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SUMMARY

Progression of DNA replication depends on the abil-
ity of the replisome complex to overcome nucleopro-
tein barriers. During eukaryotic replication, the CMG
helicase translocates along the leading-strand tem-
plate and unwinds the DNA double helix. While pro-
teins bound to the leading-strand template efficiently
block the helicase, the impact of lagging-strand pro-
tein obstacles on helicase translocation and repli-
some progression remains controversial. Here, we
show that CMG and replisome progressions are
impaired when proteins crosslinked to the lagging-
strand template enhance the stability of duplex
DNA. In contrast, proteins that exclusively interact
with the lagging-strand template influence neither
the translocation of isolated CMG nor replisome pro-
gression in Xenopus egg extracts. Our data imply
that CMG completely excludes the lagging-strand
template from the helicase central channel while un-
winding DNA at the replication fork, which clarifies
how two CMG helicases could freely cross one
another during replication initiation and termination.

INTRODUCTION

In eukaryotic cells, many origin sites on DNA are ‘‘licensed’’

(Blow and Laskey, 1988; Chong et al., 1995; Kubota et al.,

1995; Madine et al., 1995) for replication in the Gap 1 (G1) phase

by the loading of hetero-hexameric Minichromosome mainte-

nance (Mcm) 2-7 complexes through the collective actions of

Origin Recognition Complex (ORC), Cdt1, and Cdc6 (Coster

and Diffley, 2017; Coster et al., 2014; Evrin et al., 2009; Kang

et al., 2014; Remus et al., 2009; Ticau et al., 2015). Mcm2-7 com-

plexes, which assemble around double-stranded DNA (dsDNA)

as double hexamers, are called pre-replication complexes

(preRCs). PreRCs remain inactive until cells enter into the Syn-

thesis (S) phase, after which two protein kinases, namely, Cy-

clin-Dependent Kinase (CDK) and Dbf4-Dependent Kinase

(DDK), are involved in activating the helicase. While CDK

phosphorylates Sld2 and Sld3, DDK directly phosphorylates
Cell Rep
This is an open access article und
Mcm2-7 for the recruitment of Cdc45 and the GINS complex

(Douglas et al., 2018; Heller et al., 2011; Labib, 2010; Muramatsu

et al., 2010; Sheu and Stillman, 2006; Tanaka et al., 2007; Zeger-

man and Diffley, 2007). Subsequent to its association with

Cdc45 and GINS, the two Mcm2-7 complexes, whose N-termini

initially face each other, are activated, and the CMG (Cdc45/

Mcm2-7/GINS) complexes unwind the DNA (Costa et al., 2011;

Douglas et al., 2018; Ilves et al., 2010; Moyer et al., 2006; Yard-

imci et al., 2010). Recruitment of a number of other factors

establishes the replisome complex, and the unwound DNA is

replicated through the synthesis of the leading and lagging

strands by polymerase epsilon and delta, respectively (Lujan

et al., 2016).

In S phase, replisome progression is challenged by various

DNA lesions and DNA-protein complexes, including nucleo-

somes, transcription machinery, and DNA-protein crosslinks

(DPCs). As the replicative helicase forms the core of the repli-

some, its engagement with DNA and DNA-protein complexes

has been the subject of intense study. Most replicative helicases

unwind DNA via the steric exclusion mechanism where the heli-

case translocates along one strand while excluding the other

entirely from the helicase central channel. As a consequence,

although replicative helicases either arrest at or remove protein

obstacles bound to the translocation strand, they are able tra-

verse bulky barriers that interact with the displaced strand, as

shown for T7 gp4, DnaB, E1, and Simian Virus 40 (SV40) large

T-antigen (LTag) (Egelman et al., 1995; Enemark and Joshua-

Tor, 2006; Jeong et al., 2004; Kaplan, 2000; Kaplan et al.,

2003; Lee et al., 2014; Yardimci et al., 2012a).

How the eukaryotic CMG helicase interacts with protein bar-

riers during unwinding is less well understood. The Mcm4/6/7

complex arrests at a leading-strand DPC and is able to bypass

a lagging-strand DPC (Nakano et al., 2013), consistent with the

steric exclusion model. In line with this observation, replication

fork progression in Xenopus laevis egg extracts is blocked by

protein barriers attached to the leading- but not to the lagging-

strand template, suggesting that the CMG ring encircles only

the leading-strand template during unwinding (Fu et al., 2011).

However, the presence of many other protein factors in egg ex-

tractsmakes it possible that bypass of lagging-strand barriers by

CMG is facilitated by accessory proteins. In fact, given sufficient

time, CMG is able to bypass even a leading-strand protein road-

block in egg extracts with the help of additional factors (Sparks
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et al., 2019). In support of the possibility that bypass of lagging-

strand obstacles by CMG is promoted by other replisome com-

ponents, inhibition of DNA unwinding by recombinant-purified

Saccharomyces cerevisiae CMG (ScCMG) complex was re-

ported in the presence of lagging-strand protein blocks (Lang-

ston and O’Donnell, 2017). Furthermore, the structure of ScCMG

on a preformed fork DNA (henceforth referred to as fork DNA)

substrate containing roadblocks displayed a short segment of

dsDNA entering into the MCM pore (Georgescu et al., 2017).

Together, these results led to the proposal of a modified steric

exclusion model where the lagging-strand template initially en-

ters the central ring and subsequently makes either a U-turn

and is extruded out the same channel (Langston and O’Donnell,

2017) or exits through the protrusions within the MCM zinc finger

domains (O’Donnell and Li, 2018). In addition, Mcm10 was re-

ported to relieve obstruction of ScCMG helicase activity by lag-

ging-strand blocks, suggesting that it may open the CMG ring

upon roadblock collision (Langston et al., 2017). In egg extracts,

a dual biotin-streptavidin complex (Fu et al., 2011) as well as a

covalently trapped methyltransferase (Duxin et al., 2014) on the

lagging-strand template led to transient stalling of nascent lead-

ing strands at a distance matching the CMG footprint (Fu et al.,

2011), raising the possibility that CMG goes through a conforma-

tional change, such as opening its ring, to bypass the protein

barrier. However, whether Mcm10 is needed for traversal of lag-

ging-strand barriers in egg extracts has not yet been tested.

It is essential to understand the dynamics of CMG at DNA-pro-

tein complexes, which is one of the main determinants of how

replication forks navigate through the protein-rich chromatin

environment. Using ensemble and single-molecule biochem-

istry, we investigated the outcome of CMG collision with

strand-specific protein roadblocks. We show that proteins that

exclusively interact with the lagging-strand template do not

impact CMG or replisome progression, supporting strand exclu-

sion as the preferred mechanism of DNA unwinding by CMG.

RESULTS

Biotin–Streptavidin Complex on the Leading-Strand
Template Inhibits DNA Unwinding by CMG
To understand how CMG interacts with DNA at the replication

fork, we purified Drosophila melanogaster CMG (DmCMG) by

overexpressing all 11 subunits of the complex in insect cells (Fig-

ure S1A) (Ilves et al., 2010). The recombinant CMG unwinds fork

DNA substrates in the 30-to-50 direction (Georgescu et al., 2014;

Ilves et al., 2010; Kang et al., 2012; Moyer et al., 2006; Petojevic

et al., 2015). Although a fork DNA substrate bearing 40-nucleo-

tide (nt) poly-T sequence (dT40) on both single-stranded DNA

(ssDNA) tails can bind two CMG complexes, replacing the 50 lag-
ging-strand arm with repeats of a GGCA sequence leads to only

one CMGbinding, as this sequence forms secondary hairpin-like

structures preventing CMG assembly on the 50 tail (Petojevic
et al., 2015). Thus, to measure the helicase activity of CMG, we

designed fork DNA substrates bearing a 30 dT40 tail and 50

d(GGCA) repeats, as well as a 60-base pair (bp) duplex region

to be unwound.

To determine whether strand separation occurs inside or

outside the helicase central channel, we examined the DNA
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unwinding activity of CMG on substrates, including a biotin-

streptavidin roadblock attached to either the leading- or lag-

ging-strand templates at the center of the duplex region.

Although some replicative helicases are able to dislodge strepta-

vidin (SA) from the translocation strand, such as E1 and LTag

(Lee et al., 2014; Yardimci et al., 2012a), others are not strong

enough to break biotin-streptavidin (bio-SA) interaction, as

seen for DnaB (Kaplan, 2000). As CMG tracks along the lead-

ing-strand template, SA on this strand (SALead) should either stall

the helicase or get displaced during unwinding. If the ss-dsDNA

junction is buried inside the helicase ring, the SA attached to the

lagging-strand template (SALag) is also expected to either block

helicase activity or be dislodged by CMG. In contrast, if the lag-

ging-strand template is completely excluded outside the CMG

ring, SALag should not influence CMG translocation, nor should

CMG remove SALag.

