
RESEARCH ARTICLE

Cyclic AMP signalling controls key

components of malaria parasite host cell

invasion machinery

Avnish PatelID
1☯, Abigail J. Perrin2☯, Helen R. FlynnID

3, Claudine BissonID
4,

Chrislaine Withers-MartinezID
2, Moritz TreeckID

5, Christian FlueckID
1, Giuseppe Nicastro6,

Stephen R. Martin6, Andres RamosID
7, Tim W. Gilberger8, Ambrosius P. SnijdersID

3,

Michael J. BlackmanID
1,2*, David A. BakerID

1*

1 Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom,

2 Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom, 3 Mass

Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom, 4 Crystallography,

Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom, 5 Signalling in

Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom, 6 Macromolecular

Structure Laboratory, The Francis Crick Institute, London, United Kingdom, 7 Institute of Structural and

Molecular Biology, University College London, London, United Kingdom, 8 Bernhard-Nocht Institute for

Tropical Medicine, Hamburg, Germany

☯ These authors contributed equally to this work.

* david.baker@lshtm.ac.uk (DB); mike.blackman@crick.ac.uk (MB)

Abstract

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in

malaria parasites is poorly understood. We have investigated the role of cAMP in asexual

blood stage development of Plasmodium falciparum through conditional disruption of ade-

nylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase

(PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte

invasion, whilst key developmental steps that precede invasion still take place in the

absence of cAMP-dependent signalling. We also show that another parasite protein with

putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not

play an essential role in blood stages. We identify and quantify numerous sites, phosphory-

lation of which is dependent on cAMP signalling, and we provide mechanistic insight as to

how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion

adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.

Introduction

Malaria kills over 400,000 people each year across the world. Despite significant reductions in

deaths and clinical cases of malaria between 2000 and 2015 [1], these numbers have now pla-

teaued, and efforts to eliminate the disease are threatened by the emergence of drug-resistant

Plasmodium strains. New interventions are urgently needed to strengthen malaria control and

to prevent global malaria incidence and mortality rates from rising again. Malaria pathology is

caused by the asexual blood stages of the parasite life cycle. In P. falciparum, the most lethal
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species of malaria parasite, blood stage development is characterised by a 48-h cycle. This

begins with a rapid invasion step, in which merozoites enter erythrocytes and convert into

ring-stage forms within a membrane-bound parasitophorous vacuole (PV). The ring forms

transform into trophozoites, which digest haemoglobin and begin replicating their DNA. The

resulting schizonts undergo segmentation to produce merozoites that burst out of the red cell

in a highly regulated process called egress. Within seconds to minutes of egress, merozoites

invade new host erythrocytes. An understanding of the molecular bases of the critical develop-

mental steps involved in egress and invasion is required to advise the rational design of much-

needed novel therapeutics targeting the malaria parasite.

Egress is triggered by elevated cyclic GMP (cGMP) levels that activate the single parasite

cGMP-dependent protein kinase (PKG) [2]. Over 100 sites in approximately 70 P. falciparum
schizont proteins are thought to be phosphorylated following PKG activation [3], but it is not

known which of these phosphorylation events are key to merozoite egress and subsequent

steps in the life cycle. PKG activity is required for the discharge of organelles known as exo-

nemes [2], releasing a proteolytic enzyme called subtilisin-like protease 1 (SUB1), which

cleaves a number of proteins that have major downstream roles in merozoite egress and inva-

sion [4–7]. PKG activity is also required for mobilisation of calcium from intracellular stores

[8] and the subsequent activation of calcium-dependent protein kinases (CDPKs). These in

turn are thought to be required for the discharge of a second set of apical organelles called

micronemes [9–11], which contain proteins with key roles in invasion.

Alongside these known roles of PKG in egress and ‘priming’ of merozoites for invasion, the

single parasite cyclic AMP (cAMP)-dependent protein kinase (PKA), composed of catalytic

and regulatory subunits respectively called PKAc and PKAr, is also thought to play a role in

invasion. Bioinformatic analyses of P. falciparum schizont and merozoite phosphoproteome

data have suggested the involvement of PKA-mediated signalling in a range of cellular pro-

cesses, including activation of a merozoite actinomyosin-based molecular motor required for

invasion [12,13]. Adenylyl cyclase beta (ACβ), an orthologue of the mammalian soluble adeny-

lyl cyclase, is thought to be the only enzyme by which asexual blood stage malaria parasites

synthesise cAMP and thereby activate PKA [14]; adenylyl cyclase alpha (ACα) is not expressed

in blood stage malaria parasites but is thought to have a role in liver cell invasion by sporozo-

ites [15]. Pharmacological inhibition of ACβ has been reported to prevent the release of cal-

cium from intracellular stores, thus inhibiting microneme secretion and invasion [16].

However, the findings of that study suggested that the observed cAMP-dependent increase in

cytosolic calcium was independent of PKA activity, instead operating through an exchange

protein directly activated by cAMP (EPAC), a molecule that in mammalian cells binds to

cAMP and triggers calcium release through interaction with the small G protein Ras-related

protein 1 (RAP1) and activation of a phosphatidylinositol-specific phospholipase C (PI-PLC)-

dependent pathway. On this basis, the authors designated a protein encoded in the P. falcipa-
rum genome (PF3D7_1417400), which contains putative cyclic nucleotide binding sites, as

PfEpac [16].

An essential step in erythrocyte invasion by the malaria merozoite is the formation of a

close association between the parasite and the erythrocyte surface known as the tight junction

or moving junction, which rapidly expands to form a doughnut-shaped structure, through

which the merozoite passes into the host cell [17]. Apical membrane antigen 1 (AMA1), a

micronemal integral membrane protein that is discharged onto the merozoite surface just

prior to invasion, is a key player in the formation of the tight junction. For this, the ectodo-

main of AMA1 forms adhesive interactions with rhoptry neck protein 2 (RON2), another par-

asite protein, which is secreted from a third set of secretory organelles called rhoptries into the

erythrocyte membrane [18–21]. In addition to this crucial role of its ectodomain, the short

Cyclic AMP signalling controls malaria parasite invasion

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000264 May 10, 2019 2 / 33

DAB), and Wellcome ISSF2 funding to the London

School of Hygiene & Tropical Medicine. The work

was also supported by funding to MJB from the

Francis Crick Institute (https://www.crick.ac.uk/),

which receives its core funding from Cancer

Research UK (FC001043; https://www.

cancerresearchuk.org), the UK Medical Research

Council (FC001043; https://www.mrc.ac.uk/), and

the Wellcome Trust (FC001043; https://wellcome.

ac.uk/). Super-resolution microscopy facilities

utilised in this study were supported by a Wolfson

Foundation grant PR/YLR/nw/21647 awarded to

the London School of Hygiene & Tropical

Medicine. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: ACα, adenylyl cyclase alpha; ACβ,

adenylyl cyclase beta; AMA1, apical membrane

antigen 1; ARO, armadillo repeats only protein; BiP,

binding immunoglobulin protein; BsdR, blasticidin

resistance selectable marker; cAMP, cyclic AMP;

cGMP, cyclic GMP; Cas9, CRISPR-associated

protein 9; CD, circular dichroism; CDPK, calcium-

dependent protein kinase; DDD, DHFR

destabilisation domain; DIC, differential

interference contrast; DiCre, dimerisable Cre-

recombinase; EBA175, erythrocyte binding antigen

175; EGFP, enhanced green fluorescent protein;

EPAC, exchange protein directly activated by

cAMP; E64, cysteine protease inhibitor; FV, food

vacuole; GAPDH, glyceraldehyde 3-phosphate

dehydrogenase; GAP45, glideosome-associated

protein 45; glmS, glucosamine-6-phosphate

riboswitch ribozyme; GST, glutathione S

transferase; HA3, triple hemagglutinin; hDHFR,

human dihydrofolate reductase selectable marker;

HSQC, heteronuclear single quantum coherence;

IFA, immunofluorescence assay; IMC, inner

membrane complex; MyoA, myosin A; NMR,

nuclear magnetic resonance; PDEβ,

phosphodiesterase beta; PfEpac, Plasmodium

falciparum EPAC; PI-PLC, phosphatidylinositol-

specific phospholipase C; PKA, cAMP-dependent

protein kinase; PKAc, catalytic subunit of cAMP-

dependent protein kinase; PKAr, regulatory subunit

of cAMP-dependent protein kinase; PKG, cGMP-

dependent protein kinase; PPM, parasite plasma

membrane; PV, parasitophorous vacuole; PVM,

parasitophorous vacuole membrane; p50,

processed 50 kDa form; RAMA, rhoptry-associated

membrane antigen; RAP, rapamycin; RAP1, ras-

related protein 1; RBC, red blood cell; sgRNA,

single guide RNA; Rh2b, reticulocyte binding

protein homologue 2b; ROM4, rhomboid protease

https://doi.org/10.1371/journal.pbio.3000264
https://www.crick.ac.uk/
https://www.cancerresearchuk.org
https://www.cancerresearchuk.org
https://www.mrc.ac.uk/
https://wellcome.ac.uk/
https://wellcome.ac.uk/


cytoplasmic tail of AMA1 appears to play an indispensable signalling or sensing role in inva-

sion, because AMA1 function is impaired by mutations that either remove the domain

completely or that prevent phosphorylation of specific cytoplasmic tail residues (Ser610 or

Thr613 in P. falciparum) [22–24]. More recent evidence suggests that this phosphorylation

occurs in an ordered or hierarchical manner, with phosphorylation of Thr613 by glycogen

synthase kinase 3 being dependent on prior phosphorylation of Ser610 by PKA [22,23]. How-

ever, genetic evidence for a role for parasite PKA in phosphorylation of the AMA1 cytoplasmic

tail is lacking, and the structural consequences of its phosphorylation are unknown.

We recently reported that regulation of cAMP levels in asexual blood stage P. falciparum is

governed by a dual-specific phosphodiesterase called phosphodiesterase beta (PDEβ) [25].

Conditional ablation of PDEβ led to a 70% reduction in invasion and increased phosphoryla-

tion of over 230 parasite protein phosphosites, most of which contained a minimal PKA con-

sensus motif (R/K, x, pS/pT), suggesting that the PDEβ knockout phenotype resulted from

inappropriate hyper-activation of PKA due to uncontrolled cAMP levels. Of note, phosphory-

lation of AMA1 Ser610 was up-regulated in the PDEβ null mutant, further supporting the

notion that it is a PKA substrate [25]. In the present study, we have examined the role of

cAMP signalling in P. falciparum blood stage development in detail. To do this, we targeted

both ACβ, the only adenylyl cyclase expressed in the asexual blood stage parasite, and PKAc,

the catalytic subunit of the parasite’s cAMP-dependent protein kinase. Conditional deletion of

ACβ and PKAc allowed us to determine, respectively, the effects on the parasite of the absence

of cAMP synthesis and of the absence of cAMP effector kinase activity. In both cases, gene

ablation completely blocked merozoite invasion, demonstrating essential roles for ACβ and

PKAc in this process. Deletion of ACβ also led to an unexpected delay in egress, suggesting a

potential role for cAMP signalling in this cGMP-dependent process. We also showed that PfE-

pac is not required for parasite growth and thus cannot be an important regulator of the

cAMP-dependent signalling that is critical for invasion. We identified cAMP- and PKA-

dependent phosphorylation sites in many proteins associated with invasion, including AMA1,

and showed that phosphorylation of AMA1 Ser610 leads to substantial structural changes in

the protein’s cytoplasmic tail domain that may underlie the crucial signalling role of this pro-

tein in invasion.

