMI)
HCT116 258.2 ± 79.6 0.56 ± 0.08

LN229 318.7 ± 115.8 0.61 ± 0.09

SN12C 197.5 ± 26.6 0.51 ± 0.04

Gluc+ aa-

(HBSS)
HCT116 41.1 ± 15.8 0.17 ± 0.05

LN229 31.7 ± 28.0 0.13 ± 0.12

SN12C 10.6 ± 0.6 0.05 ± 0.02

Gluc+ Phe500 Ser100

(HBSS)
HCT116 1776.2 ± 225.1 0.90 ± 0.01

LN229 1666.5 ± 543.0 0.89 ± 0.04

SN12C 926.1 ± 252.7 0.82 ± 0.04

Gluc+ Phe100 Ser500

(HBSS)
HCT116 582.4 ± 23.8 0.75 ± 0.01

LN229 575.7 ± 224.4 0.73 ± 0.11

SN12C 221.6 ± 49.1 0.53 ± 0.06

Ser Gluc-

(RPMI)
HCT116 3580.9 ± 1016.9 0.87 ± 0.03

LN229 1755.0 ± 159.5 0.77 ± 0.02

SN12C 854.3 ± 240.7 0.62 ± 0.07

Gluc+

(RPMI)
HCT116 3943.5 ± 1363.1 0.88 ± 0.05

LN229 2226.7 ± 757.7 0.80 ± 0.06

SN12C 1766.0 ± 142.9 0.78 ± 0.01

Gluc+ aa-

(HBSS)
HCT116 426.9 ± 179.2 0.44 ± 0.09

LN229 249.6 ± 221.8 0.28 ± 0.25

SN12C 111.0 ± 18.4 0.18 ± 0.02

Gluc+ Phe500 Ser100

(HBSS)
HCT116 6157.3 ± 1334.4 0.92 ± 0.01

LN229 2641.1 ± 825.1 0.83 ± 0.06

SN12C 2197.7 ± 605.8 0.81 ± 0.04

Gluc+ Phe100 Ser500

(HBSS)
HCT116 22360.4 ± 1554.2 0.98 ± 0.00

LN229 8464.7 ± 3214.5 0.93 ± 0.04

SN12C 6603.9 ± 1500.4 0.93 ± 0.02
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suggested that decreased binding of FBP could not account for the attenuation of FBP–induced acti-

vation of PKM2 upon addition of Phe.

We next investigated whether Phe impedes FBP–induced activation of PKM2 by perturbing the

oligomeric state of the protein, using nano-electrospray ionisation (nESI) and ion mobility (IM) mass

spectrometry (MS) (Pacholarz et al., 2017; Beveridge et al., 2016). The mass spectrum of PKM2apo*

showed a mixture of monomers, dimers and tetramers at an approximate ratio of 1:7:10 (Figure 4A,

B), with dimers exclusively forming the A-A’ dimer assembly, as evidenced from experimental (IM)

and theoretical measurements (Figure 4—figure supplement 1). Mass-deconvolution of the spec-

trum of PKM2apo* indicated that the signal of the tetramer consisted of five distinct species, which

were assigned to PKM2apo, and PKM2 bound to 1, 2, 3 or 4 molecules of FBP (Figure 4C), consistent

with our earlier finding that FBP co-purifies with PKM2 (Figure 2—figure supplement 1). Addition

of exogenous FBP resulted in a decrease in the intensity of monomer and dimer peaks, and a dose-

dependent increase in the intensity of the tetramer signal (Figure 4—figure supplement 2). At satu-

rating concentrations of FBP, the mass spectrum of PKM2 consisted of a single species correspond-

ing to tetrameric PKM2 bound to four molecules of FBP (Figure 4C). Furthermore, surface-induced

dissociation (SID) experiments revealed that PKM2FBP tetramers were more stable than PKM2apo*

tetramers with respect to dissociation into dimers and monomers (Figure 4—figure supplement 3).

Together, these data indicated that addition of FBP promotes the formation of PKM2 tetramers, as

seen previously using other methods (Ashizawa et al., 1991a; Kato et al., 1989), conferring an

enhanced tetramer stability.

Addition of Phe to PKM2apo* caused a decrease in the relative abundance of the tetramers and

an increased relative abundance of the dimer species (Figure 4A,B). In contrast, Phe did not perturb

the tetrameric state of PKM2FBP (Figure 4A,B), while FBP binding to PKM2Phe resulted in tetramer-

isation of the protein, indicating that the dominant effect of FBP on PKM2 tetramerisation was unaf-

fected by the order of ligand addition (Figure 4A,B). PKM2 tetramers were found to bind FBP and

Phe simultaneously, on the basis of the mass shift resulting from sequential addition of either ligand

alone or in combination (Figure 4—figure supplement 4). Additionally, differences in the collision

cross section (DTCCSHe) distribution, which reflects the conformational heterogeneity of proteins,

suggested that FBP caused subtle conformational changes in the tetramer, evidenced by a modest

decrease in the DTCCSHe between 9500 Å2–9650 Å2 (Figure 4D). The addition of Phe partially

reversed the changed DTCCSHe to a distribution closely resembling that of PKM2apo* (Figure 4D).

Moreover, in the presence of Phe, half-stoichiometric amounts of FBP were sufficient to induce tetra-

merisation with slow kinetics [ktet = (812.5 s ± 284.6 s�1)], whereas equivalent half-stoichiometric

amounts of FBP in the absence of Phe were unable to fully convert PKM2 monomers and dimers into

tetramers (Figure 4E). The propensity for Phe to enhance FBP-induced tetramerisation indicates a

functional synergism between the two allosteric ligands, that favours tetramer formation despite the

opposing effects of these ligands, individually, both on activity and oligomerisation.

Together, these data demonstrate that the inhibitory effect of Phe on the ability of FBP to

enhance PKM2 activity is not due to Phe preventing FBP-induced tetramerisation and suggest it is

likely due to interference with the allosteric communication between the FBP and the active site.

Molecular dynamics simulations reveal candidate residues that mediate
FBP–induced PKM2 allostery
To gain insight into the mechanism by which Phe interferes with FBP-induced allosteric activation of

PKM2, we first sought to identify PKM2 residues that mediate the allosteric communication between

the FBP binding site and the catalytic center. To this end, we performed molecular dynamics (MD)

simulations of PKM2apo tetramers and PKM2FBP tetramers (Table 6). Subsequent analyses of protein

volume and solvent accessibility of the trajectories (Figure 5—figure supplement 1), found no evi-

dence of large global protein conformational changes induced by FBP, consistent with the modest
DTCCSHe changes we observed by IM-MS (Figure 4D). We therefore reasoned that enthalpic

motions likely play a role in the allosteric regulation of PKM2 by FBP.

To test this hypothesis, we set out to identify whether FBP elicits correlated

motions (Pandini et al., 2012) in the backbone of PKM2, and whether these concerted motions form

DOI: https://doi.org/10.7554/eLife.45068.010
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Figure 3. FBP influences the inhibition of PKM2 activity by Phe. (A) PKM2 (5 nM) activity measured over a range of added FBP concentrations (0.01–10

mM) with constant substrate concentrations (PEP = 1.5 mM and ADP = 5 mM). The apparent activation constant (AC50
FBP) was estimated by fitting the

resulting data to a binding curve (red line) assuming a 1:1 stoichiometry. Means and standard deviations of four separate experiments are plotted. (B)

Steady-state kinetic parameters of purified recombinant human PKM2, in the absence of added ligands; in the presence of 2 mM FBP, 400 mM Phe and

200 mM Ser alone; and after addition of either 400 mM Phe or 200 mM Ser to PKM2 pre-incubated with 2 mM FBP. Initial velocity curves were fit to

Michaelis-Menten kinetic models. Each titration was repeated four times. Statistical significance was assessed using a Wilcoxon rank-sum test. Asterisk

(*) marks significant changes (p-value<0.05). (C) Binding constant of FBP to PKM2 obtained from fluorescence emission spectroscopy measurements in

the absence and in the presence of either 400 mM Phe or 200 mM Ser. (D) Binding constants for Phe and Ser to PKM2, in the absence or presence of 2

mM FBP, obtained from microscale thermophoresis (MST) measurements. MST was used, rather than intrinsic fluorescence spectroscopy as for FBP, due

to the absence of tryptophan residues proximal to the amino acid binding pocket on PKM2. Significance was assessed as in (A).

DOI: https://doi.org/10.7554/eLife.45068.012

The following figure supplements are available for figure 3:

Figure supplement 1. FBP influences the kinetics of PKM2 inhibition by Phe - experimental data.

Figure 3 continued on next page
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the basis of a network of residues that connect the allosteric pocket to the active site. Accurately

computing the network of correlated protein motions from MD simulations is complicated by the

occurrence of dynamic conformational sub-states that can display unique structural

properties (Guerry et al., 2013; Bürgi et al., 2001). We therefore developed a novel computational

framework, named AlloHubMat (Allosteric Hub prediction using Matrices that capture allosteric cou-

pling), to predict allosteric hub fragments from the network of dynamic correlated motions, based

on explicitly identified conformational sub-states from multiple MD trajectories (Figure 5A). Extrac-

tion of correlated motions from multiple sub-states within a consistent information-theoretical frame-

work allowed us to compare the allosteric networks, both between replicas of the same liganded

state and between different liganded states of PKM2 (see Materials and methods).

Using AlloHubMat, we analysed all replicate MD simulations of PKM2apo and PKM2FBP and identi-

fied several conformational sub-states. Backbone correlations extracted from the sub-states sepa-

rated into two clusters (C1 and C2) that were dominated by sub-states from PKM2apo and PKM2FBP

simulations, respectively, in addition to cluster C3 that was populated by sub-states from both simu-

lations (Figure 5B). The observed separation in the correlated motions revealed common conforma-

tional sub-states, suggesting that the preceding analysis of MD simulations of PKM2 captured FBP–

dependent correlated motions.