We observed significant disengagement of SA attached to

biotin on an internal thymidine base through a 6-carbon spacer

(biotin-dT) on dsDNA (Figure S1B, lanes 1–6) but not ssDNA (Fig-

ure S1C, lanes 1–6), as reported previously (Br€uning et al., 2016).

We inserted a tetraethylene glycol (PEG4) chain between biotin

and the thymidine base, which greatly reduced the release of

SA from dsDNA when challenged with free biotin (Figure S1B,

lanes 7–12). Given their stable SA binding, we used fork DNA

substrates containing an internal biotin with an additional

PEG4 spacer either on the leading- or lagging-strand templates

to investigate the interaction of CMG with site-specific protein

barriers.

We examined the consequence of DmCMG encountering a

bio-SA complex on the leading-strand template. For efficient as-

sembly of the helicase on the 30 ssDNA overhang of the fork, we

first incubated DmCMG with DNA in the presence of ATPgS for

120 min (Petojevic et al., 2015). DNA unwinding was then initi-

ated by adding ATP into the reaction (Figure 1A). After a

10-min incubation with ATP, the reaction was stopped, and

DNA was separated on a non-denaturing gel. In the absence of

SA, DmCMG unwound 52% ± 5% of DNA, at 100 nM DmCMG

(Figure 1B), indicating that purified DmCMG functions as an

active helicase (Ilves et al., 2010). Importantly, the unwinding ef-

ficiency decreased to 7% ± 0.1% in the presence of SALead, sug-

gesting that DmCMG is unable to disrupt the bio-SA interaction

(Figure 1C). The extent of unwinding did not increase in the pres-

ence of excess biotin, which would capture any SA removed

from DNA (Figures S1D and S1E). This result supports that

DmCMG is not proficient at breaking the bio-SA linkage.

CMG Bypasses a Lagging-Strand Biotin-Streptavidin
Complex without Displacing Streptavidin
To determine whether DNA unwinding occurs externally or within

the central channel of the helicase, we measured CMG-medi-

ated unwinding of DNA templates containing SALag. If part of

CMG encircles dsDNA at the fork, SALag is expected to block

helicase movement and, thus, DNA unwinding because CMG

is not able to disrupt the bio-SA interaction (Figure 1C). DNA

containing SALag was unwound as efficiently as DNA lacking

SA (Figures 1D and 1E), suggesting the helicase encircles only

the leading-strand template in its central channel. To rule

out the possibility that SALag is dislodged by the helicase during
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Figure 1. Interaction of DmCMG with

Strand-Specific Biotin-Streptavidin Com-

plexes

(A) Experimental approach used in unwinding

assays.

(B and C) DmCMG-mediated unwinding of fork

DNA templates in the (B) absence or (C) presence

of SALead. Right panel shows percentage of sub-

strate unwound as a function of DmCMG con-

centration. The extended length on the 50 tail

(17 repeats of d(GGCA)) was necessary to

discriminate SA-bound ssDNA (LeadSA) from

naked dsDNA (Fork) when separated on poly-

acrylamide gel.

(D and E) Unwinding of fork DNA templates in the

(D) absence or (E) presence of SALag. Right panel

shows percentage of substrate unwound as a

function of DmCMG concentration. In all gel im-

ages, lanes 1–8 correspond to reactions contain-

ing 0, 1, 5, 15, 25, 50, 75, and 100 nM DmCMG.

Lane 9 contains heat-denatured fork DNA that

marks positions of the leading- (Lead) and lagging-

strand (Lag) templates. Addition of SA to dena-

tured DNA (lane 10) reveals positions of SA-bound

leading- (LeadSA) and lagging-strand (LagSA)

templates. Fork substrates were labeled at both 50

ends with 32P. The radiolabel is shown as a red

asterisk. Data on the right panels correspond to

mean ± SD from three independent experiments.

See also Figure S1.
unwinding, we added excess biotin to the reaction to sequester

any released SA (Figure S1F). The fraction of SA-bound ssDNA

remained the same in the presence of excess biotin (Figure S1F,

right panel), indicating that CMG did not displace SALag. There-

fore, our results strongly suggest that DmCMG unwinds DNA via

the steric exclusion mechanism.

Previous biochemical assays performed with isolated ScCMG

showed that a single bio-SA block on the lagging-strand tem-

plate caused 50% inhibition of helicase activity, whereas a dou-

ble bio-SA complex on this strand inhibited DNA unwinding

almost completely (Langston and O’Donnell, 2017). To deter-

mine whether the DNA translocation mechanism of ScCMG

differs from that of DmCMG, we repeated unwinding assays by

using purified recombinant ScCMG (Zhou et al., 2017) and the

same set of fork DNA templates bearing site-specific bio-SA

blocks. As predicted, SALead considerably hindered ScCMG-

mediated DNA unwinding (Figures 2A and 2B). When bound to

the lagging-strand template, SA did not block the helicase activ-

ity of ScCMG (Figures 2C and 2D). Furthermore, ScCMG did not

displace SALag as the majority of unwound DNA retained SA on

this strand in the presence of free biotin (Figures S2A and
Cell Repor
S2B). Our results suggest that, similar to

DmCMG, ScCMG can efficiently bypass

a lagging-strand protein barrier.

AProtein Attached to ForkDNACan
Hinder CMG Binding
To determine the origin of helicase inhibi-

tion by a lagging-strand protein barrier in
previous work (Langston and O’Donnell, 2017), we modified the

fork template to match the sequence used by Langston and

O’Donnell (2017). These templates contained a 50-bp duplex

and a biotin on an internal thymidine base lacking a PEG4 linker

on the lagging-strand template (Figure 3A). Because we

observed significant dissociation of SA attached to an internal

biotin-dT on dsDNA (Figure S1B), we used traptavidin (TA), a

two-amino acid SA mutant with 10-fold lower biotin off-rate

than SA (Chivers et al., 2010). TA showed minimal dissociation

from dsDNA modified with biotin-dT (Figure S1G). TA attached

to the lagging-strand template (TALag) led to a �50% drop in un-

winding by DmCMG and ScCMG on this DNA substrate (Figures

3B and 3C, TA/CMG), closely matching previous results (Lang-

ston and O’Donnell, 2017; Langston et al., 2017). Given that

biotin was attached to DNA by a PEG4 linker in our original tem-

plates (Figures 1 and 2), we considered the possibility that when

bound to DNA by a short linker, TAmay obscure efficient binding

of CMG to fork DNA, causing inefficient unwinding. To test this

idea, we changed the order of TA and CMG binding to DNA (Fig-

ure 3A). Strikingly, no inhibition was observed when either

DmCMG or ScCMG was bound to the fork template before TA
ts 26, 2113–2125, February 19, 2019 2115
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Figure 2. ScCMG Bypasses a Biotin-Strep-

tavidin Complex on the Excluded Strand

(A and B) Unwinding of fork DNA by ScCMG in the

(A) absence or (B) presence of SALead. Right panel

shows percentage of substrate unwound against

ScCMG concentration.

(C and D) Unwinding of fork DNA by ScCMG in the

(C) absence or (D) presence of SALag. Right panel

shows percentage of substrate unwound against

ScCMGconcentration. In all gel images, lanes 1–4

correspond to reactions with 0, 5, 25, and 50 nM

ScCMG. In panels (B) and (D), heat-denatured

fork DNA was incubated with SA (lane 5) revealing

the positions of SA-bound leading- (LeadSA) and

lagging-strand (LagSA) templates. All fork DNA

templates used in these assays were labeled at

both 50 ends with 32P. The radiolabel is shown as a

red asterisk. Data represented here are mean ±

SD from three independent experiments.

See also Figure S2.
(Figures 3B and 3C, CMG/TA). To verify that TA bound to DNA

before ATP addition, we added excess biotin into the reaction

together with ATP. The level of TA-bound fork DNA (ForkTA) re-

mained essentially the same in the presence of excess biotin

(Figure S3), indicating that TA efficiently bound to DNA after

CMG assembly and before unwinding was initiated. Together,

our data strongly indicate that TA bound to internal biotin-dT

without an additional PEG4 linker on the parental duplex of a

fork DNA impairs the productive binding of CMG onto the fork,

likely due to steric hindrance, and explains helicase inhibition

by lagging-strand protein barriers observed previously (Lang-

ston and O’Donnell, 2017).

Action of CMG at Covalent DPCs
Efficient traversal of lagging-strand protein barriers by CMG im-

plies that the helicase ring does not encircle the lagging-strand

template during translocation. However, one possibility is that

part of the lagging-strand template at the fork resides within

the CMG ring and that this strand is excluded only after the heli-

case encounters a protein roadblock on the same strand. If the

replisome stalling in the presence of lagging-strand barriers

observed in egg extracts (Duxin et al., 2014; Fu et al., 2011) is

due to CMG encircling the non-translocation strand, isolated

CMG would be expected to slow down at a lagging-strand

obstacle before fully unwinding DNA in our assays. To test this

idea, we investigated whether a lagging-strand protein barrier

changes the kinetics of CMG-mediated DNA unwinding.