Results

Generation of genetic tools to study the role of cAMP and its effector

kinase, PKAc

Previous studies of cAMP signalling in Plasmodium have relied on the use of pharmacological

tools originally developed for mammalian ACs and PKAs. However, the specificity of these

compounds in highly evolutionarily divergent eukaryotes such as protozoan parasites is

unclear. To investigate cAMP signalling in P. falciparum blood stages, we therefore generated

two transgenic parasite lines designed to allow the conditional disruption of either ACβ or

PKAc. Both lines were generated on the genetic background of P. falciparum parasites that sta-

bly express dimerisable Cre (DiCre), a split Cre-recombinase, the activity of which is induced

in the presence of rapamycin (RAP) [26]. In each case, the target genes were ‘floxed’ such that

treatment with RAP was expected to lead to excision of DNA sequences encoding the respec-

tive catalytic domains of the enzymes. At the same time, the genes were modified by fusion to

sequences encoding a C-terminal triple hemagglutinin (HA3) epitope tag.

Generation of the ACβ conditional knockout line (ACβ-HA:loxP) was achieved in two steps

using marker-free CRISPR-associated protein 9 (Cas9)-mediated genome editing (Fig 1A).

The desired genetic modifications were verified by PCR (Fig 1B), and expression of tagged
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ACβ (ACβ-HA3) was confirmed by western blot using an anti-HA antibody (Fig 1C). Immu-

nofluorescence assays (IFAs) demonstrated co-localisation of ACβ-HA3 in schizonts with the

rhoptry-associated protein, armadillo repeats only protein (ARO) (Fig 1D), pointing to a rhop-

try localisation for ACβ. This mirrors a recent report that localised Toxoplasma gondii ACβ to

the rhoptry surface [27], but contrasts with previous suggestions of a cytoplasmic localisation

for P. falciparum ACβ [16].

To generate a PKAc conditional knockout line (called PKAc-HA:loxP), we exploited the

recently developed selection-linked integration (SLI) method [28] (Fig 2A). Successful modifi-

cation of the PKAc gene was verified by PCR (Fig 2B), and expression of tagged PKAc-HA3 in

the PKAc-HA:loxP parasites was confirmed by western blot (Fig 2C). Examination of the trans-

genic parasites by IFA (Fig 2D) revealed a diffuse HA-specific signal that encompassed the par-

asite cytosol as delineated by co-staining with the inner membrane complex marker

glideosome-associated protein 45 (GAP45). A cytosolic location for PKAc-HA3 was confirmed

by subcellular fractionation of parasite extracts produced by hypotonic lysis (S1A Fig).

Both ACβ and PKAc are essential for parasite proliferation

To investigate the essentiality of ACβ and PKAc, highly synchronised ring-stage cultures of

each line were treated with RAP to induce excision of sequences encoding the catalytic

domains of each enzyme. DiCre-mediated gene excision was reproducibly highly efficient (Fig

1D and Fig 2D). RAP-treated ACβ-HA:loxP and PKAc-HA:loxP rings developed normally to

mature schizonts in the erythrocytic cycle of treatment (cycle 0) (Figs 1D and 2D and Fig 2E),

and in both cases these schizonts ruptured and released merozoites. However, no new ring-

stage parasites were observed in the ACβ-null and PKAc-null cultures at the beginning of the

next erythrocytic cycle following treatment (cycle 1) (Fig 3A). Consistent with this, using flow

cytometry–based analysis, we observed complete arrest of parasite expansion beyond cycle 0

in the RAP-treated cultures (Fig 3B and S1B Fig), indicating that both genes are essential for

parasite survival.

To determine whether the phenotype observed upon RAP treatment of the PKAc-HA:loxP
line was a direct result of loss of PKAc function, we used a genetic complementation approach

to rescue the lethal phenotype. For this, we further modified the PKAc-HA:loxP line to inte-

grate a second copy of the PKAc-HA3 gene into the genomic p230p locus (Fig 3C and S1D

Fig). This gene was additionally fused to a dihydrofolate reductase destabilisation domain

(DDD) and placed downstream of a floxed promoter sequence. RAP treatment of the resulting

parasite line (called PKAc-HA_DDDcomp:loxP) was expected to excise the floxed endogenous

PKAc-HA3 locus whilst simultaneously inducing expression of the second, PKAc-HA3-DDD
gene, which could be stabilised by the additional presence of trimethoprim (TMP) (Fig 3D and

S1C Fig). Growth of RAP-treated PKAc-HA_DDDcomp:loxP parasites was only observed in

Fig 1. Conditional disruption of ACβ expression. (A) Schematic representation of the Cas9-mediated creation of the ACβ-HA:loxP line in DiCre-expressing

P. falciparum parasites and subsequent RAP-induced deletion of the modified gene. Double-headed arrows represent the regions amplified by PCR in (B). Red

arrowheads represent loxP sites, lollipops represent translational stop codons, black boxes indicate the position of an open reading frame downstream of ACB and

light blue boxes indicate regions of re-codonised sequence. (B) Diagnostic PCR verifying successful integration of both repair constructs and successful genetic

excision upon treatment with RAP in an ACβ-HA:loxP clone. Early rings (0–4 h post invasion) were treated with RAP or vehicle only (DMSO), and genomic DNA

from schizonts (approximately 40 h posttreatment) was used in these PCRs. (C) Western blots confirming HA tagging and RAP-induced ablation of ACβ
expression in the ACβ-HA:loxP line. In addition to a signal of the predicted intact ACβ molecular mass, bands of lower molecular mass were also detected, likely

due to proteolysis. Antibodies to the ER protein BiP (PF3D7_0917900) were used as a loading control. (D) IFA showing localisation of ACβ-HA3 in close proximity

to the rhoptry protein ARO (PF3D7_0414900) in schizonts, and ablation of expression by RAP treatment. Over 99% of all RAP-treated ACβ-HA:loxP schizonts

examined by IFA were HA-negative in three independent experiments. Scale bar, 10 μm. ACβ, adenylyl cyclase beta; ARO, armadillo repeats only protein; BiP,

binding immunoglobulin protein; Cas9, CRISPR-associated protein 9; DIC, differential interference contrast; DiCre, dimerisable Cre-recombinase; ER,

endoplasmic reticulum; HA3, triple hemagglutinin; hDHFR, human dihydrofolate reductase selectable marker; IFA, immunofluorescence assay; loxPint, loxP

containing intron; RAP, rapamycin; RR, recodonised-region; SERA2, serine repeat antigen 2; sgRNA, single guide RNA.

https://doi.org/10.1371/journal.pbio.3000264.g001
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the presence of TMP, and these parasites proliferated at a rate comparable to that of DMSO-

treated control PKAc-HA_DDDcomp:loxP parasites (Fig 3E). This indicated successful condi-

tional genetic complementation of the PKAc-null mutant and confirmed the essentiality of the

PKAc gene.

Egress does not require PKAc but is delayed in the absence of cAMP

synthesis

Whilst our initial observations indicated an important role for ACβ and PKAc in erythrocyte

invasion, we next sought to examine whether cAMP signalling also contributes to egress. To

do this, we compared the kinetics of egress of preparations of highly synchronous mature

DMSO- and RAP-treated PKAc-HA:loxP or ACβ-HA:loxP schizonts by monitoring the

appearance over time of proteolytically processed forms of the abundant PV protein serine

repeat antigen 5 (SERA5) in schizont culture supernatants [29]. As shown in Fig 4A, no differ-

ences were observed between the rates of egress of control and RAP-treated PKAc-HA:loxP
schizonts. In contrast, we observed a marked reduction in the rate of progress to egress in

RAP-treated ACβ-HA:loxP schizonts compared with their DMSO-treated counterparts (Fig

4A). These findings were confirmed by time-lapse video microscopy (Fig 4B and Fig 4C, S1

and S2 Movies). Collectively, these results pointed to an unexpected PKA-independent role for

cAMP in the fine-tuning of egress kinetics.

In view of this finding, we investigated whether another protein, independent of PKA, might

respond to cAMP and activate pathways that modulate egress. Besides PKG and PKAr, the only

other molecule encoded by the P. falciparum genome predicted to possess cyclic nucleotide

binding domains is one previously designated PfEpac (encoded by the PF3D7_1417400 gene),

which has been suggested to be a modulator of calcium release (a prerequisite for egress) [16].

To investigate the importance of PfEpac in parasite viability, we used an SLI-based approach to

directly disrupt the PfEpac gene (Fig 4D). The resulting PfEpac-null line was validated by PCR,

western blot, and IFA (S1E–S1G Fig). The mutant parasites displayed no impairment of growth

(S1H Fig) and no change in the kinetics of egress compared with the parental parasite line (Fig

4E). These results are fully in accord with previous evidence that PfEpac is dispensable in in

vitro culture [30,31] and indicate that PfEpac is not a regulator of parasite egress.

cAMP and PKAc are both critical for invasion

The above results showed that cAMP- or PKA-deficient parasites are able to form schizonts

that undergo egress yet are unable to proliferate further in culture. The absence of ring-stage

Fig 2. Conditional disruption of PKAc expression. (A) Schematic representation of the SLI strategy used to produce the PKAc-HA:loxP line and RAP-induced

disruption of the gene. Double-headed arrows represent the regions amplified by PCR in (B). Red arrowheads represent loxP sites, lollipops represent translational

stop codons, and light blue boxes indicate regions of re-codonised sequence. glmS was not exploited in these experiments. (B) Diagnostic PCR analysis verifying

successful SLI to produce the PKAc-HA:loxP line and successful excision of floxed sequences upon treatment with RAP. Rings (about 20 h post invasion) were RAP

or DMSO treated for 2 h, and genomic DNA from schizonts (about 20 h post-treatment) was used in these PCRs. (C) Western blots showing expression (DMSO)

and ablation (RAP) of PKAc-HA3 in PKAc-HA:loxP parasites. Expression of GAPDH (PF3D7_1462800) is shown as a loading control. (D) IFA showing the diffuse

localisation of PKAc-HA3 (DMSO) and the loss of expression upon RAP treatment. Over 99% of all RAP-treated PKAc-HA:loxP schizonts examined by IFA were

HA-negative in three independent experiments. (E) Electron micrograph of a segmented RAP-treated PKAc-HA:loxP schizont from high-pressure frozen, freeze-

substituted plastic sections. Inset: image of an entire PKAc-HA:loxP schizont showing the typical morphology of a mature schizont prior to PVM rupture. Main

image: a more detailed view of two of the merozoites within the schizont. Scale bar, 500 nm. AmpR, ampicillin resistance cassette used for plasmid selection in

bacteria; DIC, differential interference contrast; DiCre, dimerisable Cre-recombinase; FV, food vacuole; GAPDH, glyceraldehyde 3-phosphate dehydrogenase;

GAP45, glideosome-associated protein 45; glmS, glucosamine-6-phosphate riboswitch ribozyme; HA3, triple hemagglutinin; hDHFR, human dihydrofolate

reductase selectable marker; IFA, immunofluorescence assay; IMC, inner membrane complex; loxPint, loxP containing intron; Myc, c-myc tag; N, nucleus; NeoR,

neomycin resistance selectable marker; PKAc, catalytic subunit of cAMP-dependent protein kinase; PPM, parasite plasma membrane; PVM, parasitophorous

vacuole membrane; R, rhoptries; RAP, rapamycin; RBC, red blood cell membrane; RR, recodonised-region; SERA2, serine repeat antigen 2 gene; SLI, selection-

linked integration; T2A, thosea asigna virus 2A peptide.

https://doi.org/10.1371/journal.pbio.3000264.g002
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Fig 3. ACβ and PKA are both essential for parasite proliferation. (A) Giemsa-stained blood films showing ring-stage parasites following egress

of DMSO-treated ACβ-HA:loxP and PKAc-HA:loxP parasites (left) and the absence of rings following egress of RAP-treated parasites. Scale bar,