To identify allosteric hub fragments (AlloHubFs) that are involved in the allosteric state transition,

we subtracted the mutual information matrices identified in PKM2apo from those in PKM2FBP

(Figure 5C). We found that the strength of the coupling signal between the AlloHubFs correlated

with the positional entropy (Figure 5D), corroborating the idea that local backbone flexibility con-

tributed to the transmission of allosteric information. The top ten predicted AlloHubFs (named

Hub1-Hub10) were spatially dispersed across the PKM2 structure including positions proximal to the

A-A’ interface (Hub5 and Hub6), to the FBP binding pocket (Hub9), the C-C’ interface (Hub10), and

within the B-domain (Hub1 and Hub2) (Figure 5E). Remarkably, all AlloHubFs, with the exception of

Hub5 and Hub6, coincided with minimal distance pathways (Dijkstra, 1959) between the FBP bind-

ing pocket and the active site (Figure 5E). This observation further supported the hypothesis that

the selected AlloHubFs propagate the allosteric effect of FBP.

AlloHubF mutants disrupt FBP-induced activation of PKM2 or its
sensitivity to Phe
We next generated allosteric hub mutants (AlloHubMs) (Figure 6—figure supplement 1) by substi-

tuting AlloHubF residues with amino acids that had chemically different side chains and were pre-

dicted to be tolerated at the respective position based on their occurrence in a multiple sequence

alignment of 5381 pyruvate kinase orthologues (Figure 6—figure supplement 2). Among a total of

23 PKM2 AlloHubMs generated, we chose seven [I124G, F244V, K305Q, F307P, A327S, C358A,

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.45068.013

Figure supplement 2. FBP influences the kinetics of PKM2 inhibition by Phe - kinetic mechanism models.

DOI: https://doi.org/10.7554/eLife.45068.014

Table 3. Steady-state Michaelis-Menten kinetic parameters for PKM2apo, and following the addition

of FBP, Phe and Ser.

PKM2ligand KM
PEP (mM) kcat (s

�1) kcat/KM
PEP (s�1 mM�1)

PKM2apo 1.22 ± 0.02 349.3 ± 40.9 285.6 ± 34.1

PKM2Phe 7.08 ± 1.58 324.7 ± 23.9 46.8 ± 6.0

PKM2Ser 0.22 ± 0.04 323.1 ± 43.2 1489.8 ± 84.7

PKM2FBP 0.23 ± 0.04 356.7 ± 25.7 1540.4 ± 96.9

PKM2 FBP + Phe 0.65 ± 0.03 222.3 ± 6.3 342.1 ± 11.1

PKM2 FBP + Ser 0.20 ± 0.04 348.7 ± 44.3 1620.0 ± 253.6

DOI: https://doi.org/10.7554/eLife.45068.011
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Figure 4. FBP modulates the effects of Phe on PKM2 oligomerisation. (A) Native mass spectra of 10 mM PKM2 in 200 mM ammonium acetate at pH 6.8,

in the absence of allosteric ligands (PKM2apo*), or in the presence of: 10 mM FBP (PKM2FBP), 300 mM Phe (PKM2Phe), 300 mM Phe followed by addition of

10 mM FBP (PKM2Phe + FBP) or 10 mM FBP followed by addition of 300 mM Phe (PKM2FBP + Phe). (B) Relative abundance of PKM2 monomers, dimers and

tetramers obtained from the spectra shown in (A) by computing the area of the peaks corresponding to each of the three oligomeric states. Relative

Figure 4 continued on next page
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R489L (Figure 6A)] for further experimental characterization because they expressed as soluble pro-

teins and had very similar secondary structure to that of PKM2(WT), which suggested that the pro-

tein fold in these mutants was largely preserved (Figure 6—figure supplement 3). Importantly, the

KD
FBP for all AlloHubMs were similar to PKM2(WT), with the exception of PKM2(R489L), which bound

to FBP with low affinity (Figure 6—figure supplement 4 and Table 7).

In order to quantify and compare the ability of FBP to activate AlloHubMs independently of vary-

ing basal activity, we determined the allosteric coupling constant (Reinhart, 1983; Carlson and Fen-

ton, 2016,) log10Q
FBP, defined as the log-ratio of the KM

PEP in the absence over the KM
PEP in the

presence of FBP. PKM2 AlloHubMs I124G, F244V, K305Q, F307P and R489L showed attenuated

activation by FBP (Figure 6B) indicating that AlloHubMat successfully identified residues that medi-

ate the allosteric effect of FBP. Similar to PKM2(WT), Phe addition significantly hindered FBP-

induced activation in I124G, F244V, and R489L (Figure 6C). In contrast, K305Q and F307P were allo-

sterically inert, with no detectable response in activity upon addition of either FBP or Phe

(Figure 6B,C and Figure 6—figure supplement 5). While for PKM2(K305Q) this outcome could be

explained by very low basal activity, PKM2(F307P) had a KM
PEP similar to that of PKM2(WT)FBP, indi-

cating that this mutant displays a constitutively high substrate affinity (Figure 6—figure supplement

5 and Table 8).

Figure 4 continued

peak areas were calculated as a percentage of the total area given by all charge-state species in a single mass spectrum. (C) Deconvolved mass spectra

of PKM2 tetrameric species in the absence of any added ligands (PKM2apo*) or presence of FBP (PKM2FBP). PKM2apo* has five distinct mass peaks,

separated by approximately 340 Da (equivalent to the weight of FBP), corresponding to tetrameric PKM2apo*, and tetrameric PKM2 bound to 1, 2, 3

and 4 molecules of FBP, respectively. See Table 4 for the theoretical, and Table 5 for the experimentally measured masses of PKM2, FBP and their

complexes. The spectrum of PKM2FBP contains a single peak, corresponding to tetrameric PKM2 bound to four molecules of FBP. (D) DTCCSHe
distribution of PKM2apo*, PKM2FBP and PKM2FBP+Phe tetramers calculated from analyses of arrival time distribution measurements of PKM2 tetramer

peaks (see Materials and methods). The plots at the bottom show the mean difference of the DTCCSHe distributions between the indicated liganded

states. Grey shaded regions show the standard deviations of the distribution differences. (E) Change, over time, in the oligomeric state of PKM2 upon

addition of sub-stoichiometric FBP and saturating Phe concentrations. Oligomerisation is reported as the ratio of the tetramer 32 + charge state peak

relative to the dimer 22 + charge state peak, obtained from mass spectra of 10 mM PKM2 following addition of either 5 mM FBP, or 5 mM FBP and 400

mM Phe over the course of 20 min. The kinetics of tetramerisation were estimated from a two-state sigmoidal model (orange and blue dashed lines, see

Materials and methods). In the legend, 0.5 FBP and 40 Phe indicate molar ratio of these ligands compared to PKM2.

DOI: https://doi.org/10.7554/eLife.45068.015

The following figure supplements are available for figure 4:

Figure supplement 1. Evidence from IM-MS and MD simulations that PKM2 dimers predominantly adopt the A-A’ configuration.

DOI: https://doi.org/10.7554/eLife.45068.016

Figure supplement 2. FBP promotes a dose-dependent conversion of PKM2 monomers and A-A’ dimers into the tetrameric species.

DOI: https://doi.org/10.7554/eLife.45068.017

Figure supplement 3. FBP binding increases the stability of PKM2 tetramers.

DOI: https://doi.org/10.7554/eLife.45068.018

Figure supplement 4. Phe and FBP can simultaneously bind to PKM2.

DOI: https://doi.org/10.7554/eLife.45068.019

Table 4. Theoretical masses of PKM2 (see Supplementary file 2 for PKM2 sequence), FBP and

PKM2 + FBP.

Molecule Mass (Da)

PKM2 monomer 58218.2

PKM2 tetramer 232872.6

FBP 340.0

PKM2 tetramer + 1 FBP 233212.6

PKM2 tetramer + 2 FBP 233552.6

PKM2 tetramer + 3 FBP 233892.6

PKM2 tetramer + 4 FBP 234232.6

DOI: https://doi.org/10.7554/eLife.45068.020

Macpherson et al. eLife 2019;8:e45068. DOI: https://doi.org/10.7554/eLife.45068 13 of 36

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.45068.015
https://doi.org/10.7554/eLife.45068.016
https://doi.org/10.7554/eLife.45068.017
https://doi.org/10.7554/eLife.45068.018
https://doi.org/10.7554/eLife.45068.019
https://doi.org/10.7554/eLife.45068.020
https://doi.org/10.7554/eLife.45068


The mass spectra of the AlloHubMs (Figure 6D) revealed a marked decrease in the intensity of

tetramer and dimer peaks for PKM2(K305Q) and PKM2(F307P) compared to PKM2(WT), consistent

with the position of these residues on the A-A’ interface, along which stable PKM2(WT) dimers are

formed (Figure 4—figure supplement 1). However, upon addition of FBP, F307P remained largely

monomeric, whereas K305Q formed tetramers with a similar charge state distribution to PKM2

(WT)apo* (Figure 6—figure supplement 6). These observations, in addition to the varying ability of

I124G, F244V, and R489L to tetramerise upon addition of FBP (I124G > F244V>R489L, Figure 6—

figure supplement 6), indicate that an impaired allosteric activation of these mutants by FBP cannot

be accounted for by altered oligomerisation alone.