To analyze how a barrier on the non-translocation strand af-

fects DNA unwinding in a time-course assay, we used a non-

removable protein roadblock because SA gradually dissociates
2116 Cell Reports 26, 2113–2125, February 19, 2019
from biotin on dsDNA (Figure S1B).

Therefore, we created site-specific cova-

lent DNA-protein crosslinks (DPCs). To

this end, SA was first functionalized with

Dibenzocyclooctyl (DBCO) and cova-

lently conjugated to azide-modified

DNA via DBCO-azide-mediated copper-
free click chemistry (Baskin et al., 2007; Jewett et al., 2010). To

compare the stability of SA binding, DNA templates were sub-

jected to 50�C for 10 min. Although SA dissociated from biotin

on dsDNA even in the presence of a PEG4 linker at elevated tem-

peratures, no release was observed on the substrate in which SA

was crosslinked by click chemistry (clk-SA) (Figure S4A), as ex-

pected from a covalent bond.

To examine the interaction of isolated CMG with site-specific

DPCs, we designed fork DNA templates bearing a clk-SA either

on the leading- (clk-SALead) or lagging-strand (clk-SALag) tem-

plates. Our results with bio-SA blocks suggest that only clk-

SALead will impair helicase activity. Indeed, DmCMG was unable

to unwind templates containing clk-SALead (Figures 4A and 4B). It

was shown that replication forks can traverse an intact DPC on

the leading-strand template (DPCLead) in Xenopus egg extracts

(Duxin et al., 2014), and two models were proposed to explain

this result. One is that the CMG ring transiently opens, as

suggested for LTag helicase (Yardimci et al., 2012a), to traverse

DPCLead. The alternative model envisages an additional 50-to-30

helicase translocating along the lagging-strand template to un-

wind past DPCLead. We tested the ability of DmCMG to bypass

a clk-SALead when it is allowed to translocate along DNA for

extended periods of time. However, DmCMG failed to efficiently

unwind the clk-SALead-modified DNA even after 120 min of incu-

bation with ATP (Figure S4B), supporting the notion that other

factors in egg extracts are required for bypass of a leading-

strand protein roadblock (Larsen et al., 2019; Sparks et al.,

2019). On the other hand, clk-SALag did not inhibit the helicase

activity of DmCMG (Figures 4C and 4D), in agreement with our

results with DNA containing bio-SA blocks (Figures 1D and 1E).
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Figure 3. A Protein Attached to Fork DNA Can Hinder CMG Binding

(A) Schematic representation of experimental approach used in unwinding assays. ‘‘CMG/TA’’ refers to the strategy where CMG was allowed to bind the fork

substrate before addition of traptavidin (TA). ‘‘TA/CMG’’ corresponds to CMG binding to the fork DNA that was pre-bound to TA.

(B and C) Unwinding of fork DNA bearing TALag by (B) DmCMG or (C) ScCMG. Right panels show percentage of substrate unwound in each reaction. In all gel

images, lane 1 corresponds to reaction lacking CMG, lane 2 to reaction lacking TA, lanes 3 and 4 to reactions including CMG and TA in different orders as

indicated. All reactions included 5 nM DNA substrate and 50 nM helicase. DNA templates are Cy5 labeled at the 50 end of the leading-strand template. Data

represented here are mean ± SD from three independent experiments.

n.s., not significant; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S3.
Kinetics of CMG Translocation Is Dependent on the
Nature of the Lagging-Strand Protein Barrier
To gain further temporal resolution of DNA unwinding by CMG,

we sought to inspect the dynamics of CMG translocation by us-

ing a fluorescence-based assay. To monitor the kinetics of DNA

unwinding in real time, we designed a fork DNA substrate modi-

fied with a Cy5 fluorophore at the 50 end of the leading-strand

template and a black hole quencher, BHQ2, at the 30 end of

the lagging-strand template (Figure S5A). The Cy5 signal is

quenched due to the presence of a proximal BHQ2 when the

DNA is duplexed, and its fluorescence increases upon separa-

tion of the two strands (Figure S5A, compare lanes 1 and 3).

Similar substrates were used previously to characterize the dy-

namics of other replicative helicases (Donmez and Patel, 2008;

Nandakumar et al., 2015). DmCMG was first allowed to bind

the labeled substrate in the presence of ATPgS as before. To

achieve single-turnover DNA unwinding, ATP was added

together with excess 40-nt poly-T ssDNA that sequesters free

helicase. Cy5 fluorescence signal increased with time, which

was strictly dependent on the addition of CMG and ATP (Fig-
ure S5B), confirming that the fluorescence intensity reflects the

DNA unwinding by the helicase. We also confirmed that poly-T

oligonucleotide serves as a trap for free helicase (Figure S5C).

To determine whether a protein barrier on the non-transloca-

tion strand influences the kinetics of CMG translocation, we

repeated the fluorescence assay on DNA bearing a covalently

attached lagging-strand SA. DmCMG unwound DNA modified

with a clk-SALag with the same dynamics as it unwound non-

crosslinked substrate (Figures 5A and 5C), indicating that a bulky

obstacle on the non-translocating strand does not slowdown the

helicase. The absence of a significant time delay in bypassing

clk-SALag makes it unlikely that CMG undergoes a major confor-

mational change, such as opening part of its ring to exclude the

lagging-strand template during bypass. If such remodeling of

CMG occurs at a lagging-strand roadblock, it neither requires

an accessory factor, such as Mcm10, nor causes the helicase

to pause, as observed for replication forks in egg extracts (Duxin

et al., 2014; Fu et al., 2011).

Because isolated CMG can bypass clk-SALag without delay

in our assays, we reasoned that the transient fork stalling at
Cell Reports 26, 2113–2125, February 19, 2019 2117
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Figure 4. CMG Can Bypass a Covalent Lag-

ging-Strand Protein Crosslink

(A and B) DmCMG-mediated unwinding of fork

DNA in the (A) absence or (B) presence of

clk-SALead. DNA contained a Cy5 at the 30 end of

the lagging-strand template. Weak unwinding that

was observed on the clk-SALead-modified sub-

strate could be attributed to trace amounts of

non-conjugated DNA substrate (red arrow) being

unwound by CMG. Right panel shows the fraction

of DNA unwound against DmCMG concentration

from three independent experiments (mean ± SD).

(C and D) DmCMG-mediated unwinding of fork

DNA in the (C) absence or (D) presence of

clk-SALag. DNA contained a Cy5 at the 50 end of

the leading-strand template. Right panel shows

the percentage of DNA unwound against DmCMG

concentration from three independent experi-

ments (mean ± SD). In all gel images, lanes 1–5

correspond to reactions containing 0, 5, 25, 50,

and 100 nMDmCMG. Lane 6 corresponds to heat-

denatured fork DNA that marks the position of the

Cy5-labeled strand.

See also Figure S4.
lagging-strand protein barriers in Xenopus egg extracts must be

due to either other components of the eukaryotic replisome inter-

acting with this strand or the type of the protein barrier used in

these experiments. Although we conjugated SA to DNA via click

chemistry, work in egg extracts involved the use of either

M.HpaII methlytransferase (MH) covalently crosslinked to a sin-

gle fluorinated cytosine (5-fluoro-20-deoxycytidin, 5FdC) (Duxin
et al., 2014) or SA bound to dual biotin-modified DNA (Fu

et al., 2011). To test whether MH crosslinked to the lagging-

strand template (MHLag) slows down CMG, we made a fork

DNA template containing MHLag located at the center of the

duplex region and performed fluorescence-based unwinding

assay. Unlike clk-SALag (Figure 5A), MHLag significantly slowed

down the kinetics of CMG-mediated unwinding (Figures 5B

and 5C, an average delay of 4.09 ± 0.24 min), suggesting that

the origin of fork pausing observed in extracts is the interference

of helicase translocation by MHLag.

Crystal structures of othermethyltransferases trapped onDNA

using the same strategy demonstrate that although the enzyme is

crosslinked to a base on one strand, it interacts with both DNA

strands (Klimasauskas et al., 1994; Kumar et al., 1994). Thus,

we hypothesized that MHLag locks onto and stabilizes duplex

DNA, decelerating CMG translocation. To investigate whether

MHalters the stability of duplexDNA,wemeasuredheat-induced

melting of a short segment of dsDNA. To this end, a Cy5-labeled

oligonucleotide was annealed to an oligonucleotide bearing a

5FdC base and conjugated to MH (Figure S5D). Subsequently,

an excess of BHQ2-modified competitor oligonucleotide com-
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plementary to the Cy5-modifed oligonu-

cleotide was added and reactions were

incubated at different temperatures and

separated on non-denaturing polyacryl-

amide gel. The addition of BHQ-labeled

oligonucleotide led to fluorescence loss
due to melting of duplex and hybridization of Cy5- and BHQ2-

labeled oligonucleotides, quenching Cy5 fluorescence (Fig-

ure S5D). Although the fluorescence from non-crosslinked DNA

was lost with increasing temperature, MH-conjugated duplex

was resistant to heat at least up to 60�C, indicating that MH sta-

bilizes dsDNA (Figure S5D). In contrast, clk-SA-modified DNA

denatured with the same kinetics as non-crosslinked DNA (Fig-

ure S5E). Therefore, we propose that MHLag-induced delay in

DNA unwinding by CMG is due to stabilization of duplex DNA

rather than steric hindrance of helicase translocation.