5 μm. (B) Growth curves showing changes in parasitaemia of ACβ-HA:loxP and PKAc-HA:loxP parasites treated with DMSO (vehicle only control)

or RAP. Means from three replicates are plotted. Error bars, SD. (C) Schematic representation of the approach used to genetically complement the

PKAc-HA:loxP line by Cas9-mediated introduction of a RAP-inducible, trimethoprim (TMP)-stabilised HA-tagged PKAc transgene at the p230p
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parasites in cycle 1 following RAP treatment of ACβ-HA:loxP or PKAc-HA:loxP parasites indi-

cated a selective defect in host erythrocyte invasion (Fig 3A). This was confirmed using a flow

cytometry–based assay that showed that merozoites released from the RAP-treated cultures

are able to bind to fresh host erythrocytes but do not invade them to form rings or trophozoites

(S2A Fig). To examine this invasion deficit in more detail, we examined the behaviour of natu-

rally released ACβ-null and PKAc-null merozoites by live video microscopy. No successful

invasion events were observed following the rupture of at least 20 schizonts from each RAP-

treated line (Fig 5A, S3–S6 Movies). However, the visual analysis showed that the free merozo-

ites were able to transiently interact with and deform host erythrocytes with a frequency com-

parable to that observed in their DMSO-treated counterparts, suggesting that the parasite

actinomyosin motor is active in the absence of cAMP or PKAc [32,33]. We also observed simi-

lar numbers of echinocytosis events induced by merozoites released from the DMSO- and

RAP-treated ACβ-HA:loxP and PKAc-HA:loxP cultures, in which targeted host erythrocytes

appear to transiently shrink and become ‘spiky’ following contact with the merozoites (Fig 5A,

S3–S6 Movies). Induction of echinocytosis by P. falciparum merozoites is associated with

rhoptry discharge [32], so our observations suggest that rhoptry discharge is independent of

cAMP levels or PKAc activity.

The first irreversible step in invasion is the formation of the ‘tight junction’, mediated pri-

marily by associations between merozoite surface AMA1 with RON proteins delivered from

the rhoptries into the erythrocyte membrane [17–21]. Using transmission electron microscopy

(TEM), we analysed thin sections in which mature RAP-treated PKAc-HA:loxP schizonts were

allowed to rupture in the presence of erythrocytes. We observed intact schizonts (Fig 2E),

recently ruptured schizonts, free merozoites, and merozoites attached to the erythrocyte sur-

face, but we did not observe any merozoites arrested at later stages of invasion. Detailed analy-

ses by electron tomography showed the presence of a more electron-dense zone of the red

blood cell (RBC) membrane at the attachment site (Fig 5C and S7 Movie), a feature consistent

with previous observations describing tight junction formation [34,35]. Super-resolution

immunofluorescence imaging detected punctate zones of co-localisation of AMA1 and RON4

at apical attachment sites of DMSO- and RAP-treated PKAc-HA:loxP merozoites bound to

erythrocytes (Fig 5D and S3 Fig).

Taken together, our data indicate that the invasion defect observed in the absence of cAMP

or PKAc occurs at a late stage of the pathway; mutant merozoites are able to associate with

erythrocytes, secrete invasion-related proteins, exert force upon and induce physical changes

in prospective host cells, but still fail to complete invasion.

Calcium mobilisation, microneme discharge, and rhoptry secretion are

independent of cAMP and PKAc

To better understand the molecular basis of the invasion defect observed in ACβ- and PKAc-

null parasites, we assessed whether key processes known to occur upstream of invasion are

locus to create the PKAc-HA_DDDcomp:loxP line. Double-headed arrows represent the regions amplified by PCR in S4C Fig. Red arrowheads

represent loxP sites, lollipops represent translational stop codons, and light blue boxes indicate regions of re-codonised sequence. (D) Western blots

showing the RAP-inducible switch from expression of PKAc-HA3 from the PKAc locus to expression of TMP-stabilised PKAc-HA3_DDD from the

P230p locus. Note the decreased mobility of the PKAc-HA3_DDD resulting from its fusion to the DDD. GAPDH is shown as a loading control.

Some lower molecular weight products are detected in the RAP TMP lane, likely due to incomplete stabilisation of all protein species. (E) Growth

curve showing rescue of growth of PKAc-HA3–deficient parasites by TMP-mediated stabilisation of PKAc-HA3_DDD. Means from three replicates

are plotted. Error bars, SD. Data associated with this figure can be found in the supplemental data file (S1 Data). ACβ, adenylyl cyclase beta; BsdR,

blasticidin resistance selectable marker; Cas9, CRISPR associated protein 9; DDD, DHFR degradation domain; DHFR, dihydrofolate reductase;

EGFP, enhanced green fluorescent protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HA3, triple hemagglutinin; PKA, cAMP-

dependent protein kinase; PKAc, catalytic subunit of cAMP-dependent protein kinase; RAP, rapamycin; TMP, trimethoprim.

https://doi.org/10.1371/journal.pbio.3000264.g003
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affected by the absence of cAMP or PKA. We first investigated calcium signalling and micro-

neme release, as both processes have been reported to be cAMP dependent in merozoites

exposed to K+ concentrations mimicking extracellular conditions [16]. For this we used the

cell-permeable calcium-sensitive fluorophore Fluo-4-AM, as previously described [8], to mea-

sure calcium flux in ACβ-HA:loxP or PKAc-HA:loxP mature schizonts upon treatment with

the phosphodiesterase inhibitor zaprinast. No significant differences were detected between

RAP-treated parasites and DMSO-treated controls (Fig 5E). We next used IFA to examine re-

localisation of the microneme-resident protein AMA1 onto the surface of intracellular mero-

zoites [2] as a proxy for microneme discharge. Again, visual quantitation of the proportion of

schizonts displaying peripheral AMA1 staining in populations of DMSO- and RAP-treated

ACβ-HA:loxP or PKAc-HA:loxP parasites revealed no differences in the efficiency of AMA1

discharge (Fig 5F and S2B Fig), indicating that AMA1 is efficiently secreted from micronemes

in the absence of PKAc and cAMP.

As a further means of evaluating secretory organelle discharge in the mutant merozoites,

we investigated the shedding of invasion-related molecules from the surface of egressed mero-

zoites by western blot analysis of cell culture supernatants. As shown in Fig 6A, levels of the

micronemal adhesin erythrocyte binding antigen 175 (EBA175) and the rhoptry-derived pro-

tein reticulocyte binding protein homologue 2b (Rh2b) shed over time from DMSO- and

RAP-treated PKAc-HA:loxP parasites were indistinguishable. In contrast, we observed a signif-

icant reduction in levels of shed AMA1 from RAP- treated PKAc-HA:loxP or ACβ-HA:loxP
merozoites (Fig 6A and Fig 6B). This reduction in AMA1 shedding was not a result of the

inability of the mutant merozoites to invade erythrocytes, as shedding of AMA1 from wild-

type 3D7 merozoites was unaffected by the presence of cytochalasin D, which inhibits invasion

by blocking the activity of the parasite actinomyosin motor [32,36] (Fig 6C). Consistent with

these observations, we only observed AMA1 at the apical end of DMSO-treated PKAc-HA:

loxP merozoites attached to the erythrocyte surface, whilst attached PKAc-deficient merozoites

retained detectable levels of AMA1 all around the merozoite periphery (Fig 5D and S3 Fig).

Taken together, these results suggest that cAMP and PKA are not required for the secretion of

invasion-related organelles but may play specific roles in the proteolytic shedding of AMA1.

Phosphoproteomic profiling demonstrates cAMP and PKA-dependent

phosphorylation of invasion-related proteins

To gain further insight into the mechanisms through which cAMP and PKA control invasion,

we profiled the ACβ- and PKA-dependent phosphoproteomes from parasite cultures compris-

ing mature schizonts and merozoites—the parasite life stages in which cAMP-dependent sig-

nalling could plausibly exert control over the invasion process. Phosphopeptides enriched

from trypsin-digested protein extracts of DMSO- and RAP-treated ACβ-HA:loxP and PKAc-

Fig 4. PKA, cAMP, and Epac are not required for egress. (A) Western blots data monitoring egress kinetics of DMSO- and RAP-treated PKAc-HA:loxP
and ACβ-HA:loxP schizonts. The slower onset of detection of SERA5 p50 in RAP-treated ACβ-HA:loxP parasites indicates delayed or impaired egress in the

absence of cAMP. Blots are representative of two biological repeats, which are both quantified in S4A Fig. (B) Quantification of the proportion of schizonts

rupturing in 30-min videos of DMSO- and RAP-treated parasites. For each video, one parasite population (DMSO or RAP) was stained with Hoechst

(indicated in blue on the plots). The p-values derive from paired t tests. (C) Quantification of the mean time taken for the DMSO- and RAP-treated parasites

from (B) to progress to egress, as measured by visual analysis of the same video microscopy data shown in panel (B). The p-values derive from paired t tests.

For all data in (B) and (C), each point is the mean for one population (DMSO or RAP) from a single video (50–100+ schizonts). Ten videos were quantified

from at least three independent experiments. (D) Schematic representation of the selection-linked targeted homologous recombination-based approach used

to disrupt the PfEpac gene. Lollipops represent translational stop codons. Validation of this line by PCR is shown in S1E Fig. (E) Western blot data indicating

normal rupture of PfEpac-deficient schizonts. Data associated with this figure can be found in the supplemental data file (S1 Data). AmpR, ampicillin

resistance cassette used for plasmid selection in bacteria; cAMP, cyclic AMP; Epac, exchange protein directly activated by cAMP; hDHFR, human

dihydrofolate resistance selectable marker; KO, knockout; NeoR, neomycin resistance selectable marker; PKA, cAMP-dependent protein kinase; p50,

processed 50 kDa form; RAP, rapamycin; SERA5, serine repeat antigen 5; T2A, thosea asigna virus 2A peptide.

https://doi.org/10.1371/journal.pbio.3000264.g004
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HA:loxP parasites were examined by tandem mass spectrometry using isobaric labelling for

quantification. We quantified over 20,000 different phosphorylation sites across the samples

(Fig 7A, Fig 7B and S2C Fig), and comparison of DMSO-treated controls with their RAP-

treated counterparts identified sites for each line that were enriched in the DMSO-treated con-

trols. Of these sites, many were enriched in both ACβ-HA:loxP and PKAc-HA:loxP controls

compared with their corresponding RAP-treated sample, indicating a dependence upon

cAMP and PKA (S1 Table). Consistent with this, motif analysis showed that the phosphoryla-

tion sites fit a PKA consensus and closely resemble those identified in a recent study of sites

enriched in a P. falciparum PDEβ knockout in which PKA activity was enhanced due to raised

cAMP levels [25] (S2C Fig and S2D Fig). A total of 77 sites that we identified as being signifi-

cantly hypophosphorylated in both the ACβ- and PKA-deficient parasites were also quantified

in the recent PDEβ-dependent phosphoproteome. Most of these sites were significantly hyper-

phosphorylated in PDEβ-null parasites, evidence for regulation by cAMP-dependent signal-

ling in three separate conditional knockout parasite lines. On this basis, we define a list of 61

sites in 39 proteins that are high-confidence targets of cAMP-dependent phosphorylation

(Table 1). Of these sites, 42 possess a minimal consensus PKA substrate motif (R/K, x, pS/pT),

suggesting that they could be phosphorylated directly by PKA. However, further work will be

needed to determine whether these sites are directly phosphorylated in the parasite by PKA or

another cAMP-regulated kinase.