Intriguingly, two AlloHubMs, PKM2(A327S) and PKM2(C358A), retained intact activation by FBP

(Figure 6B), suggesting either that the amino acid substitutions were functionally neutral or that

these residues are not required for FBP-induced activation. However, addition of Phe failed to atten-

uate FBP-induced activation of these AlloHubMs (Figure 6C), indicating that residues A327 and

C358 have a role in coupling the allosteric effect of Phe with that of FBP.

In summary, evaluation of the allosteric properties of AlloHubMs demonstrated that AlloHubMat

successfully identified residues involved in FBP-induced allosteric activation of PKM2. Furthermore,

this analysis revealed two residues that mediate a functional cross-talk between allosteric networks

elicited from distinct ligand binding pockets on PKM2, thereby providing a mechanism by which dis-

tinct ligands synergistically control PKM2 activity.

Discussion
Allosteric activation of PKM2 by FBP is a prototypical and long-studied example of feed-forward reg-

ulation in glycolysis (Koler and Vanbellinghen, 1968). However, PKM2 binds to many other ligands

in addition to FBP, including inhibitory amino acids. It has been unclear, thus far, whether ligands

that bind to distinct pockets elicit functionally independent allosteric pathways to control PKM2

activity or whether they synergise, and if so, which residues mediate such synergism. Furthermore,

the role played by simultaneous binding of multiple ligands on the oligomerisation state of PKM2

remained elusive. Our work shows that FBP-induced dynamic coupling between distal residues func-

tions, in part, to enable Phe to interfere with FBP-induced allostery. This finding points to a func-

tional cross-talk between the allosteric mechanisms of these two ligands.

AlloHubMat reveals residues that mediate a cross-talk between FBP-
and Phe-induced allosteric regulation
Multiple lines of evidence suggested a functional cross-talk between the allosteric mechanisms of

Phe and FBP. While Phe and FBP bind to spatially distinct pockets on PKM2, both ligands influence

the mode of action of the other, without reciprocal effects on their binding affinities. Using native

Table 5. Calculated masses from maximum-entropy deconvolution of PKM2 mass spectra.

Protein/ligand mixture Cone voltage (V)
Number of
tetramer peaks Mass species (Da)

10 mM PKM2 100 5 232880, 233220, 233580, 233930, 234290

10 mM PKM2 + 10 mM FBP 10 1 235030

10 mM PKM2 + 10 mM FBP 100 1 234190

DOI: https://doi.org/10.7554/eLife.45068.021

Table 6. Summary of molecular dynamics simulations.

Liganded
state simulated

PDB ID of
starting
structure

Number of
protein atoms

Number of
water atoms Simulation time

Number of
replicas

PKM2apo 3BJT 20104 263384 400 ns 5

PKM2FBP 3U2Z 20122 261594 420 ns 5

DOI: https://doi.org/10.7554/eLife.45068.022
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Figure 5. AlloHubMat predicts candidate residues that mediate the allosteric effect of FBP on PKM2, from molecular dynamics (MD) simulations. (A)

Schematic of the AlloHubMat computational pipeline, developed to identify residues that are involved in the transmission of allostery between an

allosteric ligand pocket and the active site. Multiple replicate molecular dynamics (MD) simulations are seeded from the 3D protein structure using the

GROMACS molecular dynamics engine. All MD simulations are encoded with the M32K25 structural alphabet (Pandini et al., 2010), and the protein

Figure 5 continued on next page

Macpherson et al. eLife 2019;8:e45068. DOI: https://doi.org/10.7554/eLife.45068 15 of 36

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.45068


MS, we showed that, while FBP and Phe individually have opposing effects on PKM2 oligomerisa-

tion, they synergistically stabilise PKM2 tetramers. However, in contrast to PKM2FBP tetramers,

PKM2FBP+Phe tetramers have low enzymatic activity. Conversely, the presence of FBP altered the

kinetic mechanism of Phe inhibition: Phe alone did not decrease the kcat, but instead increased the

KM
PEP. With FBP present, Phe decreased both the apparent affinity for PEP and the maximal velocity

of FBP-bound PKM2.

To identify residues that mediate the interaction between the Phe and FBP allosteric mechanisms,

we analysed changes imposed by FBP binding on PKM2 dynamics. MD simulations of PKM2apo and

PKM2FBP, corroborated by IM-MS data, indicated that the protein does not undergo large conforma-

tional changes, in agreement with previously published small-angle X-ray scattering (SAXS) experi-

ments that showed no FBP-driven change in the radius of gyration of PKM2 tetramers (Yan et al.,

2016). This suggested that ligand-induced conformational changes are likely limited to subtle back-

bone re-arrangements and side-chain motions. Based on our previous approach (Pandini et al.,

2010; Fornili et al., 2013; Pandini et al., 2013), we calculated the mutual information between sam-

pled conformational states from MD trajectories encoded in a coarse-grained representation within

the framework of a structural alphabet. Nevertheless, given that proteins have been shown

experimentally (Guerry et al., 2013; Salvi et al., 2016; Delaforge et al., 2018; Kerns et al., 2015)

and computationally (Markwick et al., 2009; Daura et al., 2001) to sample multiple conformational

sub-states with distinct structural properties, explicitly identifying allosteric signals that are represen-

tative of the ensemble of protein sub-states is crucial. In order to derive the network of correlated

motions from multiple MD trajectories and obtain an ensemble-averaged mutual information net-

work, we developed a new computational approach, AlloHubMat, to identify protein residues as

nodes of allosteric interaction networks. AlloHubMat, significantly expands the capabilities of our

previous approach, GSATools, which was limited to the comparison of two MD trajectories. AlloHub-

Mat predicts allosteric networks from MD simulations taking into account sampled conformational

sub-states and using a consistent numerical framework to measure time-dependent correlated

motions, thereby overcoming some of the limitations (Bürgi et al., 2001; Salvi et al., 2016) of previ-

ous approaches. AlloHubMat, enables both the extraction of consensus allosteric networks from

Figure 5 continued

backbone correlations over the MD trajectory are computed with GSAtools (Pandini et al., 2013) using information theory mutual information statistics.

The backbone correlations are explicitly used to identify and extract configurational sub-states from the MD trajectories. A global allosteric network is

then constructed by integrating over the correlation matrices, and their respective probabilities, from which allosteric hub fragments (AlloHubFs) are

extracted. Each AlloHubF comprises four consecutive amino acid residues. (B) Correlation matrices cluster according to the liganded state of PKM2 in

the MD simulations. AlloHubMat, described in (A), was used to identify correlation matrices of the conformational substates from five separate 400 ns

MD simulations of PKM2apo (grey) and PKM2FBP (green). In total, we identified eight sub-states for all simulations of PKM2apo and eight for PKM2FBP.

For every sub-state, the network of correlations from each of the four protomers is presented individually. To investigate whether the correlated

motions for each sub-state could be attributed to the liganded state of PKM2, the correlation matrices were compared with a complete-linkage

hierarchical clustering (see Materials and methods). The matrix covariance overlap (WA;B) was used as a distance metric, represented by the colour scale.

A high WA;B score indicates high similarity between two correlation matrices, and a low WA;B score indicates that the correlation matrices are dissimilar.

The clustering analysis revealed three clusters, denoted C1-C3. Cluster C1 was dominated by correlation matrices extracted from PKM2apo simulations,

and cluster C2 was exclusively occupied by PKM2FBP correlation matrices. C3 consisted of correlation matrices from PKM2apo and PKM2FBP simulations.

(C) A volcano plot showing difference in protein backbone correlations – derived from the AlloHubMat analysis – between PKM2apo and PKM2FBP. Each

point corresponds to a correlation between two distal protein fragments; points with a positive log2 fold-change represent correlations that are

predicted to increase in strength upon FBP binding. Correlations with a log2fold-change � 2 and a false discovery rate � 0.05% (determined from a

Wilcoxon ranked-sum test) between PKM2apo and PKM2FBP were designated as AlloHubFs, highlighted in green. A total of 72 AlloHubFs were

predicted from this analysis. (D) The positional entropy of the PKM2 fragment-encoded structure correlates linearly with the correlation strength of the

fragment. The total mutual information content was computed by summing over the correlations for each of the top AlloHubFs. nMI: normalised mutual

information. (E) Left: PKM2 structure depicting the spatial distribution of the top ten predicted AlloHubFs. Right: zoom into a single protomeric chain

shown in cartoon representation. AlloHubFs (blue) and FBP (green) are shown as stick models. Black lines indicate minimal distance pathways between

the FBP binding pocket and the active site, predicted using Dijkstra’s algorithm (see Materials and methods) with the complete set of correlation values

as input.

DOI: https://doi.org/10.7554/eLife.45068.023

The following figure supplement is available for figure 5:

Figure supplement 1. Solvent accessibility and volume analyses of MD simulations of PKM2.

DOI: https://doi.org/10.7554/eLife.45068.024
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Figure 6. AlloHubF mutants (AlloHubMs) either interfere with FBP-induced PKM2 activation or mediate its disruption by Phe. (A) AlloHubF mutants

characterised in this study, shown on the PKM2 protomer structure. (B) The allosteric response of PKM2(WT) and AlloHubF mutant enzymatic activities

to FBP, quantified by the allosteric coefficient Q, which denotes the change of the KM
PEP in the absence and in the presence of saturating

concentrations of FBP (see Materials and methods). A Q-coefficient > 0, indicates allosteric activation; and Q-coefficient < 0 indicates allosteric

Figure 6 continued on next page
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replicate simulations of a protein in a given liganded state, and also the comparison of such consen-

sus networks to each other.

AlloHubMat revealed candidate residues involved in the allosteric effect of FBP on PKM2 activity.