To further validate the idea that CMG pausing at MHLag is due

to methyltransferase latching onto and stabilizing dsDNA, we

tested whether unfolding MHLag on the fork DNA substrate

used in Figure 5B would speed up CMG-mediated unwinding.

Heating MHLag-modified fork DNA led to denaturation of the pro-

tein barrier, confirmed by a further shift on polyacrylamide gel

(Figure S5F, lane 3). Although a fraction of MH dissociated

from DNA, the majority of fork DNA contained unfolded MHLag.

Importantly, CMG unwound heat-treated MHLag-modified DNA

at a faster rate than it unwound native MHLag-crosslinked sub-

strate (Figures S5G and S5H), strongly suggesting that helicase

pausing at MHLag stems from interactions of the methyltransfer-

ase with DNA beyond the crosslinked base.

Single-Molecule Detection of CMG Pausing at a
Lagging-Strand Methyltransferase Block
To directly monitor helicase stalling at MHLag, we designed a sin-

gle-molecule assay in which unwinding of surface-immobilized
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Figure 5. Kinetics of CMGTranslocation Is Dependent on the Nature

of Lagging-Strand Protein Barrier

(A) Single turn-over fluorescence time-course unwinding assays performed

using fork DNA substrates with (blue) or without (black) clk-SALag.

(B) Single turn-over fluorescence time-course unwinding of uncrosslinked

(black) or MHLag-modified (brown) fork DNA. Fork substrates were

labeled with Cy5 fluorophore at the 50 end of the leading-strand template

and contained a BHQ2 fluorescence quencher at the complementary

30 end.
(C) Observed rate constants measured by fitting the data in (A) and (B) to

Equation 2 (see the STAR Methods). Data represented here are mean ± SD
DNA is measured through binding of fluorescently tagged RPA.

Similar assays were previously used to study helicase-cata-

lyzed DNA unwinding at the single-molecule level (Fili et al.,

2010). To this end, we generated a 2.7-kb linear substrate

bearing multiple biotins at one end for surface attachment

and a 30 dT70 ssDNA tail for CMG binding (Figure 6A). After im-

mobilizing DNA on the SA-functionalized surface of a microflui-

dic flow chamber, DmCMG was introduced in the presence of

ATPgS for its binding to the 30 ssDNA tail. To initiate DNA un-

winding and monitor the extent of unwound DNA, EGFP-tagged

RPA (EGFP-RPA) was drawn into the flow cell together with

ATP (Modesti, 2011). We detected gradual accumulation of

EGFP-RPA on many molecules using total internal reflection

fluorescence (TIRF) microscopy (Figure 6B). The fluorescence

signal increase was dependent on prior CMG assembly, indi-

cating that RPA accumulation occurs as a consequence of

CMG-driven DNA unwinding (Figure S6A). Upon unwinding of

the entire substrate, release of the strand not coupled to the

surface led to a sudden drop of EGFP-RPA intensity on the ma-

jority of molecules (Figure 6C). Under our experimental condi-

tions, CMG unwound dsDNA at an average speed of 8.2 ±

4.2 bp/s (Figure 6D, black), comparable to in vitro fork rates

with the minimal eukaryotic replisome (Lewis et al., 2017;

Yeeles et al., 2017) and translocation speed of CMG on ssDNA

(Wasserman et al., 2018). To observe MHLag-induced helicase

pausing, we introduced MHLag approximately 800 bp away

from the 30 ssDNA tail. A total of 26% of molecules exhibited

a discernible pausing event (more than 30 s) near the position

of MHLag (Figure 6E). The distribution of pause durations indi-

cates the helicase pauses an average period of 4.63 ±

0.22 min at MHLag (Figure 6F), paralleling the time delay seen

in our ensemble assays (Figure 5B). After traversal of the bar-

rier, average unwinding rate becomes indistinguishable from

that on unadducted substrate (Figure 6D). In addition, we de-

signed a DNA substrate containing an MHLead 800 bp away

from the fork junction to detect CMG arrest at the protein bar-

rier (Figure S6B). Concomitantly, on 80% of the molecules,

fluorescence intensity reached a plateau closely matching the

average intensity at which unwinding paused on MHLag-modi-

fied substrate (Figures S6C and S6D). Together, single-mole-

cule visualization of DNA unwinding by CMG reveals that

although helicase indefinitely stalls upon encountering MHLead,

it transiently pauses at MHLag, likely due to increased stability

of duplex DNA, and resumes its normal translocation speed

once the barrier is bypassed.

Replication ForkDynamics at DifferentDPCs inXenopus

Egg Extracts
Slowed unwinding seen with isolated CMG on MHLag-conju-

gated substrate (Figures 5B and 6E) recapitulates transient

fork stalling in Xenopus egg extracts observed with the same

roadblock. These results suggest that replisome pausing in ex-

tracts is specifically caused by the stabilization of duplex DNA

by MHLag and not because CMG needs to be remodeled to
from three independent experiments. Solid lines in (A) and (B) represent fits to

Equation 2.

n.s., not significant; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S5.
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D

EGFP-RPA

Figure 6. Single-Molecule Detection of

CMG Pausing at a Lagging-Strand Methyl-

transferase Block

(A) Schematic representation of experimental

approach used in single-molecule DNA unwinding

assays.

(B) Images of a sample field of view showing

accumulation of EGFP-RPA fluorescence signal at

different time points from the addition of EGFP-

RPA into the chamber.

(C) Example unwinding traces of DNA substrates

without a protein barrier. Traces exhibit a signal

drop upon completion of unwinding due to

dissociation of the leading-strand template (de-

picted in A).

(D) Distribution of average fork rates measured in

fully unwound substrates without MH (black) and

after bypassing MHLag (blue). Number of mole-

cules are n(-MH) = 199, n(MHLag after pause) = 20.

(E) Sample unwinding traces of DNA substrates

modified with MHLag. Pausing observed at 800 bp

is highlighted with gray rectangle.

(F) Distribution of pause durations observed in

molecules exhibiting a pausing event (n = 109).

The solid line is a fit to a single exponential.

See also Figure S6.
bypass a bulky barrier on the non-tracking strand. If this is true,

clk-SALag should not stall the replisome, as this modification

does not affect CMG helicase activity (Figure 5A). To test this

idea, we generated plasmids modified with either SA cross-

linked by click chemistry (Figure S7) or covalently trapped

MH. These plasmids also contained 48 repeats of the lacO

sequence near the protein crosslink. When replicated in egg

extracts in the presence of lac repressor protein, LacI, the right-

ward replication fork stalls at the array while the leftward fork

encounters the protein crosslink on either the leading- or lag-

ging-strand templates (Figure 7, upper schemes) (Dewar

et al., 2015; Duxin et al., 2014). To address the impact of the

protein block on replisome progression, nascent leading

strands were analyzed on a denaturing polyacrylamide gel
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following Nb.BsmI digest. As previously

described, in the presence of MHLead,

nascent leading strands first stalled

�30 to 40 nt upstream of the adduct

for �10–15 min (Figure 7, lanes 1–4),

consistent with the footprint of CMG,

which is stalled at the DPC (Duxin

et al., 2014). When replication forks

encountered clk-SALead, nascent leading

strands also stalled but at a position

closer to the crosslinked site compared

to MHLead and persisted for a prolonged

period of time �10–20 nt upstream of

the DPC (Figure 7, lanes 9–12). Because

the linker used to crosslink SA spans a

distance of �15 nt, we reason that the

nascent leading strand can be extended

closer to the crosslinked base most
probably because the CMG helicase can encircle and extend

the linker into its central channel until it reaches SA. We next

investigated the lagging-strand blocks. MHLag led to transient

but clearly observable stalling of nascent leading strands

�35–45 nt from the adduct (Figure 7, lane 5; Duxin et al.,

2014); however, absolutely no stalling was detected in the pres-

ence clk-SALag (Figure 7, lanes 13 and14), although nascent

extension products clearly accumulated between 9 and

15 min (Figure 7, lanes 13 and 14, bottom radiograph). These

data corroborate our observations with purified CMG and indi-

cate that in the context of a full replisome, CMG does not

encircle the displaced strand and, consequently, ring opening

is not necessary to traverse a protein barrier that exclusively in-

teracts with the lagging-strand template.



Figure 7. Replication Fork Dynamics at

Different DPCs in Xenopus Egg Extracts

Plasmids modified with MHLead, MHLag, clk-

SALead, and clk-SALag were replicated in egg ex-

tracts in the presence of LacI to ensure that a

single fork encounters the DPC (Duxin et al., 2014).