Of particular interest, we detected a number of ACβ- and PKA-dependent phosphosites in

proteins with known functions in invasion (Fig 7A and 7B). These sites included Ser610 within

the short cytoplasmic domain of AMA1, which was specifically enriched in the DMSO-treated

compared with the RAP-treated samples derived from both the ACβ-HA:loxP and PKAc-HA:

loxP lines (Fig 7B). This is consistent with previous evidence that phosphorylation at AMA1

Ser610 is mediated by PKA [23]. In contrast, although it has previously been suggested that

phosphorylation of Ser19 of the actinomyosin motor protein myosin A (MyoA) is also PKA

mediated [12], we quantified abundant phosphorylated Ser19 (pSer19) MyoA in both DMSO

and RAP-treated ACβ-HA:loxP and PKAc-HA:loxP samples (Fig 7B and S2C Fig). This was

confirmed by western blot using a phospho-specific antibody against pSer19 (S2E Fig). It was

concluded that this particular site can be phosphorylated by kinases other than PKA. This is

Fig 5. Invasion is critically dependent on cAMP and PKAc, but calcium mobilisation and microneme secretion are not. (A)

Quantification of invasion, merozoite-induced erythrocyte surface deformation, and echinocytosis observed by video microscopy

following rupture of DMSO- and RAP-treated PKAc-HA:loxP and ACβ-HA:loxP schizonts. At least 20 videos per condition were

quantified. Statistical significance was assessed by t test; ns indicates not significant (p> 0.05), whereas ���� indicates p< 0.0001. (B)

Electron micrograph of a RAP-treated PKAc-HA:loxP merozoite attached to the surface of an erythrocyte from high-pressure frozen,

freeze-substituted plastic sections. Left: apical attachment of a merozoite to the surface of the erythrocyte. Scale bar, 500 nm. Right: a

more detailed view of the electron-dense attachment region (arrowed) showing the close association of the apical end of the parasite and

the erythrocyte membrane. Scale bar, 100 nm. (C) Electron tomography of the attachment region between a RAP-treated PKAc-HA:loxP
merozoite and the RBC surface. Image is a sum of 30 central sections from the tomogram. Arrows indicate a region of apparent

thickening of the RBC membrane. Full-tilt series in S7 Movie. Scale bar, 250 nm. (D) Super-resolution immunofluorescence imaging of

PKAc-HA:loxP merozoites attached to the RBC surface. For the DMSO-treated group, parasites’ medium contained 1 μM cyotchalasin D

to arrest invasion at tight junction formation. Additional images are shown in S3 Fig. Scale bar, 2 μm. (E) Induction of calcium

mobilisation using 100 μM zaprinast in synchronous Fluo-4–loaded late-stage schizonts assayed by fluorimetry. The signal was

normalised to DMSO carrier (0% signal) and 20 μM A23187 ionophore (100% signal). Means from six technical replicates (three samples

from two biological replicates) are plotted. Error bars, SD. (F) IFA showing re-localisation of AMA1 from micronemes to the merozoite

periphery in DMSO- and RAP-treated PKAc-HA:loxP schizonts. Quantification of 100 imaged schizonts from three individual biological

replicates indicated no significant difference between peripheral and punctate staining of AMA1 between the two treatments (DMSO

55.88% ± 2.25% punctate, 41.21% ± 2.23% peripheral, and RAP 55.86% ± 2.93% punctate, 41.14% ± 1.93% peripheral). IFA analysis was

performed on highly synchronous cultures that were treated with 20 μM E64 approximately 44 h post invasion for approximately 4 h.

Scale bars, 5 μm. Data associated with this figure can be found in the supplemental data file (S1 Data). AMA1, apical membrane antigen

1; cAMP, cyclic AMP; DIC, differential interference contrast; E64, cysteine protease inhibitor; IFA, immunofluorescence assay; M,

merozoite; ns, not significant; PKAc, catalytic subunit of cAMP-dependent protein kinase; RAP, rapamycin; RBC, red blood cell.

https://doi.org/10.1371/journal.pbio.3000264.g005
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consistent with our previous findings that phosphorylation of MyoA Ser19, although PKG

dependent, is also calcium dependent, suggesting it may be the substrate of a CDPK [25].

In addition to AMA1 Ser610, we identified a number of protein targets of PKA-dependent

phosphorylation that have previously been implicated in invasion. One such protein, coronin,

has been shown to modulate actin dynamics in P. berghei sporozoites, with PKA-dependent

phosphorylation of this protein being implicated as a mediator of a ‘switch’ from migration to

invasion [37]. Coronin also associates with actin in P. falciparum merozoites [38], so it is possi-

ble that PKA-dependent coronin phosphorylation also promotes invasion in asexual blood

stages. We also found that phosphorylation of ACβ (Ser553 and Ser566) and two putative pro-

tein phosphatases (PF3D7_1423300 Ser769 and PF3D7_1012700 Ser1200) are likely cAMP

dependent, indicating potential for feedback loops between the enzymes that regulate cAMP-

dependent phosphorylation. It is important to note that our subgroup of high-confidence

PKA-regulated sites also includes proteins of diverse putative function, including roles in chro-

matin organisation, RNA binding, translation initiation, ubiquitin metabolism, and protein

transport, along with 14 proteins, the functions of which are currently unknown. We also note

that most phosphosites in the Plasmodium subtilisin-like protease 2 (SUB2) and rhomboid

protease 4 (ROM4) proteases were detected at similar levels in ACβ- and PKA-deficient para-

sites compared with controls (S1 Table). This indicates that the abundance of these enzymes

(known to mediate the shedding of proteins from the merozoite surface) is unaffected in our

knockouts and cannot account for the reduction in AMA1 shedding that we observe in the

absence of PKA activity.

AMA1 Ser610 phosphorylation induces a structural change in the AMA1

cytoplasmic tail

Our data supporting a role for cAMP and PKA in phosphorylation of the AMA1 cytoplasmic

domain residue Ser610, together with the previous evidence that this modification is important

for AMA1 function in erythrocyte invasion [23], led us to further explore the functional conse-

quences of AMA1 Ser610 phosphorylation. To do this, we first generated a recombinant form

of the AMA1 cytoplasmic domain fused to glutathione S transferase (called GST-AMA1cyt).

We then assessed the capacity of this protein to be phosphorylated in vitro by mammalian

PKA, as well as the effects of any phosphorylation on its structure. As shown in S2F Fig,

GST-AMA1cyt was efficiently phosphorylated by murine PKA, and this phosphorylation was

dependent on the presence of Ser610. Remarkably, further examination of the free recombinant

AMA1cyt domain (cleaved from its GST fusion partner) showed that PKA-mediated phosphor-

ylation resulted in a significant conformational change to AMA1cyt, detectable by both circular

dichroism (CD) (Fig 7C) and nuclear magnetic resonance (NMR) spectroscopy (Fig 7D and

Fig 7E). Both methods confirmed that, upon phosphorylation, AMA1cyt undergoes a transition

Fig 6. Efficient surface shedding of AMA1 requires cAMP and PKA. (A) Western blot of culture supernatants from a time course of egressing

DMSO- and RAP-treated PKAc-HA:loxP parasite cultures. Progression of egress is indicated by detection of the SERA5 p50 fragment. Shedding of

surface adhesins AMA1, EBA175, Rh2b, and MSP1 are monitored by their detection in supernatants using the indicated antibodies. For each western

blot, a representative image from one of three independent experiments is shown. The full-length blots used to produce this figure are shown in S4B Fig.

Densitometry analyses of three biological replicates are shown in S4C Fig and S4D Fig. No significant differences in EBA175 shedding were observed

after one hour, but 4.2 ± 1.6-fold less AMA1 was shed in RAP- compared with DMSO-treated PKAc-HA:loxP parasites. Blots are representative of three

biological repeats. (B) Western blots indicating the presence of SERA5 p50 and shed surface adhesins in supernatants from egressing DMSO- and RAP-

treated ACβ-HA:loxP parasites. A single time point was used because the RAP-treated population are slower to egress. The full-length blots used to

produce this figure are shown in S4B Fig. Blots shown are representative of two biological repeats. (C) Left: western blot of culture supernatants from a

time course of egressing 3D7 parasites showing unaltered AMA1-shedding kinetics in the presence or absence of the invasion inhibitor cytochalasin D

(1 μM). Right: Giemsa-stained blood films confirming the cytochalasin D–mediated block in invasion by an absence of ring-stage parasites in the treated

cultures. Scale bar, 5 μm. AMA1, apical membrane antigen 1; cAMP, cyclic AMP; EBA175, erythrocyte binding antigen 175; PKA, cAMP-dependent

protein kinase; p50, processed 50 kDa form; RAP, rapamycin; Rh2b, reticulocyte binding protein homologue 2b; SERA5, serine repeat antigen 5.

https://doi.org/10.1371/journal.pbio.3000264.g006
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from an unfolded state to a more folded state with an increased helical content. We conclude

that phosphorylation of AMA1 Ser610 by PKA can induce structural changes that may be

involved in signalling functions and/or recruitment of partner proteins important for the func-

tion of AMA1 at invasion. Impairment of this process may be partially or wholly responsible

for the invasion defect observed upon ablation of ACβ or PKA.

Discussion

In this study, we have shown that cAMP and PKA are critical components of the signalling cas-

cade(s) required by P. falciparum merozoites to invade erythrocytes. Parasites deficient in

cAMP synthesis or PKA activity are arrested at a late stage of the invasion pathway. In contrast,

the known essential steps that precede invasion, including egress, the associated calcium flux,

and discharge of merozoite secretory organelles, all occur in the absence of cAMP-dependent

signalling.

Our findings have several important implications. First, they temporally separate the essen-

tial roles of cGMP-dependent signalling, which triggers merozoite egress [2], from those of

cAMP-dependent signalling, which we show here to be critical only for invasion. This conclu-

sion is particularly notable in light of recent evidence from phosphoproteomic, pharmacologi-

cal, and genetic studies in T. gondii that suggest interplay between cAMP and cGMP signalling

during egress in that parasite. PKAc-deficient tachyzoites were found to egress prematurely

and could not stably enter host cells [39,40]. We did not observe similar phenomena in ACβ-

or PKAc-null P. falciparum, implying fundamental differences between these genera in the

mechanisms controlling egress and how these are regulated by cyclic nucleotides; whereas

cAMP-mediated signalling via T. gondii PKA appears to negatively regulate egress, this is

not the case in P. falciparum. Indeed, because ACβ- but not PKAc-deficient P. falciparum par-

asites displayed a subtle delay in egress, our results in fact imply that cAMP could be a positive

regulator of egress through a PKA-independent route, potentially via cross talk with calcium

signalling pathways [41]. We suggest that the recently reported dual-specificity phosphodies-

terase activity of PDEβ [25] could explain why we see a delay in egress in the absence of cAMP;

in wild-type parasites, PDEβ likely contributes to the regulation of levels of both cAMP and

cGMP, whilst in the absence of cAMP (in the ACβ-null parasites), there may be increased

breakdown of cGMP, leading to delayed and/or inefficient activation of PKG.