Mutagenesis at several of these positions (I124G, F244V, K305Q, F307P, R489L) disrupted FBP–

induced activation demonstrating that AlloHubMat successfully identified bona fide mediators of

FBP allostery. Some AlloHub mutations also disrupt Phe-induced inhibition suggesting that FBP and

Phe elicit allosteric effects through partially overlapping networks of residues. In contrast, PKM2

(F244V) specifically disrupted FBP–induced activation, while maintaining the propensity for allosteric

inhibition by Phe. Conversely, mutation of A327 and C358 preserved the ability of FBP to regulate

PKM2 but prevented the inhibitory effect of Phe on PKM2FBP enzymatic activity. This finding indi-

cated a role for A327 and C358 in mediating the cross-talk between the allosteric mechanisms eli-

cited by Phe and FBP that allows the former to interfere with the action of the latter. Notably,

identification of C358 as an allosteric hub could explain why a chemical modification at this position

perturbs PKM2 activity by oxidation (Anastasiou et al., 2011). None of the characterised mutants

fall within positions 389–429 that differ between PKM2 and the constitutively active PKM1, suggest-

ing that residues that confer differences in the allosteric properties of these two isoforms are dis-

persed throughout the protein. Our findings highlight the importance of experimentally evaluating

the functional role of allosteric residues predicted by computational methods not only in the context

of the allosteric effector under investigation but also in response to other potential allosteric effec-

tors that may also be unidentified.

Figure 6 continued

inhibition. The Q-coefficient for PKM2(WT) is shown as a dotted line for comparison. Each of the Q-coefficients of the AlloHubF mutants were

statistically compared to PKM2(WT) using a Wilcoxon ranked-sum test (n = 4); a p-value<0.05 was deemed significant (denoted by an asterisk); n.s.: not

significant. (C) The magnitude of allosteric inhibition by Phe, in the presence of FBP, determined for PKM2(WT) and AlloHubF mutants, quantified by

the allosteric co-efficient Q as in (B). (D) Relative abundance of monomers, dimers and tetramers for PKM2 (WT) and PKM2 AlluHubF mutants in the

absence or presence of saturating FBP.

DOI: https://doi.org/10.7554/eLife.45068.026

The following figure supplements are available for figure 6:

Figure supplement 1. Schematic depicting the integrated computational and experimental strategy used to identify protein residues involved in

allosteric regulation.

DOI: https://doi.org/10.7554/eLife.45068.027

Figure supplement 2. Sequence conservation analysis of AlloHubFs.

DOI: https://doi.org/10.7554/eLife.45068.028

Figure supplement 3. Purified AlloHubF mutants have similar secondary structure content to PKM2(WT).

DOI: https://doi.org/10.7554/eLife.45068.029

Figure supplement 4. FBP has a similar affinity for AlloHubMs to that for PKM2(WT), with the exception of PKM2(R489L).

DOI: https://doi.org/10.7554/eLife.45068.030

Figure supplement 5. Steady-state enzyme kinetics of the AlloHubMs.

DOI: https://doi.org/10.7554/eLife.45068.031

Figure supplement 6. Native mass spectra of the AlloHubMs.

DOI: https://doi.org/10.7554/eLife.45068.032

Table 7. Apparent steady-state binding constants of FBP to the PKM2 allosteric hub mutants.

AlloHubM KD
FBP

I124G (39.5 ± 33.5) nM

F244V (30.7 ± 33.1) nM

K305Q (39.4 ± 34.1) nM

F307P (4.0 ± 12.8) nM

A327S (43.2 ± 48.7) nM

C358A (35.3 ± 23.6) nM

R489L (14.0 ± 2.7) mM

DOI: https://doi.org/10.7554/eLife.45068.025
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Interestingly, Zhong et al. (2017) recently reported that adenosine monophosphate (AMP) and

glucose-6-phosphate (G6P) synergistically activate M. tuberculosis pyruvate kinase. While the bind-

ing of AMP occurs at a pocket equivalent to that of PKM2 for FBP, G6P binds to a different pocket

that is also distinct from the equivalent amino acid interaction site on PKM2, indicating an additional

allosteric integration mechanism that is similar to the one we describe here. It is therefore tempting

to speculate that allosteric synergism upon concurrent binding of different ligands may occur more

commonly that previously appreciated.

AlloHubMs provide insights into the relationship between PKM2
oligomerisation and enzymatic activity
Changes in oligomerisation have been intimately linked to the regulation of PKM2 activity. Allo-

HubMs A327S and C358A retained both their ability to tetramerise and increase their activity in

response to FBP. Furthermore, FBP fails to shift the oligomer equilibrium and does not activate Allo-

HubMs F307P and R489L. In this context, we found that Phe inhibited the activity of PKM2apo*, with

concomitant loss of tetramers, however, inhibition of PKM2FBP by Phe occurred within the tetrameric

state. The mechanism by which Phe regulates PKM2 oligomerisation is controversial. Our finding

that Phe destabilises tetramers is in agreement with previous studies (Hofmann et al., 1975), but

contrasts with recent reports that Phe stabilises a low activity T-state tetramer (Morgan et al., 2013;

Yuan et al., 2018). Critically, we find that Phe and FBP synergistically promote PKM2 tetramerisa-

tion, raising the possibility that the mode of Phe action described in Morgan et al. (2013)

and Yuan et al. (2018) is confounded by the presence of residual FBP. It is unclear whether partial

FBP occupancy is accounted for in these studies, as the FBP saturation status of PKM2 is not

detailed. Co-purification of FBP with recombinant PKM2 has been previously

observed (Morgan et al., 2013; Gavriilidou et al., 2018; Yan et al., 2016) and in purifying

Table 8. Steady-state Michaelis-Menten kinetic parameters for AlloHubF mutants.

AlloHubM Ligand KM
PEP (mM) kcat (s

�1) kcat/KM
PEP (s�1 mM�1)

I124G Apo 1.07 ± 0.13 190.27 ± 7.31 177.82 ± 56.23

FBP 0.29 ± 0.04 307.10 ± 6.11 1058.97 ± 152.75

FBP + Phe 1.44 ± 0.34 221.92 ± 17.26 153.98 ± 37.88

F244V Apo 1.14 ± 0.11 237.44 ± 7.36 210.44 ± 27.15

FBP 0.55 ± 0.07 279.62 ± 9.93 522.42 ± 87.51

FBP + Phe 1.15 ± 0.30 222.51 ± 18.29 195.87 ± 55.46

K305Q Apo 0.01 ± 0.01 8.06 ± 0.57 790.01 ± 605.56

FBP 0.01 ± 0.04 8.40 ± 0.43 1038.01 ± 535.50

FBP + Phe 0.04 ± 0.01 12.21 ± 1.40 408.37 ± 136.10

F307P Apo 0.13 ± 0.01 180.47 ± 3.05 1413.87 ± 133.12

FBP 0.15 ± 0.02 227.20 ± 5.02 1508.53 ± 190.71

FBP + Phe 0.21 ± 0.03 328.71 ± 12.37 1568.32 ± 268.58

A327S Apo 1.37 ± 0.42 31.8 ± 2.43 23.21 ± 5.79

FBP 0.17 ± 0.02 119.01 ± 6.86 700.06 ± 343.00

FBP + Phe 0.15 ± 0.02 100.19 ± 5.32 667.93 ± 266.00

C358A Apo 4.71 ± 0.99 214.73 ± 21.40 45.59 ± 21.62

FBP 0.58 ± 0.18 191.13 ± 16.22 329.53 ± 90.11

FBP + Phe 1.25 ± 0.07 199.01 ± 21.87 159.20 ± 31.24

R489L Apo 0.69 ± 0.19 60.05 ± 4.91 89.38 ± 36.93

FBP 0.36 ± 0.10 112.25 ± 7.60 317.20 ± 125.71

FBP + Phe 1.44 ± 0.40 132.99 ± 15.74 158.19 ± 122.56

DOI: https://doi.org/10.7554/eLife.45068.033
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recombinant PKM2 for our study, we detected up to more than 0.75 fractional saturation with co-

purified FBP. Furthermore, initial attempts, by others, to crystallise Phe-bound PKM2 without FBP

required mutation in the protein (R489L) to abrogate FBP binding (Morgan et al., 2013), although

structures of PKM2(WT) bound to Phe have now been obtained (Yuan et al., 2018). Based on our

findings, we speculate that the stabilisation of PKM2 tetramers by Phe observed by Morgan et al.

(2013) and Yuan et al. (2018) could be attributed to significant amounts of residually-bound FBP

co-purifying from E. coli. Consistent with this hypothesis, the small shift in the conformational

arrangement (DTCCSHe) of PKM2FBP tetramers upon addition of Phe (PKM2FBP+Phe) may be indicative

of subtle conformational changes that reflect a transition from an active R-state to an inactive T-state

described before (Morgan et al., 2013). In support of this interpretation, the DTCCSHe of PKM2FBP+-

Phe tetramers closely resembles that of PKM2apo*.

Therefore, beyond its immediate goals, our study has broader implications for understanding the

regulation of PKM2 as it suggests that enzymatic activation can be uncoupled from tetramerisation.

This idea resonates well with findings from MD simulations indicating that dynamic coupling

between distal sites upon FBP binding can occur in the PKM2 protomer, and suggest that allostery

is encoded in the protomer structure (Yang et al., 2016; Naithani et al., 2015; Gehrig et al., 2017).

Furthermore, a patient-derived PKM2 mutant (G415R) occurs as a dimer that can bind to FBP but

cannot be activated and does not tetramerise (Yan et al., 2016). Moreover, SAICAR can activate

PKM2(G415R) dimers, in the absence of tetramerisation (Yan et al., 2016). The finding that enzy-

matic activation is not obligatorily linked to tetramerisation is important for studies in intact cells,

where distinction between the T- and R- states is not possible and therefore the oligomeric state of

PKM2 is frequently used to infer activity (Anastasiou et al., 2011; Christofk et al., 2008a; Qi et al.,

2017; Anastasiou et al., 2012; Wang et al., 2017a; Wang et al., 2017b; Lim et al., 2016;

Hitosugi et al., 2009).