At the indicated time points, samples were di-

gested with Nb.BsmI and analyzed on a dena-

turing polyacrylamide gel. The upper schematics

depict the nascent leading-strand products liber-

ated by Nb.BsmI digest. After replication, plas-

mids containing clk-SALead and clk-SALag were

also digested with AatII and FspI (bottom radio-

graph) that cleave on either side of the DPC and

allows to monitor the nascent leading- and lag-

ging-strand extensions past the DPC. Note that

�50% of the plasmid contained crosslinked SA

(Figure S7).
DISCUSSION

Here, we investigated the impact of various protein-DNA com-

plexes on the activity of the eukaryotic replicative helicase

CMG while unwinding the DNA double helix at the replication

fork. To address whether any domain of CMG encircles duplex

DNA within the central pore while it advances on DNA, we stud-

ied the ability of CMG to unwind DNA templates modified with

site-specific roadblocks. Using model fork DNA templates, we

observed that Drosophila and yeast CMG arrest at a bio-SA

block on the leading-strand template while bypassing a lag-

ging-strand bio-SA complex without removing SA. Consistently,

we showed that covalently coupled SA on the leading- but not

the lagging-strand template blocks the helicase. Thus, our re-

sults agree with the steric exclusion model.

Similar fork unwinding assays by others using ScCMG

showed helicase inhibition by lagging-strand protein blocks

(Langston and O’Donnell, 2017; Langston et al., 2017).

Together with structural studies demonstrating duplex DNA

within the N-tier of MCM (Georgescu et al., 2017), it was pro-

posed that after entering into the MCM ring, the lagging-strand

template either bends back to exit from the same pore or
Cell Repor
curves to escape through a gap between

MCM zinc fingers (Langston and O’Don-

nell, 2017; Langston et al., 2017; O’Don-

nell and Li, 2018). In line with this model,

it was found that ScCMG is able to

displace a single SA from the lagging-

strand template to some extent (Lang-

ston and O’Donnell, 2017). However,

given that the stability of SA is rela-

tively low on dsDNA modified with an

internal biotin-dT (Figure S1B), a signi-

ficant portion of SA may have released

in a CMG-independent manner. We

observed helicase inhibition when TA

was bound to biotin on the lagging-

strand template with a short linker,

consistent with results obtained with
ScCMG reported previously (Langston and O’Donnell, 2017;

Langston et al., 2017). Importantly, when CMG was bound to

the fork DNA before TA, no inhibition was observed, indicating

that CMG binding but not translocation is disrupted by the

presence of a protein block in these assays. It is likely that

the presence of the PEG4 linker between biotin and the thymi-

dine base in our original fork DNA templates relieved the

obstruction of CMG binding to SA-bound DNA because this

substrate was efficiently unwound by CMG. We conclude that

the helicase activity of neither Drosophila nor yeast CMG is

impaired when a lagging-strand protein barrier is encountered

during translocation. Thus, if the yeast CMG structure in which

the MCM N-tier encircles duplex DNA at the fork junction

(Georgescu et al., 2017) reflects the DNA-unwinding state of

the helicase, there must be a gap in this region wide enough

to allow the protein-bound lagging-strand template to freely

escape from the central channel of the helicase.

In Xenopus egg extracts, replication forks transiently stall

upon encountering a dual bio-SA complex (Fu et al., 2011) or

a covalent methyltransferase (Duxin et al., 2014) on the

excluded strand. The origin of the transient fork arrest at a lag-

ging-strand roadblock in egg extracts has been unclear. It was
ts 26, 2113–2125, February 19, 2019 2121



thought that the interaction of CMG with the excluded strand

through the outer surface of the helicase might be causing

the helicase to stall (Fu et al., 2011). In support of this idea,

wrapping of the excluded strand on the exterior of replicative

helicases has been reported (Carney and Trakselis, 2016;

Carney et al., 2017; Graham et al., 2011). An alternative expla-

nation for this stalling was that the fork junction is buried inside

the helicase central pore and that slight opening of the MCM

ring can facilitate bypass (Langston and O’Donnell, 2017). In

addition, Mcm10 was found to aid CMG in bypassing a

lagging-strand block (Langston et al., 2017), implying that

Mcm10 in egg extracts may associate with the helicase to tra-

verse the barrier. This model seems plausible given that

Mcm10 plays a role in the eviction of the excluded strand dur-

ing initiation (Douglas et al., 2018). However, as CMG does not

require ancillary factors to bypass a covalent lagging-strand

roadblock (Figures 4D and 5), it is unlikely that Mcm10 is

needed to open the Mcm2-7 ring for bypass of lagging-strand

protein barriers. The absence of significant stalling in the pres-

ence of clk-SALag suggests that a bulky lesion on the lagging-

strand template does not influence CMG translocation. Thus,

even if CMG interacts with the excluded strand, a protein

bound to this strand is not sufficient to cause detectable heli-

case pausing. Importantly, MHLag that caused brief fork stalling

in extracts also delayed DNA unwinding by isolated CMG. In

addition, clk-SALag did not lead to any detectable fork stalling

in extracts. The remarkable correlation between the dynamics

of isolated CMG and fork progression in egg extracts at site-

specific protein barriers implies that MHLag-induced fork stall-

ing in extracts is due to the ability of this enzyme to stabilize

dsDNA rather than acting as a steric barrier. Thus, we envisage

that a protein that exclusively interacts with the displaced

strand does not influence CMG progression during replication.

In agreement with this, two converging CMG complexes

bypass one another without stalling in egg extracts during repli-

cation termination (Dewar et al., 2015).

Reported eukaryotic replication fork rates differ significantly

among organisms. For example, forks progress with an

average speed of 1–2 kb min�1 in human cell lines (Conti

et al., 2007) and 0.3–0.5 kb min�1 in Xenopus egg extracts

(Loveland et al., 2012; Mahbubani et al., 1992; Yardimci

et al., 2010). Transient stalling at duplex stabilizing assemblies

implies that fork progression is often interrupted during cellular

replication by DNA-binding factors. As histones are probably

the most abundant proteins on DNA, the replisome accommo-

dates histone chaperones, such as FACT, to promptly over-

come nucleosomes (Foltman et al., 2013; Gambus et al.,

2006; Kurat et al., 2017; Yang et al., 2016). However, when

the replisome encounters an aberrant roadblock, such as a

methyltransferase-bound site, its progression is hindered.

Consistently, replication forks slowly advance through LacI-

bound lacO sites in egg extracts (Dewar et al., 2015). Therefore,

the overall slower fork rates in egg extracts could be due to the

presence of high amounts of DNA-binding factors and the

heavily chromatinized state of the DNA.

Dimers of inactive Mcm2-7 complexes are organized such

that their N-terminal domains strongly interact with each other

and both rings encircle dsDNA at origins of replication (Abid Ali
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et al., 2017; Bell and Labib, 2016; Evrin et al., 2009; Li et al.,

2015; Noguchi et al., 2017; Remus et al., 2009). As evidenced

by the independent action of replisomes (Yardimci et al.,

2010) and the absence of CMG dimers in Xenopus egg extracts

(Gambus et al., 2011), the two hexamers most likely split during

initiation. Recent results with the reconstituted yeast system

indicate that separation of the double hexamer occurs upon

CMG formation (Douglas et al., 2018). Once CMG initiates the

unwinding of DNA, the N-terminal face of Mcm2-7 advances

in front, indicating that sister helicases must bypass one

another at the origin of replication (Douglas et al., 2018; Geor-

gescu et al., 2017). As proteins that engage solely with the

excluded strand do not slow down CMG, we envision that acti-

vated helicases bypass one another without stalling during

replication initiation, as seen in termination (Dewar et al.,

2015). In the future, it will be important to determine whether

a well-defined path exists for the excluded strand with respect

to CMG during unwinding.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Max Efficiency DH10Bac competent cells ThermoFisher 10361012