Fig 7. cAMP- and PKA-dependent phosphorylation of invasion-related proteins and induction of a structural change in the cytoplasmic tail of AMA1

by Ser610 phosphorylation. (A) S-curves representing the phosphosites detected by mass spectrometry in DMSO- versus RAP-treated ACβ-HA:loxP and

PKAc-HA:loxP schizont/merozoite preparations. The most enriched site in each of the indicated invasion-related proteins is labelled. Data shown are from

three technical triplicates and are representative of three biological repeats. (B) Volcano plots showing the changes in detection of phosphosites between

DMSO- and RAP-treated ACβ-HA:loxP and PKAc-HA:loxP. The negative log10 transform of the p-value–derived Welch-corrected t test comparing three

DMSO- and three RAP-treated replicates is plotted against the log2-transformed fold change in reporter ion intensity (DMSO/RAP). Significantly altered sites

(p< 0.05) in the ACβ and PKAc proteins are indicated in magenta and blue, respectively. Data shown are from the three technical triplicates shown in panel

(A) and are representative of three biological repeats. (C) Circular dichroism (CD) spectra of recombinant AMA1cyt with and without treatment with

recombinant mammalian PKA. (D) Overlay of a selected region of a 2D 1H-15N HSQC NMR spectra of unphosphorylated AMA1cyt (red) and AMA1cyt

_pSer610 (blue). The residues are indicated below their positions on the AMA1cyt_pSer610 spectra. Phosphorylation induced changes in the amide chemical

shifts of the targeted Ser610 as well as surrounding residues. (E) Secondary structure prediction of the AMA1 cytoplasmic tail sequence (Ser610 indicated in

green) as calculated by TALOS+ and Chemical Shift Index compared with random coil based on the 1H, 15N, 13C chemical shifts of AMA1cyt _pSer610.

Extended conformation is presented as arrows and alpha-helical conformation as a cylinder. No secondary structure elements are predicted for

unphosphorylated AMA1cyt. Data associated with this figure can be found in the supplemental data file (S1 Data) and supporting table 1 (S1 Table). ACβ,

adenylyl cyclase beta; AMA1, apical membrane antigen 1; AMA1cyt, AMA1 cytosolic domain; ARO, armadillo repeats only protein; cAMP, cyclic AMP; CD,

circular dichroism; HSQC, heteronuclear single quantum coherence; IMC, inner membrane complex; MyoA, myosin A; MyoE, myosin E; NMR, nuclear

magnetic resonance; PKA, cAMP-dependent protein kinase; PKAc, catalytic subunit of cAMP-dependent protein kinase; PKAr, regulatory subunit of cAMP-

dependent protein kinase; RAMA, rhoptry-associated membrane antigen; RAP, rapamycin; ROM4, rhomboid protease 4; RON2, rhoptry neck protein 2;

TALOS+, prediction of protein backbone and sidechain torsion angles from NMR chemical shifts program.

https://doi.org/10.1371/journal.pbio.3000264.g007
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Second, our findings lead us to reassess previously proposed mechanisms underlying the

essentiality of cAMP-dependent signalling. Earlier studies by others have suggested the

involvement of cAMP- and PKA-dependent signalling in early blood stage development in

Table 1. List of high-confidence targets of cAMP-dependent phosphorylation common to ACβ-, PKA-, and PDEβ-dependent phosphoproteome analyses.

Gene Gene product Sites

PF3D7_0104300 ubiquitin carboxyl-terminal hydrolase 1, putative S2578

PF3D7_0303200 HAD superfamily protein, putative S391

PF3D7_0407800 conserved Plasmodium protein, unknown function S120, S379, S592, T645, S685, S688

PF3D7_0418600 regulator of chromosome condensation, putative S1526

PF3D7_0506900 rhomboid protease ROM4 S191, T266

PF3D7_0508900 conserved Plasmodium protein, unknown function S1741

PF3D7_0517400 FACT complex subunit SPT16, putative S566

PF3D7_0525800 inner membrane complex protein 1g, putative S267, S268, S270

PF3D7_0609800 palmitoyltransferase DHHC2, putative S277

PF3D7_0610400 histone H3 S29, S33

PF3D7_0618000 conserved Plasmodium membrane protein, unknown function S211

PF3D7_0706500 conserved Plasmodium protein, unknown function S650

PF3D7_0720700 phosphoinositide-binding protein, putative S1826

PF3D7_0802600 adenylyl cyclase beta S553, S566

PF3D7_0815600 eukaryotic translation initiation factor 3 subunit G, putative S44

PF3D7_0821800 protein transport protein SEC61 subunit beta, putative S20, S23

PF3D7_0822900 conserved Plasmodium protein, unknown function S728

PF3D7_1008500 conserved Plasmodium membrane protein, unknown function S355

PF3D7_1008800 nucleolar protein 5, putative S410

PF3D7_1010300 succinate dehydrogenase subunit 4, putative S104

PF3D7_1011800 PRE-binding protein T797

PF3D7_1012700 NLI interacting factor-like phosphatase, putative S1200

PF3D7_1021700 conserved Plasmodium membrane protein, unknown function S3231

PF3D7_1023900 chromodomain-helicase-DNA-binding protein 1 homolog, putative T320

PF3D7_1025900 conserved Plasmodium protein, unknown function S589

PF3D7_1026600 conserved Plasmodium protein, unknown function S174, S324

PF3D7_1027300 peroxiredoxin S217, S226, S228, S229, T230

PF3D7_1107300 polyadenylate-binding protein-interacting protein 1, putative S1430

PF3D7_1110400 RNA-binding protein, putative S435, S1337

PF3D7_1124600 ethanolamine kinase S23, T25

PF3D7_1125800 kelch domain–containing protein, putative S20

PF3D7_1133400 apical membrane antigen 1 S610

PF3D7_1138700 conserved Plasmodium protein, unknown function S880

PF3D7_1251200 coronin S351

PF3D7_1343800 conserved Plasmodium protein, unknown function S6066, S326

PF3D7_1348600 conserved Plasmodium protein, unknown function S37

PF3D7_1413700 conserved Plasmodium protein, unknown function S1035

PF3D7_1423300 serine/threonine protein phosphatase 7 S769

PF3D7_1455300 conserved Plasmodium protein, unknown function S14, S18, S136, S292

Abbreviations: ACβ, adenylyl cyclase beta; cAMP, cyclic AMP; DHHC2, Asp-His-His-Cys2; FACT, facilitates chromatin transcription; HAD, haloacid dehydrogenase;

NLI, nuclear LIM interactor; PDEβ, phosphodiesterase beta; PKA, cAMP-dependent protein kinase; PRE, Prx regulatory element; ROM4, rhomboid protease 4; SEC61,

secretory protein 61; SPT16, suppressor of Ty 16.

https://doi.org/10.1371/journal.pbio.3000264.t001
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processes such as regulation of ion transport across the host erythrocyte membrane [42] and

in the regulation of the cell cycle [41,43]. These studies indicated a complex interplay between

cAMP and calcium signalling in P. falciparum trophozoites. Whilst these developmental pro-

cesses prior to schizont stage may indeed be fine-tuned through cAMP- and calcium-depen-

dent signalling, we did not observe a critical role for cAMP and PKA in the erythrocytic life

cycle until the point of merozoite invasion. Although inhibition of cAMP production has been

previously reported to block invasion [16], our study clearly shows that the signalling pathways

through which this occurs need to be redefined. This is because, in contrast to the findings of

Dawn and colleagues, we have now clearly demonstrated that calcium release and subsequent

microneme secretion occur efficiently in the absence of cAMP or PKA, and that PfEpac is not

a key mediator of these processes. Because PfEpac also lacks many of the canonical features of

EPAC proteins—including the domains required to recruit a Rap1 GTPase central to the pro-

posed mechanism of action [44,45]—we suggest that it is unlikely to be a functional orthologue

of mammalian EPAC.

Third, our data provide the first genetic evidence for a mechanistic link between the activity

of PKA and the function of AMA1. We correlate the loss of PKA-mediated phosphorylation of

AMA1 at Ser610 with a reduction in shedding of AMA1, complementing our previous observa-

tions that PDEβ-deficient parasites displaying hyper-activation of PKA shed AMA1 prema-

turely [25]. AMA1 shedding in P. falciparum is thought to be mediated primarily by the

activity of the subtilisin-like protease SUB2, with some contribution from rhomboid proteases

[46–48]. Previous attempts to generate parasite mutants from which AMA1 cannot be shed

have been unsuccessful, suggesting that shedding is important [49]. It is possible that a finely

tuned amount of merozoite surface AMA1 is required for efficient invasion; too large a quan-

tity of AMA1 on the parasite surface may impede the binding of RON2 or conversely lead to

too many AMA1-RON2 interactions to allow the tight junction to move efficiently around the

invading merozoite, whereas a smaller amount may be sufficient to establish a tight junction

within which the AMA1 component could then be protected from cleavage in a manner analo-

gous to that described in T. gondii [50]. In this scenario, timely activation of PKA may be criti-

cal so as to ensure the optimal amount of surface AMA1 at the point at which the merozoite

makes contact with the erythrocyte. Our demonstration that PKA-dependent phosphorylation

of Ser610 results in a dramatic conformational transformation of the AMA1 cytoplasmic tail

such that it adopts a more folded structure tempts us to speculate that this structural transition

could promote interactions with, and/or the activation of, the enzymes that mediate AMA1

shedding. This may not be required absolutely for shedding but could modulate the rate of this

process.

The relationship between the deficiency in AMA1 shedding and the block in invasion we

observe in cAMP- and PKA-deficient parasites remains to be determined. Our findings sug-

gest that the mutant parasites secrete adhesins from micronemes and rhoptries, and deform

host RBCs via the activity of the actinomyosin invasion motor. However, the final stages of

entry into the host cell downstream of tight junction formation are inhibited. A similar late-

stage block in invasion has been observed when merozoites are released in the presence of

small peptides that bind to AMA1 and block the interaction with RON2 [24,51,52], suggesting

that the block in invasion we observe in the absence of cAMP-dependent signalling might at

least in part be explained by a direct effect on AMA1 function. However, our phosphopro-

teome analyses demonstrate cAMP- and PKA-dependent phosphorylation of a large number

of other parasite proteins, some of which have previously been suggested to play a role in inva-

sion. We therefore suggest that there are likely to be multiple mechanisms by which cAMP-

dependent signalling controls invasion, including but not necessarily limited to modulation of

AMA1 shedding and function.
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Whilst the full range of biological functions of specific cAMP- and PKA-dependent phos-

phorylation events remain to be addressed, our findings demonstrate the fundamental impor-

tance of the cAMP signalling pathway in P. falciparum asexual blood stages and validate ACβ,

PKA, and PDEβ as candidate targets for new approaches to antimalarial drug discovery.

Methods

P. falciparum culture and synchronisation

P. falciparum erythrocytic stages were cultured in human erythrocytes (National Blood Trans-

fusion Service, UK) and RPMI 1640 medium (Life Technologies) supplemented with 0.5%

Albumax type II (Gibco), 50 μM hypoxanthine, and 2 mM L-glutamine. Synchronous parasite

cultures were obtained as described previously [46]. Briefly, segmented schizonts were

enriched by centrifugation on a 70% Percoll (GE Healthcare) cushion, followed by the addition

of fresh erythrocytes to allow invasion for 1–2 h under continuously shaking conditions.

Residual intact schizonts were then removed by a further cycle of Percoll treatment and the

resulting pellet treated with sorbitol to yield highly synchronous ring-stage cultures. In all

cases, induction of DiCre activity when required was by treatment for 2–4 h with 100 nM RAP

(Sigma) as described previously [25,26,33]. Control parasites were treated with vehicle only

(1% v/v DMSO).