Multiple allosteric inputs in the context of intracellular concentrations
of allosteric effectors and other modifications
Our findings also highlight the importance of interpreting allosteric effects detected in vitro in the

context of intracellular concentrations of the respective effectors. Reversible binding of FBP to

PKM2 in vitro is a well-studied regulatory mechanism. However, our findings reveal that FBP concen-

trations far exceed the concentration needed for full saturation of PKM2 and, under steady-state

cell growth conditions, a significant fraction of PKM2 is already bound to the activator FBP, even in

the context of other regulatory cues, such as PTMs, that may influence ligand binding. Furthermore,

our results showed that PKM2 inhibition by Phe can occur even under conditions of saturating FBP,

both with purified PKM2 and in cell lysates. Taken together, these observations indicate that inhibi-

tion by Phe constitutes a physiologically relevant regulatory mechanism that may contribute to main-

taining PKM2 at a low activity state, as is often found in cancer cells (Christofk et al., 2008a).

Intriguingly, other amino acids can bind the same pocket as Phe, including activators

Ser (Chaneton et al., 2012 ) and His (Yuan et al., 2018). Therefore, it is likely that amino acids com-

bined, rather than individually, control PKM2, as also supported by recent findings by Yuan et al.

(2018). Further work is warranted to understand how all of these cues are integrated by PKM2.

In summary, our findings reveal that allosteric inputs from distinct ligands are integrated to con-

trol the enzymatic activity of PKM2. This is analogous to multiple-input-single-output (MISO) control-

lers in control system engineering in which multiple transmission signals (allosteric ligands) are

integrated to a single receiving signal (enzyme activity) (Cosentino and Bates, 2011). It is likely that

many proteins can bind to multiple allosteric ligands that co-exist in cells. Whether a systems-control

ability in integrating the allosteric effects of multiple ligands with opposing functional signals is a

general property of other proteins is not known. Our work does not address the functional conse-

quences of such signal integration in cells. However, identification of mutations, using AlloHubMat,

that perturb allosteric responses to specific ligands, alone or in combination, provides an essential

means to study both the mechanistic basis of allosteric signal integration as well as the functional

consequences of combinatorial allosteric inputs on cellular regulation.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Protein
(Homo sapiens)

PKM2 N/A Uniprot ID:
P14618-1

Cell line
(Homo sapiens)

HCT116 ATCC, Manassas,
VA, USA

ATCC Cat#
CCL-247,
RRID:CVCL_0291

Cell line
(Homo sapiens)

LN229 ATCC, Manassas,
VA, USA

ATCC Cat#
CRL-2611,
RRID:CVCL_0393

Cell line
(Homo sapiens)

SN12C Kaelin Lab,
DFCI, Boston,
MA, USA

RRID:CVCL_1705

Antibody Rabbit Anti-PKM2,
Clone D78A4

Cell Signaling
Technology

Cat# 4053;
RRID:AB_
1904096

1:1000 in 5%
BSA/T-BST

Recombinant
DNA reagent

pET28a-His-PKM2(WT) Anastasiou
et al., 2011

RRID:
Addgene_42515

Available from
AddGene
(Cambridge MA, USA). See
Supplementary file 2 for PKM2 sequence.

Recombinant
DNA reagent

pET28a-His-PKM2(I124G) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(F244V) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(R489L) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(K305Q) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(F307P) This study 1-step mutagenesis
using pET28a-His-PKM2
(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(A327S) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Recombinant
DNA reagent

pET28a-His-PKM2(C358A) This study 1-step mutagenesis
using pET28a-His-
PKM2(WT) as template

Peptide ITLDNAYMEK
[13C6

15N2]
This study Synthesised by the

Crick Peptide Synthesis STP

Peptide GDLGIEIPAEK
[13C6

15N2]
This study Synthesised by the

Crick Peptide Synthesis STP

Peptide APIIAVTR[13C6
15N4] This study Synthesised by the

Crick Peptide Synthesis STP

Peptide LFEELVR[13C6
15N4] This study Synthesised by the

Crick Peptide
Synthesis STP

Peptide LAPITSDPTEATA
VGAVEASFK[13C6

15N2]
This study Synthesised by the

Crick Peptide
Synthesis STP

Chemical
compound

Potassium phospho
enolpyruvate
(2,3-13C2)

Cambridge
Isotope
Laboratories

CLM-3398-PK

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound

D-fructose 1,6-
bisphosphate
sodium salt
hydrate (U-13C6)

Cambridge
Isotope
Laboratories

CLM-8962-PK

Chemical
compound

L-Phe (ring-13C6) Cambridge
Isotope
Laboratories

CLM-1055-PK

Chemical
compound

L-Ser (13C6) Cambridge
Isotope
Laboratories

CLM-1574-H

Software sa_encode.R This study Software to encode
trajectory into
stacked alignment
of structural
alphabet
strings (Kleinjung,
2019; copy archived at
https://github.com/
elifesciences-publications/ALLOHUBMAT)

Software kabsch.R This study Kabsch
superpositioning
routine (Kleinjung,
2019; copy archived at
https://github.com/
elifesciences-publications/ALLOHUBMAT)

Software MI.R This study Mutual Information
and other entropy
metrics between
two character
vectors, here
intended for
two
alignment
columns (Kleinjung,
2019; copy archived at
https://github.com/
elifesciences-publications/ALLOHUBMAT)

Software Xcalibur
QualBrowser

Thermo Fisher
Scientific
(Waltham MA, USA)

N/A

Software Tracefinder v4.1 Thermo Fisher
Scientific
(Waltham MA, USA)

N/A

Metabolite analyses by liquid chromatography-mass spectrometry (LC-
MS)
The LC-MS method was adapted from Zhang et al. (2012). Briefly, samples were injected into a Dio-

nex UltiMate LC system (Thermo Scientific; Waltham MA, USA) with a ZIC-pHILIC (150 mm x 4.6

mm, 5 mm particle) column (Merck Sequant; MilliporeSigma, Burlington MA, USA). A 15 min elution

gradient of 80% Solvent A to 20% Solvent B was used, followed by a 5 min wash of 95:5 Solvent A

to Solvent B and 5 min re-equilibration, where Solvent B was acetonitrile (Optima HPLC grade;

Sigma Aldrich, St. Louis MS, USA) and Solvent A was 20 mM ammonium carbonate in water (Optima

HPLC grade; Sigma Aldrich, St. Louis MS, USA). Other parameters were used as follows: injection

volume 10 mL; autosampler temperature 4˚C; flow rate 300 mL/min; column temperature 25˚C. MS

was performed using positive/negative polarity switching using an Q Exactive Orbitrap (Thermo Sci-

entific; Waltham MA, USA) with a HESI II (Heated electrospray ionization) probe. MS parameters

were used as follows: spray voltage 3.5 kV and 3.2 kV for positive and negative modes, respectively;
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probe temperature 320˚C; sheath and auxiliary gases were 30 and 5 arbitrary units, respectively; full

scan range: 70 m/z to 1050 m/z with settings of AGC target (3 � 106) and mass resolution as Bal-

anced and High (70,000). Data were recorded using Xcalibur 3.0.63 software (Thermo Scientific; Wal-

tham MA, USA). Before analysis, Thermo Scientific Calmix solution was used as a standard to

perform mass calibration in both ESI polarities and ubiquitous low-mass contaminants were used to

apply lock-mass correction to each analytical run in order to enhance calibration stability. Parallel

reaction monitoring (PRM) acquisition parameters: resolution 17,500, auto gain control target

2 � 105, maximum isolation time 100 ms, isolation window m/z 0.4; collision energies were set indi-

vidually in HCD (high-energy collisional dissociation) mode. Quality control samples were generated

by taking equal volumes of each sample and pooling them, and subsequently analysing this mix

throughout the run to assess the stability and performance of the system. Qualitative and quantita-

tive analysis was performed using Xcalibur Qual Browser and Tracefinder 4.1 software (Thermo Sci-

entific; Waltham MA, USA) according to the manufacturer’s workflows.

Cell lines and cell culture
HCT116 and LN229 were obtained from the American Type Culture Collection (ATCC, Manassas,

VA, USA). SN12C were a gift from William Kaelin (Harvard, Boston, USA). All cell lines were cultured

in RPMI 1640 medium (Gibco, 31840) supplemented with 10% foetal calf serum (FCS), 2 mM gluta-

mine, 100 U/mL penicillin/streptomycin in a humidified incubator at 37˚C, 5% CO2. All cell lines were

tested mycoplasma-free and cell identity was confirmed by short tandem repeat (STR) profiling by

The Francis Crick Institute Cell Services Science Technology Platform.