Rosetta (DE3)pLysS competent cells Novagen 70956

DH5a ThermoFisher 12297016

Chemicals, Peptides, and Recombinant Proteins

Peptide (DYKDDDDK) Peptide Chemistry, STP, The Francis Crick Institute N/A

Gamma-ATP [g-32P], Easy Tide Perkin Elmer BLU502A100UC

EZ link-NHS-PEG4-Biotin Thermo Fisher 21330

Streptavidin from Streptomyces avidinii Sigma-Aldrich S4762

Microspin G50 Spin columns GE Healthcare GE27-5330-01

3.5 kDa MWCO Dialysis Membrane Fisher Scientific 11425859

12-14 kDa MWCO Dialysis Membrane Fisher Scientific 11475849

3 kDa MWCO Vivaspin concentrator Generon VS0192

DMSO (Dimethyl sulfoxide), anhydrous Sigma Aldrich 276855

DBCO-Sulfo-NHS-Ester Jena Biosciences CLK-A124

DBCO-PEG4-NHS-Ester Jena Biosciences CLK-A134

Azide-PEG3-Biotin Jena Biosciences CLK-AZ104P4

Acrylamide: Bis-Acrylamide 37.5:1 Fisher Scientific 10376643

Agarose Denville Scientific CA3510-8

PBS, pH = 7.4 GIBCO 70011044

Sf-900TM III SFM insect cell medium Thermo Fisher 12658019

Anti-Flag M2 Affinity Gel Sigma Aldrich A2220

Ni-NTA agarose beads solution QIAGEN 30210

EDTA-Free PI tablets Roche 5056489001

Mini GebaFlex Tube-Dialysis (0.2 ml) Generon D070-6-10

NuPAGE 4-12% Bis-Tris Protein Gels Thermo Fisher NP0323BOX

ATPgS (Adenosine 50-0-(3-thiotriphosphate)) Roche 11162306001

ATP Roche 11140965001

Dynabeads M-280 Streptavidin Invitrogen 11205D

Biotin Sigma Aldrich B4501

Amphotericin B (Fungizone) GIBCO 15290018

Gentamycin GIBCO 15750060

Ampicillin Roche/Sigma 10835269001

Benzonase nuclease Sigma E1014

HpaII Methyltranferase NEB M0214

T4 PNK NEB M0201

T4 Ligase NEB M0202

Nt.BbvCl NEB R0632

Nb.BsmI NEB R0706

HpaII Methyltransferase (M.HpaII) NEB M0214

Nunc 384 shallow well plate, black Thermo Fisher 264705

Critical Commercial Assays

QIAGEN Gel Extraction Kit QIAGEN 28704

QIAGEN PCR Purification Kit QIAGEN 28104

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

QIAGEN Miniprep Kit QIAGEN 27104

HiTrap SPFF column (1ml) GE Healthcare 17-5054-01

MonoQ 5/50 GL column (1ml) GE Healthcare 17516601

MonoQ PC 1.6/5 GL column (0.1ml) GE Healthcare 17067101

Superdex 200 10/300 GL column (24 ml) GE Healthcare 28990944

Experimental Models: Cell Lines

Spodoptera frugiperda (SF9) cells Cell Services, STP, The Francis Crick Institute N/A

Spodoptera frugiperda (Sf21) cells Structural Biology, STP, The Francis Crick Institute N/A

Hi Five cells Cell Services, STP, The Francis Crick Institute N/A

Experimental Models: Organisms/Strains

Xenopus laevis (females) Nasco LM0053MX

Xenopus laevis (males) Nasco LM00715MX

S. cerevisiae: yJCZ3, Strain background: W303 Zhou et al., 2017 N/A

Oligonucleotides

Oligonucleotides used in all DNA templates (See Table S2) Integrated DNA Technologies N/A

Recombinant DNA

pFB1-Mcm2 Ilves et al., 2010 N/A

pFB1-Mcm3 Ilves et al., 2010 N/A

pFB1-Mcm4 Ilves et al., 2010 N/A

pFB1-Mcm5 Ilves et al., 2010 N/A

pFB1-Mcm6 Ilves et al., 2010 N/A

pFB1-Mcm7 Ilves et al., 2010 N/A

pFB1-Psf1 Ilves et al., 2010 N/A

pFB1-Psf2 Ilves et al., 2010 N/A

pFB1-Psf3 Ilves et al., 2010 N/A

pFB1-Sld5 Ilves et al., 2010 N/A

pFB1-Cdc45 Ilves et al., 2010 N/A

Plasmid-EGFP-RPA Modesti, 2011 N/A

pHY39 This work N/A

Software and Algorithms

GraphPad Prism7 https://www.graphpad.com/scientific-software/prism/ RRID:SCR_002798

ImageJ https://imagej.nih.gov/ij/ RRID:SCR_003070

FUJIFILM-FLA-5000 FUJIFILM N/A

Typhoon-FLA-9500 GE Healthcare N/A

PHERAStar https://www.bmglabtech.com/pherastar-fsx/ N/A

Adobe Illustrator https://www.adobe.com/products/illustrator.html RRID:SCR_014198
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Hasan Yardimci (Hasan.

Yardimci@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Xenopus laevis
Egg extracts were prepared using Xenopus laevis (Nasco Cat #LM0053MX, LM00715MX). All experiments involving animals were

approved by the Danish Animal Experiments Inspectorate, and conform to relevant regulatory standards and European guidelines.
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Insect Cells
Sf9 insect cells (Thermo Fisher) were used to generate baculoviruses and High Five insect cells (Thermo Fisher) were used for

DmCMG expression.

Bacteria Strains
E.coli strains Rosetta(DE3)pLysS (Novagen), DH10Bac (Thermo Fisher), and DH5a (Thermo Fisher) were used for EGFP-RPA expres-

sion, bacmid generation, and plasmid cloning, respectively.

Yeast Strains
yJCZ3 yeast strain (background, W303) was used for ScCMG expression.

METHOD DETAILS

DNA Substrates
We designed a variety of DNA substrates containing different modifications. Sequences of oligonucleotides (oligos) used in each

substrate can be found in Table S1. DNA substrates were made using a combination of oligos as indicated in Table S2.

In general, fork DNA substrates were made by mixing equimolar amounts (10 mM final) of oligos in STE buffer (10 mM Tris-HCl pH

8.0, 100 mM NaCl, 1 mM EDTA), heating to 85�C and subsequently allowing to slowly cool down to room temperature (RT). When

necessary, resulting nicks were sealed by ligating with T4 DNA ligase (NEB).

To prepare DNA templates containing site-specific biotin modification with PEG4 linker, approximately 200 mg of amine-modified

DNA was mixed with 2 mg of EZ-link-NHS-PEG4-Biotin (ThermoFisher) in phosphate buffered saline (PBS) and incubated for 16

hours at room temperature (RT). DNA was separated on either 3% agarose gel or 8% polyacrylamide gel (PAGE), and the resulting

substrate was purified using either a gel extraction kit (QIAGEN) or electroelution, respectively. Electroelution was performed using

3.5 kDa MWCO dialysis membrane (Spectra/Por, Spectrum Labs) in 1x TBE buffer. Where indicated, fork DNA substrates were

labeled with [g-32P]-ATP using T4 PNK enzyme (NEB). Radiolabelled samples were spun through a MicroSpin G50 column

(GE Healthcare) equilibriated with TN buffer (10 mM Tris-HCl, pH 8.0, 20 mM NaCl) to remove excess radionucleotide. To selectively

purify biotin-modified DNA, 1 mg of streptavidin (SA), was mixed with 2 mg of DNA substrate and incubated for 3 hours. After sepa-

rating on 8% PAGE, bands corresponding to SA-bound DNA were excised and purified by electroelution. When desired, DNA sam-

ples were concentrated with 0.5ml VivaSpin (3 kDa MWCO) concentrator (Generon).

To generate DNA templates containing site-specific biotin-dTmodification, oligos were annealed and purified as described above.

1 mg of traptavidin (TA) was mixed with 2 mg of DNA substrate and incubated for 3 hours for TA binding. To purify substrates with

stably bound TA, TA-binding reaction was mixed with biotin (80 mM final) and incubated at 37�C for 10 min. After separating on

8% PAGE, bands corresponding to TA-bound DNA were excised, purified, and concentrated as before.

To functionalize SAwith DBCO, 500 mL of 20mg/ml SA in PBSwasmixedwith 60 mL of DBCO-Sulfo-NHS-Ester (Jena Biosciences,

100mMdissolved in DMSO) and incubated at RT for 3 hours, rotating. DBCO-SAwas dialyzed against PBS using 12- 14 kDaMWCO

membrane (Spectra/Por, Spectrum Labs) to remove excess DBCO.

To prepare fork DNA substrates containing site-specific DPCs, oligos were annealed and ligated. After separating the resulting

azide- or 5FdC-modified fork DNA on 8%PAGE, theywere purified by electroelution as described above. The products were dialyzed

against TN buffer and further concentrated. Azide-modified fork DNA templates were mixed with DBCO-modified SA (7 mg/ml final)

and incubated at 37�C for 3 hours. 5FdC-modified fork templates were mixed with HpaII methyltransferase (M.HpaII) in 1:4 DNA to

protein molar ratio in methyltransferase buffer (50 mM Tris-HCl, pH 7.5, 0.5 mM 2-mercaptoethanol (b-ME), 10 mM EDTA, NEB) sup-

plemented with 100 mM S-adenosylmethionine (NEB), and incubated at 37�C for 3 hours. The reactions were run on 3% agarose gel

to separate DPC-conjugated DNA substrate from unconjugated DNA as well as excess DBCO-SA and MHpaII. The bands corre-

sponding to DPC-modified and unmodified DNA substrates were excised, separately isolated through electroelution, and

concentrated.

DNA substrates used in single-molecule experiments were constructed by ligating a 2.7kb linear duplex to a biotinylated ‘handle’.

