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SUMMARY

Toxin-antitoxin (TA) systems regulate fundamental
cellular processes in bacteria and represent potential
therapeutic targets. We report a new RES-Xre TA
system in multiple human pathogens, including
Mycobacterium tuberculosis. The toxin, MbcT, is
bactericidal unless neutralized by its antitoxin
MbcA. To investigate the mechanism, we solved the
1.8 Å-resolution crystal structure of the MbcTA com-
plex. We found thatMbcT resembles secreted NAD+-
dependent bacterial exotoxins, such as diphtheria
toxin. Indeed, MbcT catalyzes NAD+ degradation
in vitro and in vivo. Unexpectedly, the reaction is stim-
ulated by inorganic phosphate, and our data reveal
that MbcT is a NAD+ phosphorylase. In the absence
of MbcA, MbcT triggers rapid M. tuberculosis cell
death, which reduces mycobacterial survival in mac-
rophages and prolongs the survival of infected mice.
Our study expands themolecular activities employed
by bacterial TAmodules and uncovers a new class of
enzymes that could be exploited to treat tuberculosis
and other infectious diseases.

INTRODUCTION

Toxin-antitoxin (TA) systems are widespread in prokaryotes and

play a central role in the response and adaptation of bacteria to
1282 Molecular Cell 73, 1282–1291, March 21, 2019 Crown Copyrigh
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various stress conditions, including starvation, phage attack, or

antibiotic treatment (Hall et al., 2017; Harms et al., 2018; Lo-

bato-Márquez et al., 2016; Page and Peti, 2016). TA systems

encode a toxic protein, which targets an essential physiological

process in the bacterial cell, together with a toxin-neutralizing

‘‘antidote’’ or antitoxin. Under favorable growth conditions, toxin

activity is blocked by the presence of the antitoxin. When faced

with antibiotic or environmental stress, the antitoxin is rapidly

degraded, which allows the toxin to become activated, thereby

reducing the bacterial growth rate (Deter et al., 2017; Hall

et al., 2017). TA systems are classified in four families (I–IV)

based on the nature of the antitoxin and the associated mecha-

nism of toxin inhibition (Harms et al., 2018). Most studies have

focused on type II TA systems, which are composed of a protein

antitoxin and toxin pair. Strikingly, type II TA systems are highly

abundant in the tuberculosis (TB) bacillus,Mycobacterium tuber-

culosis (Mtb), in which they are thought to contribute to pathoge-

nicity and persistence (Keren et al., 2011; Ramage et al., 2009;

Sala et al., 2014; Slayden et al., 2018). Among the �80 TA sys-

tem-encoding operons identified in the Mtb genome, three anti-

toxin-encoding genes are essential for viability, as evidenced by

saturating transposon mutagenesis studies (DeJesus et al.,

2017). This suggests that the cognate toxins of these essential

antitoxins are lethal to Mtb, and such TA systems could be ex-

ploited for the development of novel anti-TB therapies.

Here, we focus on the Mtb type II TA module Rv1989c-

Rv1990c, in which the antitoxin-encoding gene (Rv1990c) is

essential, whereas the cognate toxin-encoding gene (Rv1989c)

is dispensable for bacterial growth (DeJesus et al., 2017) (Fig-

ure S1A). This TA pair was previously identified by in silico
t ª 2019 Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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genomic analysis of prokaryotic TA loci and classified as a so-

called COG5654-COG5642 TA system (Makarova et al., 2009).

It was predicted to encode a RES domain-containing toxin and

a cognate antitoxin with a XRE-like HTH domain, typically found

in phage repressor proteins (Wood et al., 1990) (Figure S1A). Ac-

cording to a SMART search for analysis of protein domain archi-

tectures, the three conserved polar groups (R-E-S) that are pre-

dicted to form an active site in Rv1989c are Arg47, Glu69, and

Ser126 (Letunic and Bork, 2018). COG5654 or RES domains

are widely spread in bacteria and often found in conjunction with

various other conserved domains. Interestingly, a plasmid-en-

coded RES-Xre locus from the legume symbiont Sinorhizobium

meliloti was reported to function as an active TA system (Milu-

novic et al., 2014). The Rv1989c-Rv1990c TA system is particu-

larly interesting because it is significantly upregulated in a variety

of stress conditions, including in Mtb persister cells (Keren et al.,

2011), during hypoxic stress (Rustad et al., 2008), under

starvation (Gupta et al., 2017), and within host macrophages

(Homolka et al., 2010). A BLASTp search predicts Rv1989c-

Rv1990c-like TA systems in multiple mycobacterial species

of the M. tuberculosis complex (Tortoli et al., 2017), with ortho-

logs detected in a limited number of strains of opportunistic

non-tuberculous mycobacteria (e.g., M. avium). Homologs of

this TA system are also present in environmental prokaryotes,

such as Gordonia spp (Figure S1B). This is in line with our previ-

ous suggestion that the Rv1989c-Rv1990c TA pair was most

likely acquired through horizontal gene transfer with environ-

mental bacteria (Becq et al., 2007). To uncover the mechanism

of action of the Rv1989c toxin, we used a combination of

biochemical, structural biology, and microbiological methods.