Metabolite extraction and cell volume calculations
24 hr prior to the experiment, cells were seeded in 6 cm dishes in RPMI media containing 10% dia-

lysed FCS (3500 Da MWCO, PBS used for dialysis). An hour prior to treatment, the media were

refreshed, and then changed again at t = 0 to RPMI with or without 11 mM glucose; or to HBSS

(H2969-500mL; Sigma Aldrich, St. Louis MS, USA) with or without supplemented amino acids as

described in the text. Four technical replicate plates were used for each condition, and 2–3 plates

for each cell line were used to count cells and measure mean cell diameter which was then used to

determine cell volume in order to estimate intracellular concentrations. After 1 hr of treatment,

plates were washed twice with ice-cold PBS, and 725 ml of dry-ice-cold methanol was used to quench

the cells. Plates were scraped and contents were transferred to Eppendorf tubes on ice containing

180 ml H2O and 160 ml CHCl3. A further 725 mL methanol was used to scrape each plate and added

to the same Eppendorf. Samples were vortexed and sonicated in a cold sonicating water bath 3

times for 8 mins each time. Extraction of metabolites was allowed to proceed at 4˚C overnight,

before spinning down precipitated material and then drying down supernatant. To split polar and

apolar phases, dried metabolites were resuspended in a 1:3:3 mix of CHCl3/MeOH/H2O (total vol-

ume of 350 ml). Polar metabolites in the aqueous phase were then analysed by LC-MS. To enable

absolute quantification of metabolites of interest, known quantities of 13C-labelled versions of those

metabolites were added into lysates, all purchased from Cambridge Isotopes (Tewksbury MA, USA).

Previously determined cell numbers and volumes were then used to determine intracellular

concentrations.

Metabolite Formula Exact mass Pos. mode M/z Neg. mode M/z Mode used RT (min)

FBP C6H14O12P2 339.99611 341.00394 338.98829 neg. 13.42

13C6-FBP
13C6H14O12P2 346.01621 347.02404 345.00839 neg. 13.42

PEP C3H5O6P 167.98241 168.99023 166.97458 neg. 13.58

13C2-PEP
13C2C1H5O6P 169.98911 170.99693 168.98128 neg. 13.58

Ser C3H7NO3 105.0426 106.05043 104.03478 pos. 13.14

13C3-Ser
13C3H7NO3 108.05265 109.06048 107.04483 pos. 13.14

Phe C9H11NO2 165.07899 166.08681 164.07116 pos. 9.7

13C6-Phe
13C63H11NO2 171.09909 172.10691 170.09126 pos. 9.7
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Targeted proteomics
Trypsin digestion – Cell extracts containing 50 mg of total protein were precipitated by adding six

volumes of ice-cold acetone (pre-cooled to �20˚C). The samples were allowed to precipitate over-

night at �20˚C and centrifuged at 8000 g, for 10 min at 4˚C, to collect the pellet. The supernatant

was carefully decanted and the residual acetone was evaporated at ambient temperature. The pellet

was dissolved in 50 mM TEAB, reduced with 10 mM DTT and alkylated with 20 mM iodoacetamide.

After alkylation, the proteins were digested with 1 mg of trypsin overnight at 37˚C. After digestion,

each sample was spiked with a mixture of five heavy labelled standards. For MS analysis, 1 mg of

peptides were loaded onto 50 cm Easy Spray C18 column (Thermo Scientific; Waltham MA, USA).

Analysis of peptides by LC-tandem MS (LC-MS/MS) – Mass spectrometric analysis was performed

using a Dionex U3000 system (SRD3400 degasser, WPS-3000TPL-RS autosampler, 3500RS nano

pump) coupled to a QExactive electrospray ionisation hybrid quadruole-orbitrap mass spectrometer

(Thermo Scientific; Waltham MA, USA). Reverse phase chromatography was performed with a binary

buffer system at a flow rate of 250 nL/min. Mobile phase A was 5% DMSO in 0.1% formic acid and

mobile phase B was 5% DMSO, 80% acetonitrile in 0.1% formic acid. The digested samples were run

on a linear gradient of solvent B (2–35%) in 90 min, the total run time including column conditioning

was 120 min. The nanoLC was coupled to a QExactive mass spectrometer using an EasySpray nano

source (Thermo Scientific; Waltham MA, USA). The spray conditions were: spray voltage + 2.1 kV,

capillary temperature 250˚C and S-lens RF level of 55. For the PRM (parallel reaction monitoring)

experiments, the QExactive was operated in data independent mode. A full scan MS1 was measured

at 70,000 resolution (AGC target 3 � 106, 50 ms maximum injection time, m/z 300–1800). This was

followed by ten PRM scans triggered by an inclusion list (17,500 resolution, AGC target 2 � 105, 55

msec maximum injection time). Ion activation/dissociation was performed using HCD at normalised

collision energy of 28.

Data analysis of PRM – Peptides to be targeted in the PRM-MS analysis were selected previously

by analysing trypsin digested cell extracts from the three cell lines of interest. Peptides providing a

good signal and identification score representing the two PKM isoforms (PKM1/2) were selected for

the analysis. The corresponding heavy isotope-labelled standards were synthesised in-house. The

PRM method was developed for the QExactive using Skyline 4.1.0.18169. The heavy labelled pep-

tide standards were used to create the precursor (inclusion) list. When measuring the abundance of

PKM1/2 in the cell extracts signal extraction was performed on + 2 precursor ions for both heavy

and light forms of the peptides. A peptide was considered identified if at least four overlapping tran-

sitions were detected. Quantitation was performed using MS2 XICs where the top three transitions

were summed and used for quantitation. Data processing was performed with Skyline which was

used to generate peak areas for both light and heavy peptides. Extracted ion chromatograms were

visually inspected and peak boundaries were corrected and potential interferences removed. The

data was subsequently exported in Excel to calculate absolute quantities of the ‘native’ peptides

and to determine reproducibility (CV %) of the measurements. See Supplementary file 1. Data are

available via ProteomeXchange with identifier PXD010334.

Recombinant protein expression and purification
Allosteric hub mutant plasmids were generated through a single-step PCR reaction using hot-start

KOD polymerase (Merck Millipore; Burlington MA, USA) and a pET28a-His-PKM2(WT) template plas-

mid (# 42515 AddGene; Cambridge MA, USA). Plasmids were sequence-verified by Sanger Sequenc-

ing (Source Bioscience; Nottingham, UK). 40 ng of pET28a-His-PKM2 (wild-type or mutant) was

transformed into 50 mL E. coli BL21(DE3)pLysS (60413; Lucigen, Middleton WI, USA). Colonies were

inoculated in LB medium at 37˚C and grown to an optical density of 0.8 AU (600 nm), at which point

expression of the N-terminal His6-PKM2(WT) was induced with 0.5 mM isopropyl b-D-1 thiolgalacto-

pyranoside (Sigma Aldrich, St. Louis MS, USA). The culture was grown at 24˚C for 16–18 hr. Cells

were harvested by centrifugation and the pellet was re-suspended in cell lysis buffer (50 mM Tris-

HCl pH 7.5, 10 mM MgCl2, 200 mM NaCl, 100 mM KCl and 10 mM imidazole) supplemented with

the EDTA-free Complete protease inhibitor cocktail (Sigma Aldrich, St. Louis MS, USA). Cells were

lysed by sonication at 4˚C. DNase was added at 1 mL/mL before centrifugation of the lysate at 20000

g for 1 hr at 4˚C. The supernatant (the water-soluble cell fraction) was loaded onto a HisTrap HP

nickel-charged IMAC column (GE; Boston MA, USA) and was washed with five column-volumes of
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wash buffer [10 mM HEPES pH 7.5, 10 mM MgCl2, 100 mM KCl, 10 mM imidazole and 0.5 mM tris-

2-carboxyethyl phosphine hydrochloride (TCEP; Sigma Aldrich, St. Louis MS, USA)]. After consecu-

tive wash steps, the protein was eluted from the IMAC column with elution buffer buffer (10 mM

HEPES pH 7.5, 10 mM MgCl2, 100 mM KCl, 250 mM imidazole and 0.5 mM TCEP). The N-terminal

His6-epipope tag was cleaved with at 4˚C for ~ 18 hr in cleavage buffer (50 mM Tris-HCl pH 8.0, 10

mM CaCl2) with recombinant bovine thrombin (see Supplementary file 2), immobilised on agarose

beads. Purified recombinant PKM2 was eluted from the thrombin-agarose column. Affinity purifica-

tion was followed by size-exclusion chromatography on a HiLoad 16/60 Superdex 200 pg column

(28-9893-35; GE, Boston MA, USA) at 500 mL/min flow rate with protein storage buffer (10 mM

HEPES pH 7.5, 10 mM MgCl2, 100 mM KCl, and 0.5 mM TCEP) at 4˚C. Eluted PKM2 was collected

and concentrated to a final protein concentration of ~7 mg/mL with centrifugal concentrating filters

(Vivaspin 20, 10 kDa molecular-weight cut-off, 28-9323-60; GE, Boston MA, USA). Protein purity was

assessed by SDS-PAGE. The final concentration of the protein was obtained by measuring the fluo-

rescence absorbance spectrum between 240 nm and 450 nm. The concentration was calculated

using a molar extinction coefficient of 29,910 M�1 cm�1 at 280 nm.

Quantification of residual D-fructose 1,6-bisphosphate co-purified with
recombinant PKM2
Molar amounts of D-fructose 1,6-bisphosphate (FBP) that co-purified with recombinant PKM2 were

measured using an aldolase enzyme assay that comprises three coupled enzymatic steps (Figure 2—

figure supplement 1A). The reaction mixture contained 20 mM Tris-HCl pH 7.0, 50 mM NADH, 0.7

U/mL glycerol 3-phosphate dehydrogenase (G-3-PDH), 7 U/ml triose phosphate isomerase (TPI) and

the supernatant of 5–50 mM purified recombinant PKM2 after heat-precipitation at 90˚C. G-3-PDH

and TPI from rabbit muscle were purchased as a mixture (50017, Sigma Aldrich; St. Louis MS, USA).

The reaction was initiated by adding between 0.008–0.016 U/ml rabbit muscle aldolase (A2714,

Sigma Aldrich; St. Louis MS, USA) to a total reaction volume of 100 mL. Two molecules of NADH are

oxidised for each molecule of FBP consumed. NADH oxidation was monitored over time at 25˚C in a

1 mL quartz cuvette (1 cm path-length) by measuring the NADH absorption signal at 340 nm using a

Jasco V-550 UV-Vis spectrophotometer. For the assay calibration, known amounts of FBP from a

powder stock were used instead of the heat-precipitated PKM2 supernatant.