First, pHY10 (Duxin et al., 2014) was modified via site-directed mutagenesis to introduce a KpnI site overlapping the M.HpaII-recog-

nition sequence to generate pHY39. 2.7 kb fragment from this vector was PCR amplified either with Oligo-18 and Oligo-19 for MHLag

or with Oligo-20 and Oligo-21 for MHLead, and digested with Nt.BbvCl (NEB). After nicking, Oligo-22 and Oligo-23 (10 mM final) were

added, and the reaction was heated to 50�C for 10 min to capture displaced strands. DNA was then gel purified and ligated to Oligo-

Fluo-1. M.HpaII conjugation was performed as before. To eliminate substrates lacking MHpaII, DNA was digested with KpnI (NEB),

separated on a 1% agarose gel, and purified by electroelution.

To prepare the biotinylated handle, 568 bp fragment of pUC19 plasmid was PCR amplified usingOligo-12 andOligo-13 in the pres-

ence of biotin-16-dUTP (Roche), digested with Nt.BbvCl, and gel purified. A ‘spacer’ was prepared by annealing Oligo-15, Oligo-16,

and Oligo-17 containing 30 dT70 ssDNA tail for CMG assembly. While one end of the spacer contains an overhang complementary to

the Nt.BbvCI-treated biotin handle, the other end has an overhang complementary to one end of the nicked 2.7 kb duplex. The spacer

was first ligated to nicked biotin-modifed PCRproduct with T4 Ligase (NEB), and gel purified. The resulting construct was then ligated

to MH-modified 2.7 kb DNA, separated on 0.8% agarose, and purified by electroelution.
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To prepare MH-conjugated plasmids for replication assays, pJLS2 (Larsen et al., 2019) was digested either with Nt.BbvCI or

Nb.BbvCI (NEB), and ligated to Oligo-Fluo-2 or Oligo-Fluo-3, respectively. The ligated products were gel purified, and crosslinked

with M.HpaII as previously described (Duxin et al., 2014).

To prepare clk-SA modified plasmids pJLS2 was digested with BbvCI, and 50-TCAGCAGGTCCGGCTTAAGCCTTATAAAGG

TACC-30 sequence was inserted to generate pNBL101. pNBL101 was digested either with Nt.BbvCl or Nb.BbvCl, and ligated to

Oligo-azide-3 or Oligo-azide-4, respectively. Ligated products were gel purified. To functionalize SA with DBCO-PEG4, 500 ml of

20mg/ml SA in PBSwasmixed with 60 ml of DBCO-PEG4-NHS-Ester (Jena Biosciences, 100mMdissolved in DMSO) and incubated

at RT for 3 hours, rotating. DBCO-PEG4-SA was dialyzed against PBS using 12-14 kDa MWCOmembrane (Spectra/Por, Spectrum

Labs) to remove excess DBCO-PEG4. DBCO-PEG4-modified SA (15 mg/ml final) was mixed with azide-modified plasmids (50 ng/ml

final) and incubated at 37�C for 3 hours for click reaction.

Expression and Purification of Recombinant DmCMG
DmCMGwas expressed and purified as described before (Abid Ali et al., 2016; Ilves et al., 2010) withminor changes. Briefly, following

bacmid generation for each subunit of DmCMG, Sf21 cells were used for the initial transfection and subsequent virus amplification

stages to generate P2 stocks using serum-free Sf-900TM III SFM insect cell medium (Invitrogen/GIBCO). In the P3 virus amplification

stage, 100mLSf9 cell (0.5x105/ml) cultures were infectedwith 0.5mL of P2 stocks with an approximateMOI of 0.1 for each virus, and

incubated in 500 mL Erlenmeyer sterile flasks (Corning) for 4 days at 27�C, shaking at 100 rpm. 4L of Hi-Five cells (106/ml) supple-

mented with 10% FCSwere infected using fresh P3 stocks with MOI of 5. Cells were incubated at 27�C and harvested after 60 hours.

Cell pellets were first washed with PBS supplemented with 5 mMMgCl2, resuspended (50 mL buffer per 1 L of Hi-Five cell culture) in

resuspension buffer (25 mM HEPES pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.02% Tween-20, 10% glycerol, 15 mM KCl, 2 mM MgCl2,

2 mM b-ME, PI tablets), and frozen in 10 mL aliquots in dry ice.

All steps during purification were performed at 4�C unless otherwise specified. Cell pellets were thawed and lysed by applying at

least 50 strokes per 30mL of cell pellets using tissue grinders (Wheaton, 40mL Dounce Tissue Grinder). Lysed cells were centrifuged

at 24,000 g for 10min and cell debris was removed. The supernatant was incubated with 2mLM2 agarose flag beads (Sigma Aldrich)

equilibratedwith Buffer C (25mMHEPESpH 7.5, 1mMEDTA, 1mMEGTA, 0.02%Tween-20, 10%glycerol, 1mMDTT) for 2.5 hours.

Supernatant was removed by centrifugation at 200 g for 5 min and the flag beads were washed with 30 mL of Buffer C-100 (25 mM

HEPES pH 7.5, 100 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.02% Tween-20, 10% glycerol, 1 mM DTT). Beads were incubated with

Buffer C-100 supplemented with 200 mg/ml peptide (DYKDDDDK) at room temperature for 15min to elute bound proteins. The eluate

was passed through 1 mL HiTrap SPFF column (GE Healthcare) equilibrated with Buffer C- 100. DmCMG complex was separated

with 100-550mMKCl gradient using 5/50GLMonoQ column (GE Healthcare) in 20ml. Fractions whereDmCMGwas eluted included

�400-450 mM KCl. To further concentrate the sample, pooled fractions were diluted to a final concentration of 150 mM KCl, and

loaded onto MonoQ PC 1.6/5 GL (GE Healthcare) column equilibrated with Buffer C-150-NT (25 mM HEPES pH 7.5, 150 mM KCl,

1 mM EDTA, 1 mM EGTA, 10% glycerol, 1 mM DTT). 150-550 mM KCl gradient was applied to the column, and peak fractions

were pooled and dialyzed against CMG dialysis buffer (25 mM HEPES pH 7.5, 50 mM sodium acetate, 10 mM magnesium acetate,

10%glycerol, 1mMDTT) using 8 kDaMWCOdialysis tubing (Generon) for 2 hours. The aliquots were flash frozen using liquid nitrogen

and kept in �80�C.

Expression and Purification of Recombinant ScCMG
The expression and purification of ScCMG were performed as described in Zhou et al., (2017) using yJCZ3 yeast strain with minor

changes in the purification step. Briefly, cell cultures were induced with 2%galactose for 3 hours at 30�C, harvested and frozen drop-

wise in liquid nitrogen. Pellets were ground into powder using a grinder mill. The powder was resuspended (20 mL buffer per 1L cell

pellet) in Sc-Res buffer (25 mMHEPES pH 7.5, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 150 mMKCl, 1 mMDTT) supplemented with

25 units/ml benzonase nuclease (Sigma Aldrich) and EDTA-free PI tablets (Roche), and stirred for 30 min at 4�C. Cell debris was

removed by centrifugation at 235,000 g. Next, the supernatant was incubated with 4mLM2 agarose flag beads (Sigma Aldrich) equil-

ibrated with Buffer C for 2.5 hours. After removing the supernatant by centrifuging at 200 g for 5 min and washing beads with 50 mL

Buffer C-100, ScCMGwas eluted by incubating the beads with C-100 buffer supplemented with 200 mg/ml peptide (DYKDDDDK) for

15 min at room temperature. The eluate was passed through HiTrap SPFF column (GE Healthcare) equilibrated with C-100 Buffer.

ScCMG was separated with 100-550 mM KCl gradient using 5/50GL MonoQ column (GE Healthcare) in 20 ml. ScCMG-containing

fractions were combined and further purified using Superdex 200 10/300GL gel filtration column (GE Healthcare) equilibrated with

C-150-NT buffer (25 mMHEPES pH 7.5, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 150 mM KCl, 1 mMDTT). To concentrate the sam-

ple, fractions containing ScCMG were pooled and loaded onto MonoQ PC 1.6/5 GL (GE Healthcare) column, and KCl gradient

(150-550 mM) was applied in 2 ml. Peak fractions were pooled and dialyzed against CMG dialysis buffer using 8 kDa MWCO dialysis

tubing (Generon) for 2 hours, and the aliquots were flash frozen in liquid nitrogen and kept in �80�C.

Expression and Purification of EGFP-RPA
The plasmid for EGFP-RPA expressionwas obtained fromMauraModesti. Expression and purification of EGFP-RPAwere performed

as described in Modesti, (2011). Rosetta/pLysS competent cells were used as a host to express the protein. Cells were grown in LB

media supplemented with ampicillin and chloramphenicol at 37�C. At exponential phase (OD �0.5), expression was induced with
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1 mM IPTG, incubator temperature was reduced to 15�C, and cells were incubated further for 20 hours. Cells were harvested by

centrifugation at 3500 g for 30 mins, and the cell pellet was washed with PBS.