Genetic modification of P. falciparum parasites

The ACβ-HA:loxP parasite line was generated by Cas9-mediated genome editing of the DiCre-

expressing B11 P. falciparum clone, as described previously [33]. A C-terminal triple-HA tag

and loxP site were added to the ACβ gene using a repair template containing a 50 homology

arm containing 840 bp of sequence from the 30 end of ACβ exon 3, a 480-bp re-codonised

region corresponding to the sequences of exons 4 and 5, triple-HA and loxP sequences, and an

846-bp 30 homology arm derived from the ACβ 30UTR. This repair template was synthesised

commercially (Geneart; Thermo), linearised immediately upstream of the 50 homology region

by digestion with SpeI, and transfected in conjunction with a pDC2-based plasmid [53] encod-

ing Cas9 and a single guide RNA (sgRNA) targeted to ATTGCATGTCCCTAATCGAT at the

50 end of the fourth exon. Clones expressing HA-tagged ACβ were isolated by limiting dilution

and subsequently transfected to replace the second intron of the modified ACβ gene with a

loxP-containing SERA2 intron (SERA2loxPint) [54], again using the Cas9 system. The repair

construct for this modification step comprised the SERA2loxPint module followed by 300 bp

of re-codonised sequence corresponding to the 50 end of exon 3 and was flanked by approxi-

mately 500 bp homology regions. This repair template was linearised in the same manner

using a SpeI site upstream of the 50 homology region. The corresponding sgRNA was targeted

to GAGACGCCGTTCTTGTTATA at the 50 end of exon 3. Doubly modified clones were

obtained by limiting dilution and confirmed by diagnostic PCR and capillary sequencing.

The PKAc-HA:loxP line was generated from the DiCre-expressing 3D7 [53] P. falciparum
clone using SLI of a plasmid based on pL7 (a kind gift from Kathrin Witmer, Imperial College

London), in which the yFCU expression cassette of pL6 [55] had been deleted. The gRNA cas-

sette from pL7 was removed and replaced with a synthetic cassette containing a SERA2loxPint
followed by a triple-HA tag and downstream loxP, glucosamine-6-phosphate riboswitch ribo-

zyme (glmS), and PbDT 30UTR sequences (IDT). A fragment containing a thosea asigna virus

2A peptide (T2A) ribosomal skip peptide and NeoR cassette was amplified from a pSLI-sand-

wich plasmid [28] and cloned downstream of the C-terminal triple HA. A re-codonised ver-

sion of PKAc exons 4 and 5 was synthesised commercially (IDT) and inserted downstream of

the SERA2loxPint and upstream of the 3×HA tag. An 800-bp 50 homology region comprising
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exon 2, intron 2, and exon 3 of the endogenous PKAc locus was cloned upstream of the SER-
A2loxPint. Following transfection of purified schizonts using an AMAXA nucleofector 4D

(Lonza) and P3 reagent, modified parasites were selected as described previously [28] and

cloned by limiting dilution.

The PKAc-HA:loxP line was further modified to produce the complemented PKAc-
HA_DDDcomp:loxP line. A plasmid based on a custom DiCre-inducible expression vector

(pDCIn) was used to integrate sequence encoding a RAP-inducible, triple-HA tagged PKAc

fused to a DDD into the p230p locus using Cas9-mediated gene editing with a gRNA previ-

ously reported for this locus [53]. pDCIn was generated by modifying pBCam by several clon-

ing steps using the NEBuilder Gibson assembly. First, an eGFP gene was amplified with a T2A

peptide in the frame, with the C terminus and a MluI restriction site followed by loxP site pre-

ceding the eGFP coding sequence. This was cloned in frame with the BSD gene from pBCam

using a BstBI site. The Cam promoter was excised using PstI and SalI sites and a second loxP

site preceded by a multiple cloning site inserted upstream of the Hrp2 30UTR. The 800-bp

homology regions for the p230p locus were inserted using a SmaI site for the 50 homology

region and an EcoRI site for the 30 homology region. This yielded pDCIn (DiCre induction).

To modify this to suit PKAc complementation, a 2-kbp region of the PKAc 50UTR was cloned

into the plasmid upstream of the GFP T2A BSD cassette using MluI and SmaI sites. Finally, a

synthetic DNA fragment consisting of a re-codonised PKAc coding sequence followed by tri-

ple-HA and DDD sequences (IDT) was inserted downstream of an EGFP T2A BSDR expres-

sion cassette (driven by the cloned PKAc 50UTR) and a second loxP site using NotI and KpnI

sites. This plasmid (10 μg) was linearised by digestion with AatII close to the ampR cassette

and co-transfected together with the pDC2p230p Cas9/sgRNA-containing plasmid (50 μg)

into PKAc-HA:loxP parasites, as previously described [53]. The transfected culture was treated

with 5 μg/mL BSD (Sigma) (3 d post-transfection to select for integration. EGFP-positive para-

sites, indicative of successful integration of the construct, were observed by live microscopy

(S1C Fig), and BSD selection was continued until no WT p230p locus could be detected by

PCR. Upon treatment with RAP, parasites were expected to switch from expressing EGFP and

BSD from the p230p locus and PKAc-HA3 from the PKAc locus to expressing PKAc-HA3-

DDD from the p230p locus and a truncated, untagged N-terminal fragment of PKAc from the

PKAc locus. These transitions were verified by live fluorescence microscopy and western blot-

ting, which showed a switch in molecular mass of the HA-positive band from approximately

50 kDa (the mass of PKAc-HA3 expressed from the PKAc locus) to approximately 61 kDa (the

approximate mass for PKAc-HA3-DDD) in the presence of 10 μM TMP, which is required to

stabilise PKAc-HA3-DDD. The PfEPAC knockout plasmid was constructed by cloning the

first 800-bp homology region EPAC coding sequence into the pSLI DiCre plasmid in frame

with the downstream T2A NeoR cassette (Fig 4D). Following transfection of purified schizonts

using an AMAXA nucleofector 4D (Lonza) and P3 reagent, modified parasites were selected as

described previously [28], applying G418 selection until no WT parasites were detected by

PCR. All plasmid sequences were verified by capillary sequencing, and all RAP treatments

were performed on ring-stage parasites.

Oligonucleotide primers used in diagnostic PCR to detect integration and excision of trans-

genes, and the sequences of re-codonised regions, are provided below in Tables 2 and 3.

Parasite sample preparation and western blot

Parasite culture supernatant samples for egress and adhesin shedding assays were prepared

from tightly synchronised cultures. Percoll-enriched mature schizonts were resuspended in

complete medium containing the PKG inhibitor 4-[7-[(dimethylamino)methyl]-2-
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(4-fluorphenyl)imidazo[1,2-α]pyridine-3-yl]pyrimidin-2-amine (compound 2 or C2; 1.5 μM)

and allowed to further mature for 3 h until predominantly mature segmented schizonts. Schiz-

onts were then pelleted by centrifugation at 800g, washed to remove the PKG inhibitor, and

suspended at a 10% haematocrit in fresh warm medium. Aliquots (100 μL) were harvested at

specified time points; schizonts were pelleted by centrifugation and culture supernatants col-

lected and clarified using 0.22-μm Costar Spin-X centrifuge filters (Corning). The schizont pel-

let from t = 0 was retained as a pellet control sample.

Parasite extracts were prepared from Percoll-purified schizonts treated with 0.15% w/v

saponin to remove erythrocyte material. To solubilise parasite proteins, washed saponin-

treated parasite pellets were resuspended in three volumes of NP-40 extraction buffer (10 mM

Tris, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP40, pH 7.5, with 1× protease inhibitors (Roche).

Suspensions were incubated on ice for 10 min followed by centrifugation at 12,000g for 10 min

at 4˚C. For western blot, SDS-solubilised proteins were electrophoresed on 4%–15% Mini-

Table 2. Sequences of PCR primers.

ACβ primers (Fig 1A and 1B) Name Sequence

PCR1 Forward SERA2loxPint_F (AJP_166) GCATACATTATACGAAGTTATTATATATG

PCR1 Reverse ACβ_exon3_R (AJP_244) GCATGTCCCTTGAACCATAACTTTGTC

PCR2 Forward ACβ_exon3_F (AJP_051) GAACAGACCAATCAACAGAAC

PCR2 Reverse HA_R GGCATAGTCCGGGACGTC

PCR3 Forward ACβ_exon2_F (AJP_135) AGCAAATGTGAAAACCCGGCACAG

PCR3 Reverse ACβ_30UTR_R (AJP_103) CGAGTAGGGAGCATAACAAATAG

PKAc primers (Fig 2A and 2B) Name Sequence

PCR1 Forward PKAc 50 Int F GAAGGACAGTGATTCTAGTGAACAG

PCR1 Reverse PKAc WT R CAATTTCTTCATCAAATGTTTGCAATTGTTATC

PCR2 Forward PKAc 50 Int F GAAGGACAGTGATTCTAGTGAACAG

PCR2 Reverse PKAc 50 Int R GTTCTGTGCACCCTTCTTAAGG

PCR3 Forward PKAc 30 Int F CAGCTATGACCATGATTACGCC

PCR3 Reverse PKAc 30 Int R GTTAAGTATTACCTTAATAAAAATATTGTATG

PCR4 Forward PKAc excision F GAATGAAAATGTTCAGGTTCCTTTG

PCR4 Reverse PKAc excision R CCGTTCAAATCTTCTTCAGAAATCAAC

PKAc complementation primers (Fig 3C and S1D Fig) Name Sequence

P230p locus Forward P230p Int F CTATATGGTATCCAAAACCTTTAAATTATATAGC

P230p locus Reverse P230p WT R GAGGAATTTTTAAATATGATATACCTTTATCATTAG

PCR1 Forward P230p Int F CTATATGGTATCCAAAACCTTTAAATTATATAGC

PCR1 Reverse P230p 50 Int R CTAAATTAGAAAATGAACATATAGAAAGCATC

PCR2 Forward P230p excision F CACCTTTATGATTTGTTCTGTTACATG

PCR2 Reverse P230p excision R CGACGCAAAAAGGTGAAAAACTC

PCR3 Forward Hrp2 F CTTTATGTCGACTCATCTAGGGAAG

PCR3 Reverse P230p 30 Int R CATGTGATTTAGTATTAATAACTTTAACTTGATC

Epac primers (Figs 4D and S1E) Name Sequence

PCR1 Forward Epac 50 Int F GATTAATTCAGAGCAATATAAAAAAGAGAAAAG

PCR1 Reverse Epac 50 Int R GCATAGTCAGGAACATCGTAAGG

PCR2 Forward Epac 50 Int F GATTAATTCAGAGCAATATAAAAAAGAGAAAAG

PCR2 Reverse Epac WT R GTTGTTATTTATATTTTCATGAATAGGAC

PCR3 Forward PKAc 30 Int F CAGCTATGACCATGATTACGCC

PCR3 Reverse Epac 30 Int R GTTGTTATTTATATTTTCATGAATAGGAC

Abbreviations: F, forward; Int, integration; R, reverse; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000264.t002
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PROTEAN TGX Stain-Free Protein Gels (Bio-Rad) under reducing conditions and proteins

transferred to nitrocellulose membranes using a semidry Trans-Blot Turbo Transfer System

(Bio-Rad). Antibody reactions were carried out in 1% skimmed milk in PBS with 0.1% Tween-

20 and washed in PBS with 0.1% Tween-20. Appropriate horseradish peroxide-conjugated sec-

ondary antibodies were used, and antibody-bound washed membranes were incubated with

Clarity Western ECL substrate (Bio-Rad) and exposed to X-ray film for visualisation.

Antibodies used for western blots presented in this work were as follows: anti-HA mono-

clonal antibody (mAb) 3F10 (diluted 1:1,000) (Roche); rat anti–binding immunoglobulin pro-

tein (BiP) (1:2,000); mouse anti-GAPDH mAb (1:20,000); rabbit anti-SERA5 polyclonal

antibody (1:2,000) [56]; rabbit anti-AMA1 (1:2,000) [57]; rabbit anti-EBA175 (1:5,000) [58];

rabbit anti-Rh2b (1:2,000) [59]; mouse anti-MSP183 mAb (1:5,000) [60]; mouse anti-plasmep-

sin V mAb (1:2,000); rat anti-myosin A serum (1:10,000) [3]; and rabbit anti-pS19MyoA anti-

bodies (1:1,000) [25]. Densitometry quantifications were performed using Image J.