Measurement of PKM2 steady-state enzyme kinetics
Steady-state enzyme kinetic measurements of PKM2 were performed using a Tecan Infinite 200-Pro

plate reader (Tecan, Männedorf Zürich, Switzerland). Initial velocities for the forward reaction (phos-

phoenolpyruvate and adenosine diphosphate conversion to pyruvate and adenosine triphosphate)

were measured using a coupled reaction with rabbit muscle lactate dehydrogenase (Sigma Aldrich,

St. Louis MS, USA). The reaction monitored the oxidation of NADH ("340 nm ¼ 6220 M�1cm�1) at 37 ˚C

in a buffer containing 10 mM Tris-HCl pH 7.5, 100 mM KCl, 5 mM MgCl2 and 0.5 mM TCEP. Initial

velocity versus substrate concentrations for phosphoenolpyruvate were measured in the absence

and in the presence of allosteric ligands, in a reaction buffer containing 180 mM NADH and 8 U lac-

tate dehydrogenase. Reactions were initiated by adding phosphenolpyruvate (PEP) at a desired con-

centration, with adenosine diphosphate (ADP) at a constant concentration of 5 mM. A total protein

concentration of 5 nM PKM2 was used for all enzyme reactions, in a total reaction volume of 100 mL

per well. Kinetic constants were determined by fitting initial velocity curves to Michaelis-Menten

steady-state kinetic models.

Measurements of FBP binding to PKM2
The affinity of PKM2 for FBP was measured by titrating small aliquots of a concentrated stock solu-

tion of FBP into 5 mM recombinant PKM2 and recording intrinsic fluorescence emission spectra of

PKM2. Spectra were recorded using a Jasco FP-8500 spectrofluorometer with an excitation wave-

length of 280 nm (bandwidth of 2 nm) and emission scanned from 290 nm to 450 nm (bandwidth of

5 nm) in a 0.3 cm path length quartz cuvette (Hellma Analytics; Muellheim, Germany) at 20˚C. The

ratio of the emission intensities at 325 and 350 nm was plotted against the concentration of the

titrant. Binding curves were fit to a model assuming a 1:1 binding stoichiometry (1 FBP molecule per

monomer of PKM2) with a non-linear least squares regression fit of the following equation:
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Sobs ¼
SP1 P½ �þ SPL1 PL½ �
SP2 P½ �þ SPL2 PL½ �

with P½ �= P0½ �– PL½ � and PL½ � calculated using

PL½ � ¼
KDþ P0½ �þ L0½ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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A

where the spectral signal Sobs is the ratio of fluorescence emissions at wavelengths 1 (325 nm) and 2

(350 nm); SP1, SP2, SPL1 and SPL2 are the fluorescence extinction coefficients of the free protein P and

the protein-ligand complex PL at wavelengths 1 and 2, respectively; P0½ � and L0½ � are total concentra-

tions of protein and ligand, respectively; and KD is the apparent dissociation constant. The total free

protein concentration ( P0½ �) was corrected by subtracting the percentage of protein pre-bound to

co-purified FBP, as determined from the aldolase assay.

Ideally, the concentrations of protein and ligand used for binding experiments should be in the

same range as the measured KD. Microscale thermophoresis (MST, see below), which would offer

sufficient sensitivity to use lower PKM2 concentrations, did not reveal a change in the thermopho-

retic properties of PKM2 upon FBP binding. Owing to the low quantum yield of intrinsic PKM2 fluo-

rescence, measurement of FBP binding to PKM2 by fluorometry, necessitated the use of high PKM2

concentrations relative to the KD
FBP, in order to obtain measurements with acceptable signal-to-

noise ratios. However, when [P0] >> KD, the solution of the above equation for KD is associated with

a high numerical error. In order to use the estimated KD
FBP, despite this limitation, to calculate the

fractional occupancy of PKM2 by FBP in cells, we derived the average KD
FBP value from ten indepen-

dent replicate FBP titration measurements and propagated the errors from these measurements

using the equation:

sKD ¼KD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

sK i
D

K i
D

� �2

v

u

u

t

The propagated error was then added to the average KD
FBP to obtain an upper limit

estimate. The KD
FBP shown in Table 1 was determined in a separate experiment.

Measurements of phenylalanine (Phe) and serine (Ser) binding to PKM2
The binding of Phe and Ser to PKM2 was measured using microscale thermophoresis (MST) on a

Monolith NT.115 instrument (Nanotemper Technologies; Munich, Germany). First, PKM2 was fluores-

cently labelled with an Atto-647 fluorescein dye (NT-647-NHS; Nanotemper Technologies; Munich,

Germany). 250 mL of 20 mM recombinant PKM2 was labelled with 250 mL of 60 mM dye in a buffer

containing 100 mM bicarbonate pH 8.5% and 50% DMSO for 30 min at room temperature in the

dark. Free dye was separated from labelled PKM2 using a NAP-5 20 ST size-exclusion column (GE;

Boston MA, USA). Labelled PKM2, at a constant concentration of 30 nM, was titrated with either

Phe (up to 5 mM) or Ser (up to 10 mM) in a buffer containing 10 mM HEPES pH 7.5, 100 mM KCl, 5

mM MgCl2, 0.5 mM TCEP and 0.1% tween-20. Prior to each thermophoresis measurement, capillary

scans were obtained to determine sample homogeneity. Binding curves were fit assuming a 1:1

stoichiometry.

Analysis of the steady-state kinetics of PKM2 enzyme activity inhibition
by Phe
In order to assign the mechanism with which Phe inhibition of PKM2 occurs, in the absence and in

the presence of FBP, the dependence of the enzyme kinetic constants KM , kcat and
kcat
KM

on the concen-

tration of Phe were determined. Steady-state measurements of PKM2 enzyme activity (as described

above) were performed by titrating the substrate PEP at several different concentrations of Phe and

a constant concentration of 5 mM ADP. In order to investigate the allosteric K-type effect of Phe on

enzyme affinity for its substrate PEP, a single-substrate-single-effector paradigm was assumed.
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Under equilibrium conditions the rate equation of the general modifier mechanism reveals apparent

values of KM and kcat:

v

E½ �t
¼

k2
1þb

x½ �
aKx
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aKx

KM

1þ x½ �
Kx

1þ x½ �
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v

E½ �t
¼ k

app
cat S½ �

K
app
M þ S½ �

where E½ �t is the concentration of enzyme active sites, x is Phe, S is the substrate (phosphoenolpyr-

uvate), Kx is the dissociation constant of the specific component of the enzyme mechanism, a is the

reciprocal allosteric coupling constant and b is the factor by which the inhibitor affects the catalytic

rate constant k2 (Baici, 2015). The kinetic constants K
app
M , kappcat and kcat

KM

� �app

on the concentration of

the modifier (X; Phe) can then be written as follows (Baici, 2015):
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Rate curves measuring the dependence of [Phe] on the three kinetic constants were fit to the

equations above to solve for the constants KS, Kx, a and b. The kinetic mechanism was assigned

based on the topology of rate-modifier mechanisms detailed by Baici (2015).

Native Mass Spectrometry
PKM2 samples were buffer exchanged into 200 mM ammonium acetate (Fisher Scientific; Loughbor-

ough, UK) using Micro Bio-Spin six chromatography columns (Bio-Rad Laboratories; Hercules CA,

US). Samples were diluted to a final protein concentration of between 5 mM and 20 mM depending

on the experiment. Ligands were dissolved in 200 mM ammonium acetate and added to the protein

prior to MS analysis.

Native mass spectrometry experiments were performed across three different instruments: a

Ultima Global (Micromass; Wilmslow, UK) extended for high mass range, a modified Synapt G2

(Waters Corp, Wilmslow, UK) where the triwave assembly was replaced with a linear drift tube, and a

Synapt G2-Si. Samples were analysed in positive ionization mode using nano-electrospray ionization,

in which the sample is placed inside a borosilicate glass capillary (World Precision Instruments; Ste-

venage, UK) pulled in-house on a Flaming/Brown P-1000 micropipette puller (Sutter Instrument

Company; Novato CA, USA) and a platinum wire is inserted into the solution to allow the application

of a positive voltage. All voltages used were kept as low as possible to achieve spray while keeping

the protein in a native-like state. Typical conditions used were capillary voltage of ~ 1.2 kV, cone

voltage of ~ 10 V and a source temperature of 40˚C.

Ion mobility mass spectrometry (IM-MS)
IM-MS measurements were performed on an in-house modified Synapt G2 in which the original tri-

wave assembly was replaced with a linear drift tube with a length of 25.05 cm. Drift times were mea-

sured in helium at a temperature of 298.15 K and pressure of 1.99–2.00 torr. Conditions were kept

constant across each run. Measurements were performed at least twice for each sample and aver-

aged. Mobilities for all charge states were converted into rotationally averaged collision cross sec-

tions (DTCCSHe) using the Mason-Schamp equation (Revercomb and Mason, 1975), and further
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converted into a single global collision cross section distribution per species which all charge states

contribute towards in proportion to their intensity in the mass spectrum (Pacholarz et al., 2014).

Surface-Induced dissociation (SID)
SID was performed on a prototype instrument at Waters Corp (Wilmslow, UK). Briefly, sample was

ionized via nano-ESI and the species of interest was mass selected in the quadrupole. Ions were then

accelerated towards the gold surface of an SID device and underwent a single, high energy collision.

Fragments were refocused and mass analysed.