To purify EGFP-RPA, cell pellets were thawed in lukewarm water, and resuspended in RPA Lysis buffer-2 (40 mM Tris-HCl pH 7.5,

1 MNaCl, 20% glycerol, 4 mM b-ME, 10 mM imidazole) supplemented with EDTA-free PI tablets. Resuspended pellet was sonicated

(3 s on, 10 s off, 20 cycles), and cell debris was removed by centrifugation at 20000 g for 1 hour. Supernatant was filtered using

0.45 mm syringe filters (Millipore), and loaded onto 1ml HisTrap FF (GE Healthcare) column equilibrated with RPA-Lysis buffer-1

(20 mM Tris-HCl pH 7.5, 500 mM NaCl, 2 mM b-ME, 20% glycerol, 10 mM imidazole, 1 mM DTT). Linear gradient between

10-300 mM imidazole was applied to separate EGFP-RPA. Fractions containing EGFP-RPA were pooled, and dialyzed against

RPA-Dialysis buffer-1 (20 mM Tris-HCl pH 7.5, 50 mM KCl, 0.5 mM EDTA, 10% glycerol, 1mM DTT) using 3.5 kDa MWCO dialysis

tubing (Generon) overnight. Next day, the sample was loaded onto HiTrap Heparin column (GE Healthcare) equilibrated with RPA-

Dialysis buffer-1. EGFP-RPA was eluted by applying 50-500 mM KCl gradient. Fractions containing EGFP-RPA were pooled, and

dialyzed against RPA-Dialysis buffer-2 (20 mM Tris-HCl pH 7.5, 50 mM KCl, 0.5 mM EDTA, 25% glycerol, 1 mM DTT) using

3.5kDa MWCO dialysis tubing (Generon) for 2 hours. EGFP-RPA was aliquoted, flash frozen using liquid nitrogen, and stored

in �80�C.

Gel-based DNA Unwinding Assays
To attach SA, biotin-modified radiolabelled DNAwas incubated either with buffer or excess SA (1 mg/ml final) for 1 hour at RT prior to

performing the unwinding assays. 3 nM of DNA substrate in 6 mL reaction was incubated with reported amounts of DmCMG or

ScCMG in CMG-binding buffer (25 mM HEPES, pH 7.5, 5 mM NaCl, 10 mM magnesium acetate, 5 mM DTT, 0.1 mg/ml BSA) sup-

plemented with 0.1 mM ATPgS at 37�C for 2 hours. 6 mL of ATP mix (25 mM HEPES pH 7.5, 5 mM NaCl, 10 mMmagnesium acetate,

5 mM DTT, 0.1 mg/ml BSA, 5 mM ATP) was added to initiate unwinding and samples were incubated at 30�C for further 10 min. Re-

actions were terminated with stop buffer containing 0.5% SDS and 20 mM EDTA. To prevent aggregation of CMG-bound DNA that

results in some DNA being stuck in the well, we added 5 mM of 40-nt poly-T oligo (Oligo-5) as a competitor DNA together with stop

buffer into the reaction. DNA fragments were separated on 12%PAGE in 1x TBE. Gels weremounted onWhatman paper, exposed to

storage phosphor screen overnight, and scanned the following day (Typhoon-FLA-9500). For unwinding of Cy5- modified DNA sub-

strates containing clk-SALead or clk-SALag, 5 nM of DNA substrate in a 6 mL reaction was incubated with reported amounts of

DmCMG. We applied the same buffer and incubation conditions described for DNA bearing biotin-SA blocks. DNA was separated

on 8% PAGE with 1x TBE and imaged on Fujifilm SLA-5000 scanner using 635-nm laser and Fujifilm LPR/R665 filter. ImageJ was

used to linearize gel images and quantify the intensity of each band visible on gels.

Fluorescence-based Time Course DNA Unwinding Assays
5 nMof Cy5-BHQ2 labeled fork DNA substratewasmixedwith 60 nMDmCMG in 30 mL of total reaction volume in CMGbinding buffer

supplemented with 0.1mMATPgS and incubated at 37�C for 2 hours. In themeantime, microplate wells (Nunc 384 shallowwell plate,

black, 264705) were pre-blocked by incubation with CMG-binding buffer supplemented with 1 mg/ml BSA to avoid non-specific

sticking of CMG and DNA templates to the wells during the assay. Blocking buffer was removed from a well, and 5 mL of CMG/

DNA mixture was transferred into the well. 15 mL of ATP mix supplemented with 1.5 mM Oligo-5 and Oligo-10 was added to initiate

unwinding. Starting immediately, fluorescence intensity was recorded on a PHERAstar FS (BMG Labtech) with excitation and emis-

sion wavelengths of 640 and 680 nm, respectively. Data was acquired at 25�C with 5 s intervals for 50 min with 10 flashes/measure-

ment. Measured signal values were normalized and plotted against time.

Fitting and Normalization
To normalize measured signal values obtained from fluorescence-based unwinding assays, individual datasets were fit to the func-

tion described in Donmez and Patel, (2008) and Lucius et al., (2003). Briefly, we used Equation 1 given below for integer values of m:

fssðtÞ= 1�
Xm

r = 1

kobst
ðr�1Þ

ðr � 1Þ! e
�kobst (1)

where fssðtÞ is time course of unwinding, m is the number of steps, kobs is the observed unwinding rate, and t is time. Time-dependent

fluorescence intensities from unwinding assays were fit for m = 2 due to the presence of a lag phase at early time points, which leads

to the Equation 2:

fssðtÞ= 1� ð1+ kobstÞe�kobst (2)
Single-Molecule Unwinding Assays
Single-molecule DNA unwinding assays were performed using PEG-biotin-functionalized microfluidic flow chambers prepared as

described in Yardimci et al., (2012b). To cover surface with SA, 100 mL of 0.2 mg/ml SA in PBS was drawn into the microfluidic

flow chamber using a syringe pump (Harvard Apparatus) and incubated for 20 min. The flow chamber was extensively washed

with blocking buffer (20 mM Tris-HCl pH 7.5, 50 mM NaCl, 2 mM EDTA, 0.2 mg/ml BSA) to remove excess SA. For immobilization
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of DNA, �40 pM of substrate was subsequently injected in blocking buffer and incubated for 10 min. The channel was washed with

blocking buffer to remove unbound DNA molecules and equilibrated with 100 mL of CMG binding buffer supplemented with 0.1 mM

ATPgS. 40 nM of DmCMG in 20 mL of CMG binding buffer supplemented with 0.1 mM ATPgS was injected and incubated for 20 min.

To initiate DNA unwinding, 50 mL of ATP mix supplemented with 15 nM EGFP-RPA (�0.07 mg/ml) was introduced and incubated for

�40 min while collecting images with 10 s intervals.

Imaging was performed on an objective-type TIRF configuration using an inverted microscope (Ti-E, Nikon) equipped with a 100X

oil objective (HP Apo TIRF, N.A. = 1.49, Nikon). Fluorescence intensity of EGFP-RPA was recorded with excitation wavelength of

488 nm at 100 ms exposure. Images were acquired using an Andor iXon 897 back- illuminated electron-multiplying CCD camera

(Andor Technology).

Replication Assays with Xenopus Egg Extracts
Xenopus egg extracts were prepared as described in Lebofsky et al., (2009). Plasmid bearing either clk-SA or MHwas first incubated

with 6 mM LacI at 37.5 ng DNA/ml for 40 min at room temperature. Next, HSS (final concentration of 7.5 ng DNA/ml HSS) was added,

and the reaction was further incubated for 30 min for origin licensing. Subsequently, two volumes of NPE was added together with

[a-32P]dATP to initiate replication and label nascent DNA strands. At indicated time points, reactions were stopped by addition of

10 mL of replication stop solution A (80 mM Tris-HCl pH 8.0, 5% SDS, 0.13% phosphoric acid, 10% Ficoll) supplemented with

1 mL of Proteinase K (20 mg/ml) (Roche) and incubated for 1 hour at 37�C. Replication intermediates were separated on 0.9% native

agarose gel and visualized using phosphorimager. To analyze nascent leading strand products, 3-4 mL of each replication reaction

wasmixed with 10 volumes of Buffer R (50mM Tris-HCl pH 7.5, 0.5%SDS, 25mMEDTA). Replication intermediates were purified as

previously described by Räschle et al., (2008). Purified DNA was digested with the indicated restriction enzymes, separated on 7%

denaturing polyacrylamide gel, transferred to filter paper, dried, and visualized using a phosphorimager. The image presented in Fig-

ure 7 was transformed using the Log transform function in ImageJ (NIH, USA) to allow a better visualization of the nascent leading-

strand products.

QUANTIFICATION AND STATISTICAL DATA ANALYSIS

Throughout the manuscript, the data are represented as average ± SD of pooled experiments unless otherwise stated. Prism

(GraphPad Software, La Jolla, CA, USA) was used to plot all graphs presented and for statistical analysis in this study. P values

were computed by one-way ANOVA and Tukey’s multiple comparison tests. P values less than 0.05 (*) were considered

significant. ImageJ was used to quantify band intensities in gel images. 16-bit images with ‘.gel’ extension were first linearized using

LinearizeData command in ImageJ.
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