IFAs

Thin blood films were fixed with 4% formaldehyde in PBS and permeabilised with PBS con-

taining 0.1% (v/v) Triton X-100. Blocking and antibody binding was performed in PBS 3%

BSA w/v at room temperature. Slides were mounted with ProLong Gold Antifade Mountant

containing DAPI (Thermo Fisher Scientific). Images were acquired with a NIKON Eclipse Ti

fluorescence microscope fitted with a Hamamatsu C11440 digital camera and overlaid in ICY

bioimage analysis software or Image J. Super-resolution images were acquired using a Zeiss

LSM880 confocal microscope with Airyscan detector in Airyscan SR mode. Antibodies addi-

tionally used for IFA not described above were rabbit anti-ARO and rabbit anti-GAP45 poly-

clonal antisera (both diluted 1:1,000), and a mouse anti-RON4 polyclonal antiserum (1:500)

Table 3. Sequences of re-codonised regions.

Region Sequence

ACβ re-codonised amino acids

F116–N215

TTCTTCTGCGATGCTAGTGGCTTTAGCAATCTGGCCGAACAAT

TAGACAAACGTATCAATGGGACCGAACTCCTCGGAAATTGTCT

CAACAAGTTCTTCAACATCCTGATCAAAATCATCGACTATTGGG

GGGGCGATATTATTAAGTTTAGTGGTGATGCTGTATTGGTGAT

CTGGCCGTTGCACAACGTATTAAAAAACAAAAAGAAGAAAAAGA

AAAAAAACGGGACCCAAAATAACGACAGTGATGATGAGCATGTC

AACTTGAAGGACAACAAAACCTCGCACGATCGTTATAAT

ACβ re-codonised amino acids

T2,125–S2,279

ACAGCATACTGTATGAGTTTGATTGACAGTCTGAATCAGGAGGA

GCAATTACTCGCGAAATTATGTTCATTCTTCAACAATACGTTCAA

CATTAAGAAAATGGAGTGCATTTACCCGAAGTACATCTCTCGCTG

TGAATTGAAGAAAATCATTGTTAAACTGGTGGAGAAAAATGTATT

TTGTTTGTACGAGGATCCTAACAAAAAGTCTGTGACCCTTCCTAA

GGACAATGTTAACAGCATCCACAACATTAATTTCGTCTATCGCGAC

ATGTATAATAAGATCAATAGCTTTTTGGAGAAAAAATCCAAACATC

ATTCACTTTTCGGAAAGCATAAGAACGTCCCGGACGAAGAGATTTA

CTTTTGCATCACAAATTTTTCCTTGAAGAAAGTCTTGAACGACCTGC

TTGAAAACGAGGAGAAAGAGTACATCAAAAAGATCTATAAGAAGTAC

ATTGAATCC

PKAc re-codonised amino acids

A211–W342

GCAGACTGGTGGACACTTGGAATATTTATTTATGAGATTCTTGTAGG

TTGCCCTCCATTCTACGCTAACGAGCCTCTTCTTATATACCAAAAGAT

TCTTGAGGGAATTATTTACTTTCCAAAGTTCCTAGACAATAACTGTAA

GCACCTAATGAAAAAGCTACTAAGTCATGACCTTACTAAGCGTTACGG

AAACCTTAAGAAGGGTGCACAGAACGTAAAGGAGCATCCTTGGTTCTC

TAACATAGACTGGGTTAACCTACTTAACAAGAACGTAGAAGTACCTTA

CAAGCCAAAGTACAAGAACATATTCGACTCTTCTAACTTCGAACGTGT

TCAGGAGGACCTTACAATTGCAGACAAGATTACTAACGAGAACGACCC

TTTCTACGACTGG

https://doi.org/10.1371/journal.pbio.3000264.t003
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[19]. To visualise tight junction formation, mature schizonts of DMSO- and RAP-treated

PKAc-HA:loxP parasites were Percoll enriched, incubated in medium containing C2 (1.5 μM)

for 2 h, and then washed in warm medium and further incubated in the presence of fresh

erythrocytes at 5% haematocrit for 30 min. In the case of the DMSO-treated control parasites,

the medium contained 1 μM cytochalasin D to prevent invasion but allow junction formation.

The cultures were then rapidly fixed by adding an equal volume of PBS containing 8% formal-

dehyde and 0.02% glutaraldehyde and shaking at 37˚C for 20 min. Fixed parasites were then

processed, as previously described, using the rabbit anti-AMA1 primary antibody at a dilution

of 1:500.

Time-lapse video microscopy

Egress and invasion were monitored by differential interference contrast (DIC) microscopy

using a Nikon Eclipse Ni light microscope fitted with a Hamamatsu C11440 digital camera.

Egress videos were performed using one population of parasites stained briefly with Hoechst,

as described previously [33]. Invasion videos were performed using schizonts purified from

DMSO- or RAP-treated ACβ-HA:loxP or PKA-HA:loxP cultures mixed with uninfected eryth-

rocytes. DIC images were taken every 150 ms for at least 8 min, and the resulting time-lapse

videos were processed using Nikon NIS Elements AR analysis software.

Flow cytometry

For growth assays, synchronous ring-stage parasites were adjusted to a 0.1% parasitaemia 1%

haematocrit suspension and dispensed in triplicate into six-well plates. Samples of 100 μL were

harvested at days 0, 2, and 4 for each well and fixed with 4% formaldehyde 0.2% glutaraldehyde

in PBS. Fixed samples were stained with SYBR green and analysed by flow cytometry.

TEM

To enrich for attachment of PKAc-null merozoites to the surface of erythrocytes, RAP-treated

PKAc-HA:loxP cultures were allowed to mature to schizont stage and then added to an excess

of fresh erythrocytes and shaken gently at 37˚C for 40 min. The cultures were then pelleted

and resuspended in fixative (2% formaldehyde, 1% glutaraldehyde in PBS, pH 7.4) at 37˚C for

15 min. Fixed material was briefly washed in PBS before mixing with 20% (w/v) dextran in

complete medium containing bakers’ yeast, then freezing using a HPM100 high-pressure

freezer (Leica). Vitrified cells were freeze-substituted using an EM AFS2 (Leica) into Lowicryl

HM20 resin (EMS) with 0.2% (w/v) uranyl acetate and cut into 120-nm sections using a UC7

microtome (Leica). Sections were placed on glow-discharged carbon-coated copper finder

grids (EMS) and post-stained with 0.2% (w/v) uranyl acetate and 4% (w/v) lead citrate. Images

were recorded with a Tecnai T12 120-kV field emission gun electron microscope (FEI)

equipped with a 4k × 4k Ultrascan 4000 CCD camera (Gatan). Tomograms were recorded

using a Model 2040 dual-axis tomography holder (Fischione Instruments). Dual-axis tilt series

were acquired from −60˚ to +60˚ with an increment of 2˚ using SerialEM [61]. Tomograms

were processed in IMOD [62] using patch tracking for image alignment, and the final recon-

struction was filtered using nonlinear anisotropic diffusion filtering.

Phosphoproteomics

The phosphoproteomics data presented are from two isobaric labelling experiments, the first

involving ACβ-HA:loxP–derived samples and the second using PKAc-HA:loxP. Tightly syn-

chronised, ring-stage ACβ-HA:loxP or PKAc-HA:loxP parasites were treated with 100 nM RAP
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or vehicle only (DMSO) and schizonts (about 45 h old) enriched on an approximately 70%

Percoll cushion. The schizonts were treated for 2 h with 1 μM C2 (to arrest egress) and then

washed to allow egress for 30 min, after which the cultures were treated with 0.15% saponin in

PBS containing cOmplete Mini EDTA-free Protease and PhosSTOP Phosphatase inhibitor

cocktails (both Roche) for 10 min at 4˚C to lyse the host erythrocytes. Samples were washed

twice in PBS containing protease and phosphatase inhibitors, snap-frozen in liquid nitrogen,

and pellets stored at −80˚C. Parasite pellets were resuspended in 1 mL 8 M urea in 50 mM

HEPES, pH 8.5, containing protease and phosphatase inhibitors and 100 U/mL benzonase

(Sigma). Proteins were extracted from the pellets using three 15-s bursts with a probe sonicator

followed by a 10-min incubation on ice and a 30-min centrifugation at 14,000 rpm at 4˚C. Pro-

tein content was estimated by a BCA protein assay and a 200-μg aliquot of each sample was

taken for further processing. Samples were reduced with 10 mM dithiothreitol for 25 min at

56˚C and then alkylated with 20 mM iodoacetamide for 30 min at room temperature. The

alkylation reaction was quenched with an additional 10 mM dithiothreitol, and then each sam-

ple was diluted with 50 mM HEPES to reduce the urea concentration to<2 M prior to diges-

tion. Proteolytic digestion was carried out by the addition of 4 μg LysC (WAKO) and

incubated at 37˚C for 2.5 h followed by the addition of 10 μg trypsin (Pierce) and overnight

incubation at 37˚C. After acidification, C18 MacroSpin columns (Nest Group) were used to

clean up the digested peptide solutions and the eluted peptides dried by vacuum centrifuga-

tion. Samples were resuspended in 50 mM HEPES and labelled using the 0.8 mg Tandem

Mass Tag 10plex isobaric reagent kit (Thermo Scientific) resuspended in acetonitrile. Labelling

reactions were quenched with hydroxylamine, and a pool was made of each set of samples.

Acetonitrile content was removed from the pooled TMT solution by vacuum centrifugation

and then acidified before using a Sep-Pak C18 (Waters) to clean up the labelled peptide pool

prior to phosphopeptide enrichment. The eluted TMT-labelled peptides were dried by vacuum

centrifugation and phosphopeptide enrichment was subsequently carried out using the

sequential metal oxide affinity chromatography (SMOAC) strategy with High Select TiO2 and

Fe-NTA enrichment kits (Thermo Scientific). Eluates were combined prior to fractionation

with the Pierce High pH Reversed-Phase Peptide Fractionation kit (Thermo Scientific). The

dried TMT-labelled phosphopeptide fractions generated were resuspended in 0.1% TFA for

LC-MS/MS analysis using a U3000 RSLCnano system (Thermo Scientific) interfaced with an

Orbitrap Fusion Lumos (Thermo Scientific). Each peptide fraction was pre-concentrated on

an Acclaim PepMap 100 trapping column before separation on a 50-cm, 75-μm I.D. EASY--

Spray Pepmap column over a 3-h gradient run at 40˚C, eluted directly into the mass spectrom-

eter. The instrument was run in data-dependent acquisition mode with the most abundant

peptides selected for MS/MS fragmentation. Two replicate injections were made for each frac-

tion with different fragmentation methods based on the MS2 HCD and MSA SPS MS3 strate-

gies described [63]. The acquired raw mass spectrometric data were processed in MaxQuant

[64] (version 1.6.2.10) for peptide and protein identification; the database search was per-

formed using the Andromeda search engine against the Homo sapiens canonical sequences

from UniProtKB (release 2018_05) and P. falciparum 3D7 sequences from PlasmoDB-39.

Fixed modifications were set as Carbamidomethyl (C) and variable modifications set as Oxida-

tion (M) and Phospho (STY). The estimated false discovery rate was set to 1% at the peptide,

protein, and site levels. A maximum of two missed cleavages were allowed. Reporter ion MS2

or Reporter ion MS3 was appropriately selected for each raw file. Other parameters were used

as preset in the software. The MaxQuant output file PhosphoSTY Sites.txt, an FDR-controlled

site-based table compiled by MaxQuant from the relevant information about the identified

peptides, was imported into Perseus (v1.4.0.2) for data evaluation. Sites described as ‘enriched’

in the text are those that were quantified more highly in the three DMSO-treated samples
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compared with the three RAP-treated and p< 0.05 (Welch t test, two sided, S0 = 0). Sites

described as significantly changed in the text are those that were quantified more highly in the

three DMSO-treated samples compared with the three RAP-treated, p< 0.05 (Welch t test,

two sided), and are still considered changed when S0 is set to 0.2 in Perseus. Sequence logos

were generated using IceLogo (https://iomics.ugent.be/icelogoserver/). The mass spectrometry

proteomics data have been deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository [65] with the dataset

identifier PXD012143.