Molecular dynamics simulations in explicit solvent
Molecular dynamics (MD) simulations of tetrameric human PKM2 were performed with the GRO-

MACS 5.2 engine (Hess et al., 2008), using the Gromos 53a6 force field parameter

sets (Schmid et al., 2011) and SPC-E water molecules. The input coordinates for PKM2apo were

extracted from the Protein Data Bank crystal structure 3bjt (Christofk et al., 2008a) and coordinates

for PKM2FBP were extracted from the crystal structure 3u2z (Anastasiou et al., 2012). The force-field

parameters for FBP were determined using a quantum mechanical assignment of the partial charges

using the ATB server (Malde et al., 2011). Structures were prepared as previously

described (Gehrig et al., 2017). Briefly, structures were solvated in a dodecahedral period box, such

that the distance between any protein atom and the periodic boundary was a minimum of 1.0 nm.

The system charge was neutralised by adding counter ions to the solvent (Na+ and Cl-). Equations of

motion were integrated using the leap-frog algorithm (Berendsen et al., 1984) with a two fs time

step. The system was equilibrated for five ns in the NVT ensemble at 300 K and 1 bar. This was fol-

lowed by a further five ns equilibration in the NPT ensemble. Following equilibration, five replicate

production run simulations were performed for 400 ns under constant pressure and temperature

conditions, 1 bar and 300 K. Temperature was regulated using the velocity-rescaling

algorithm (Bussi et al., 2007), with a coupling constant of 0.1. Covalent bonds and water molecules

were restrained with the LINCS and SETTLE methods, respectively. Electrostatics were calculated

with the particle mesh Ewald method, with a 1.4 nm cut-off, a 0.12 nm FFT grid spacing and a four-

order interpolation polynomial for the reciprocal space sums.

Prediction of allosteric hub residues with AlloHubMat
MD trajectories were coarse-grained with the M32K25 structural alphabet using the

GSAtools (Pandini et al., 2013). From the fragment-encoded trajectory, the mutual information

between each combination of fragment positions In Ci; Cj

� �
 �

was determined for multiple replicate

400 ns trajectories for PKM2apo and PKM2FBP. Each trajectory was sub-divided into 20 non-overlap-

ping blocks with an equal time length of 20 ns each. For each trajectory block (B), correlated confor-

mational motions for all pairs of fragments (i, j) were calculated as the normalised mutual

information between each fragment pair in the fragment-encoded alignment InB Ci; Cj

� �

:

InB Ci; Cj

� �

¼ IB Ci; Cj

� �

� "B Ci; Cj

� �

HB Ci; Cj

� �

where the columns of the structural fragment alignment are given by Ci and Cj, IB Ci; Cj

� �

is the

mutual information, "B Ci; Cj

� �

is the expected finite size error and HB Ci; Cj

� �

is the joint

entropy (Pandini et al., 2012). In this framework, the mutual information is given by:

IB Ci; Cj

� �

¼
XX

p ci; cj
� �

log
p ci; cj
� �

p cið Þ p cið Þ

where the two columns in the structural alphabet alignment Ci and Cj are random variables with a

joint probability mass function p ci; cj
� �

, and marginal probability mass functions p cið Þ and p cj
� �

. The

joint entropy H Ci; Cj

� �

is defined as:

HB Ci; Cj

� �

¼ �
XX

p ci; cj
� �

logp ci; cj
� �

The discrete mutual information calculated for finite state probabilities can be significantly
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affected by random and systematic errors. In order to account for this, we subtract an error term

"B Ci; Cj

� �

given by:

"B Ci; Cj

� �

¼
B�
Ci; Cj

� B�
Ci
� B�

Cj
þ 1

2N

where N is the sample size and B�
Ci ; Cj

, B�
Ci

and B�
Cj

are the number of states with non-zero probabili-

ties for CiCj, Ci and Cj, respectively (Roulston, 1999).

With the goal of identifying conformational sub-states and their respective probabilities from

each of the trajectories, eigenvalue decomposition was used to compute the geometric evolution of

the protein backbone correlations (given by the mutual information between structural-alphabet

fragments). The elements of the mutual information matrix are proportional to the square of the dis-

placement, so the square root of the matrix is required to examine the extent of the matrix overlap:

d A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr A
1

2 � B
1

2

� �2
h i

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr AþB� 2A
1

2B
1

2

� �

q

¼
X

3N

i¼1

lAi þlBi
� �

� 2

X

3N

i¼1

X

3N

j¼1

lAi þlBi
� �

1

2
v
A
i þ v

B
i

� �2

" #1

2

WA;B ¼ 1� d A;Bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trAþ trB
p

where lAi and lBi denote the eigenvalues and v
A
i and v

B
i the eigenvectors of mutual information matri-

ces A and B, N is the number of structural alphabet fragments. The covariance matrix overlap (
A;B)

ranges between 0 when matrices A and B are orthogonal, and 1 when they are identical.

Using the approach detailed above, the covariance overlap (
A;B) was determined from time-con-

tiguous mutual information matrices extracted from non-overlapping trajectory blocks. Conforma-

tional sub-states were identified as containing a high degree of similarity between time-contiguous

mutual information matrices. Using this approach, an ensemble-averaged mutual information matrix

for PKM2apo and for PKM2FBP was determined by averaging over all mutual information matrices

identified from each conformational sub-state of the multiple replicate simulations of both liganded

states.

The above approach made it possible to subtract the mutual information matrices of correlated

motions of the holo- from the apo-state. A difference mutual information matrix was constructed by

subtracting the ensemble-averaged matrix of PKM2FBP from PKM2apo. Allosteric hub fragments

(AlloHubFs) were identified from this difference mutual information matrix, as those fragments with

the highest log2-fold change in the coupling strength and a p-value associated with the change of

less than 0.01.

Estimation of the configurational entropy from explicit solvent MD
simulations
The configurational entropy of MD trajectories of PKM2apo and PKM2FBP were estimated using a for-

mulism proposed by Schlitter (Schlitter, 1993). For a classical-mechanical system the configurational

entropy is given by:

S
0 ¼ 1

kBT
ln 1þ kBTe

2

h2
Msij

� �

where

h¼ h

2p
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kB is the Boltzmann constant, T is temperature, e is Euler’s number, h is Plank’s constant and

Msij is the mass-weighted covariance matrix of the form:

sij ¼ xi� xih ið Þ xj� xj

 �� �
 �

where xi and xj are positional coordinates of the MD trajectory in Cartesian space.

Theoretical collision cross section calculations
Structural models of the 15 + monomer, 23 + A-A’ and C-C’ dimers and 33 + tetramers were gener-

ated from the PDB crystal structure 3bjt (Christofk et al., 2008b) and simulated in vacuo using the

OPLS-AA/L force-field parameter set (Kaminski et al., 2001). Systems were minimised using the

Steepest Descent algorithm for 5 � 106 steps, with a step size of 1 J mol�1 nm�1 and a maximal

force tolerance of 100 kJ mol�1 nm�1. Next, systems were equilibrated at consecutively increasing

temperatures (100 K, 200 K and 300 K) each for five ns, with the Berendsen temperature coupling

method (Berendsen et al., 1984) and an integration step size of 1 fs. Following successful equilibra-

tion, 10 ns simulations were performed with an integration step size of 2 fs. Pressure coupling and

electrostatics were turned off. Temperature was held constant at 300 K using the Berendsen cou-

pling method. The most prevalent structures were extracted using the GROMOS clustering

algorithm (Daura et al., 2001). Theoretical collision cross sections were calculated for each clustered

structure, using the projection approximation method (as outlined in Ruotolo et al., 2008) and using

the exact hard sphere scattering model (as implemented in the EHSSrot

software; Shvartsburg et al., 2007).

Circular dichroism (CD) spectroscopy
Far-UV circular dichroism (CD) spectra were recorded using a JASCO J-815 spectrometer (Jasco;

Oklahoma City, OK USA) from 200 nm to 260 nm with 300 mL of 0.2 mg/mL PKM2 ion a quartz

cuvette with a path length of 0.1 cm. Measurements were performed at a constant temperature of

20˚C. Raw data in units of mdeg were converted to the mean residue CD extinction co-efficient, in

units of M�1 cm�1:

"mrw ¼ S �MRW

32980 � c �L

where c is the protein molar concentration, L is the path length (cm), S is the raw measurement of

CD intensity (in units of mdeg) and MRW is the molecular weight of the protein divided by the num-

ber of amino acids in the protein.

Calculation of the allosteric coupling co-efficient for wild-type PKM2
and the AlloHub mutants
Enzyme activity measurements of the PKM2(WT) and the AlloHubMs were performed at 37 ˚C using

a lactate dehydrogenase assay, as previously described. Initial velocities were measured over a range

of phosphoenolpyruvate concentrations, with a constant concentration of 5 mM ADP. Measurements

were repeated following pre-incubation of the PKM2 variant with saturating concentrations of FBP (2

mM for all variants, with the exception of R489L which was incubated with 50 mM FBP). The allosteric

coupling constant (Q) was calculated to determine the coupling between FBP binding and catalysis,

as previously described (Reinhart, 2004; Reinhart, 1983; Reinhart, 1988):

Q¼ Kia

Kia=x

where Kia and Kia=x are equilibrium dissociation constants for the binding of the substrate (a) in the

absence or presence, respectively, of the allosteric effector x. When Q> 1, there is positive allosteric

coupling between the binding of x to the protein and the binding of A to the substrate binding

pocket. Conversely, when Q< 1, there is negative coupling between the A and x sites. Measurements

were repeated after addition of 400 mM Phe to the protein variants that had been pre-incubated

with FBP, and activity was measured over a range of substrate concentrations. This facilitated the

calculation of the coupling constants between the Phe, FBP and substrate binding sites.
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