Recombinant AMA1cyt protein expression, preparation, and

phosphorylation

Recombinant AMA1 cytoplasmic tail protein (residues 567–622) with a thrombin-cleavable

GST fusion (GST-AMA1cyt), or an AMA1 Ser610Ala point mutant of the same protein

(GST-AMA1cyt _S610A), was expressed in Escherichia coli BL21 and purified as described pre-

viously [23]. For NMR experiments, labelled protein was produced using E. coli grown in M9

medium containing 15N ammonium sulphate and 13C glucose as the sole nitrogen and carbon

sources. To cleave the GST component, 100 μg GST-AMA1cyt protein was treated with one

unit of human alpha-thrombin (HTI) overnight at 18˚C in 50 mM Tris-HCl, pH 8.2, and 2

mM CaCl2. Following the digestion, glutathione agarose (Sigma) was used in excess to trap

GST in solution and was later removed by centrifugation. The protein solution was then

passed through a Superdex 75 HR 26/60 column equilibrated with 20 mM Tris-HCl, pH 8.2,

and 150 mM NaCl to remove thrombin and residual GST. For phosphorylation, 200 μg of

AMA1cyt in 20 mM Tris-HCl, pH 8.2, and 150 mM NaCl was treated with 3.5 μg of mouse

PKAc-α (Bioaffin GmbH & Co KG) in the presence of 2 mM ATP, 20 mM MgCl2, and 2 mM

DTT and incubated overnight at 30˚C. The protein solution was then passed through a Super-

dex 75 HR 26/60 column equilibrated in 20 mM Tris-HCl, pH 8.2, and 150 mM NaCl. This

step completely removed PKAc-α.

CD

Far-UV CD spectra were recorded on a Jasco J-815 spectropolarimeter fitted with a CDF-426S

Peltier unit. CD measurements of all GST fusion proteins (free GST, GST-AMA1cyt, and

GST-AMA1cyt_pS610) were made at a protein concentration of 0.15 mg/mL in 20 mM Tris-

HCl, pH 8.2, 150 mM NaCl, using fused silica cuvettes with 1-mm path lengths (Hellma).

Spectra were typically recorded with 0.1-nm resolution, with the baseline corrected by subtrac-

tion of the appropriate buffer spectrum and the contribution of GST subtracted from the

unphosphorylated and PKA-phosphorylated GST-AMA1cyt protein fusions for each secondary

structure element (alpha, beta, turn, and random) at the residue level. CD intensities are pre-

sented as the CD absorption coefficient calculated on a mean residue weight basis (ΔεMRW).

Secondary structure content was estimated using methods described previously [66].

NMR spectroscopy

NMR experiments were performed on uniformly 15N- and 13C-labelled samples at 25˚C in 50 mM

Tris, 150 mM NaCl on Bruker 600-, 700-, and 800-MHz spectrometers equipped with pulsed-field

gradient units and triple resonance probes. Chemical shifts (1H, 15N, and 13C) and NOEs of

AMA1cyt and AMA1cyt_pSer610 were determined by performing standard triple resonance experi-

ments [67]. NMR data were processed with NMRPipe/NMRDraw [68] and analysed with XEASY

[69]. TALOS+ [70] was used to determine the secondary structure propensity of pAMA-1 on the

basis of the measured 1H, 15N, 13Cα, 13Cβ, and 13CO chemical shifts.
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Supporting information

S1 Fig. (A) Western blots from a subcellular fractionation experiment showing that PKAc-

HA3 localises predominantly in the soluble fraction of a hypotonic freeze-thaw lysate of PKAc-
HA:loxP schizonts. GAPDH was used as a positive control for the soluble fraction, and plas-

mepsin V (PMV) was used as a positive control for the integral membrane fraction, which was

extracted with SDS/Triton X-144. The peripheral membrane fraction was extracted with 100

mM sodium bicarbonate. (B) Growth curves showing changes in parasitaemia of the parental

3D7 DiCre line and PKAc-HA:loxP parasites treated with DMSO (vehicle-only control) or

RAP. Means from three replicates are plotted. Error bars, SD. (C) Fluorescence microscopy

showing expression of EGFP in PKAc-HA_DDDcomp:loxP parasites, and subsequent loss of

signal following RAP treatment, which switches expression of the protein(s) at this locus from

EGFP expression to expression of PKAc-HA3_DDD. Scale bar, 50 μm. (D) Diagnostic PCR

analysis verifying successful modification of the p230p locus of the PKAc-HA:loxP line to gen-

erate the PKAc-HA_DDDcomp:loxP line, and successful excision at the modified p230p and

PKAc loci following treatment with RAP. Priming sites are indicated in Fig 3C, and the PCR

used to amplify the PKAc locus corresponds to PCR 4 in Fig 2B. (E) Diagnostic PCR verifying

successful integration of the transgene used to create the Epac knockout line. Priming sites are

indicated in Fig 4D. (F) Western blot verifying expression of an approximately 42-kDa HA3-

tagged fusion of the extreme N terminus of Epac upon deletion of the rest of the gene by the

genetic modification shown in Fig 4D. GAPDH expression is shown as a loading control. (G)

IFA verifying expression of an HA3 tag fused to the extreme N terminus of Epac upon deletion

of the rest of the gene by the genetic modification shown in Fig 4D. Scale bar, 50 μm. (H)

Growth curve showing unimpaired proliferation of PfEpac knockout parasites. Means from

three replicates are plotted. Error bars, SD. Data associated with this figure can be found in the

supplemental data file (S1 Data). EGFP, enhanced green fluorescent protein; Epac, exchange

protein directly activated by cAMP; GAPDH, glyceraldehyde 3-phosphate dehydrogenase;

HA3, triple hemagglutinin; IFA, immunofluorescence assay; PKAc, catalytic subunit of cAMP-

dependent protein kinase; PMV, plasmepsin V; RAP, rapamycin.

(TIF)

S2 Fig. (A) Flow cytometry–based invasion assays showing the progression of DMSO-treated

ACβ-HA:loxP and PKAc-HA:loxP parasites from schizonts (t = 0) through rings (t = 2) to tro-

phozoites (t = 20), and the lack of progression of the RAP-treated counterparts through these

stages. (B) IFA showing re-localisation of AMA1 from micronemes to the merozoite periphery

in DMSO- and RAP-treated ACβ-HA:loxP schizonts. IFA analysis was performed on highly

synchronous cultures, which were treated with 20 μM E64 about 44 h post invasion for

approximately 4 h. Scale bars, 5 μm. (C) Ratio-intensity plots showing log10-transformed signal

intensities plotted against the log2-transformed fold change in intensity (DMSO/RAP) for

each site in the ACβ-HA:loxP and PKAc-HA:loxP phosphoproteomic profiling experiments.
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Sites that conform to a minimal PKA consensus motif (R/K, x, pS/pT) are indicated in red. (D)

Motif analysis performed using IceLogo of the 533 31–amino acid regions surrounding phos-

phosites specifically enriched (Welch t test, p< 0.05) in DMSO-treated ACβ-HA:loxP− and

PKAc-HA:loxP parasites compared with their RAP-treated counterparts. All 25,344 phospho-

sites detected in any sample were used as a reference dataset. Characters below the position

line indicate amino acid residues that are unfavoured for those positions. (E) Western blot

showing the presence of phosphorylated MyoA Ser19 in the absence of PKAc in the PKAc-HA:

loxP line. (F) Coomassie stained gel showing changed mobility of GST-AMA1cyt following

treatment with mouse PKA. This shift was not observed in the GST-AMA1cyt _S610A mutant.

AMA1, apical membrane antigen 1; AMA1cyt, AMA1 cytosolic domain; E64, cysteine protease

inhibitor; GST, glutathione S transferase; IFA, immunofluorescence assay; MyoA, myosin A;

PKA, cAMP-dependent protein kinase; PKAc, catalytic subunit of cAMP-dependent protein

kinase; RAP, rapamycin.

(TIF)

S3 Fig. (A) Super-resolution immunofluorescence imaging of PKAc-HA:loxP merozoites

attached to the RBC surface. Four merozoites for each condition (DMSO- or RAP-treated) are

shown. Scale bars, 2 μm. RAP, rapamycin; RBC, red blood cell.

(TIF)

S4 Fig. (A) Quantification of egress of DMSO- and RAP-treated PKAc-HA:loxP and ACβ-HA:

loxP schizonts, based on densitometry measurements of the SERA5 p50 bands on the blots

represented in Fig 4A. Signals are normalised such that the mean signal for the 60-min time

point of each DMSO control is equal to one. Means from two replicates are plotted. Error bars,

SD. (B) Full-length blots used to compile Fig 6A and Fig 6B. (C) Quantification of AMA1,

EBA175, and Rh2b shedding from DMSO- and RAP-treated PKAc-HA:loxP merozoites, based

on densitometry measurements on blots of the type represented in Fig 6A. Signals are normal-

ised such that the mean signal for the 60-min time point of each DMSO control is equal to

one. Means from three replicates are plotted. Error bars, SD. (D) Quantification of protein

detection in the supernatants of rupturing DMSO- and RAP-treated PKAc-HA:loxP schizonts

from blots of the type shown in Fig 6A. Densitometry measurements are normalised such that

the mean signal for each DMSO control is equal to one. Means from three replicates are plot-

ted. Error bars, SD. Data associated with this figure can be found in the supplemental data file

(S1 Data). AMA1, apical membrane antigen 1; EBA175, erythrocyte binding antigen 175; p50,

processed 50 kDa form; RAP, rapamycin; Rh2b, reticulocyte binding protein homologue 2b;

SERA5, serine repeat antigen 5.

(TIF)

S1 Table. Phosphoproteomic mass spectrometry datasets.

(XLSX)

S1 Data. Data values associated with figure plots.

(XLSX)

S1 Movie. Time-lapse video microscopy of RAP- and DMSO-treated PKAc-HA:loxP schiz-

onts undergoing egress. DMSO-treated schizonts are stained with Hoechst (blue). RAP, rapa-

mycin.

(MP4)

S2 Movie. Time-lapse video microscopy of RAP- and DMSO-treated ACβ-HA:loxP schiz-

onts undergoing egress. DMSO-treated schizonts are stained with Hoechst (blue). RAP,
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rapamycin.

(MP4)

S3 Movie. Time-lapse video microscopy of DMSO-treated ACβ-HA:loxP merozoites invad-

ing erythrocytes.

(MP4)

S4 Movie. Time-lapse video microscopy of RAP-treated ACβ-HA:loxP merozoites unable

to invade erythrocytes following release from the schizont. RAP, rapamycin.

(MP4)

S5 Movie. Time-lapse video microscopy of DMSO-treated PKAc-HA:loxP merozoites

invading erythrocytes.

(MP4)

S6 Movie. Time-lapse video microscopy of RAP-treated PKAc-HA:loxP merozoites unable

to invade erythrocytes following release from the schizont. RAP, rapamycin.

(MP4)

S7 Movie. Electron tomography of the attachment region between a RAP-treated PKAc-
HA:loxP merozoite and the RBC surface. Dual-axis tilt series were acquired from −60˚ to

+60˚ with an increment of 2˚. RAP, rapamycin; RBC, red blood cell.

(MP4)
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