We show that Rv1989c encodes a novel NAD+ phosphorylase,

an enzymatic activity that has never been described thus far,

and reveal a synergistic protective effect of toxin activity and

antibiotic treatment in a mouse model of Mtb infection.

RESULTS AND DISCUSSION

We first expressed Rv1989c and Rv1990c from different induc-

ible promoters in Escherichia coli. Induction of Rv1989c inhibited

E. coli growth on agar plates, unless Rv1990c was co-expressed

(Figure S2A). In contrast, wild-type (WT) Mtb expressing

Rv1989c from a tetracycline-inducible promoter on an integrated

plasmid (Ehrt et al., 2005) did not show impaired growth (Figures

1A and 1B). We hypothesized that the quantity of antitoxin pro-

tein expressed from the chromosomally encoded Rv1990c

gene was sufficient to neutralize the amount of toxin expressed

from both the chromosomal Rv1989c gene and the plasmid-

encoded copy of Rv1989c. To test our hypothesis, we con-

structed aMtb knockout (KO) mutant with a deletion of the entire

Rv1989c-Rv1990c operon (MtbDTA) by homologous recombina-

tion, as outlined in Figures S2B–S2E. Indeed, induction of an

ectopic copy of the toxin gene in the MtbDTA strain completely

abolished mycobacterial growth, both on agar medium and in

liquid culture (Figures 1A and 1B). Further, MtbDTA displayed a

substantial decrease in colony-forming units (CFUs) after induc-

tion of the toxin gene, with a loss of more than 3-Log10 in CFUs

over only 4 days, suggesting bactericidal activity of the toxin

(Figure 1C). We then tested the viability of MtbDTA cells following
ATc-induced expression of Rv1989c by flow cytometry analysis

(Figures 1D and 1E) and fluorescence microscopy (Figure 1F) of

bacteria labeled with LIVE/DEAD BacLight stains. Addition of

ATc to a culture of MtbDTA carrying an empty vector had no effect

on the proportion of cells permeable to propidium iodine (PI). In

contrast, for MtbDTA cells expressing Rv1989c, the proportion of

PI-permeable cells increased from 15% in the absence ATc to

57% in the presence of ATc after 4 days incubation, indicative

of the bactericidal activity of Rv1989c. To assess the expression

level of the Rv1989c gene in our experimental setup, we

compared Rv1989c mRNA levels in WT Mtb versus in the

Rv1989c-inducibleMtbDTA strain by real-time qPCR (FigureS2F).

Rv1989c mRNA level in the Rv1989c-induced MtbDTA strain was

z2-fold higher than that in WT Mtb during exponential growth,

and z2-fold lower than that in Mtb grown under starvation, a

natural stress condition known to induce the TA system (Gupta

et al., 2017). Thus, the absence of toxicity in an Mtb WT strain

and the real-time qPCR analysis shows that in our experimental

setup the Mtb cell death we observed by CFU counting and

viability analysis in combination with flow cytometry is not due

to an overwhelming production of the toxin. Taken together,

these results establish that Rv1989c-Rv1990c can function as

a bactericidal TA system in Mtb. Hence, we named the

Rv1989c-Rv1990c system mycobacterial cidal toxin (MbcT)

and antitoxin (MbcA).

To elucidate the molecular basis of MbcT activity, we solved

the high-resolution crystal structure of the MbcTA complex

(Figures 2A and S3A; Table 1). The complex adopts a donut-

like structure composed of three heterotetrameric MbcTA com-

plexes ([MbcTA]2). The oligomerization state and overall shape of

the heterododecameric complex were validated by light scat-

tering and by small-angle X-ray scattering (SAXS) (Figures

S3B–S3D; Table 2). MbcA folds into a single structured domain

consisting of eight a helices, whereas Mb cT exhibits a b sand-

wich fold formed by six b strands arranged in two opposing anti-

parallel b sheets that are flanked and connected by nine a helices

(Figure 2B). The lateral side of the substrate-binding pocket of

MbcT is formed by a stretch of 11 amino acids arranged in a

kinked loop pointing inward (a2-b2 loop) with the side chain of

Arg47 extending from the tip of the loop. The main interactions

in the MbcTA complex are between residues of the MbcA C ter-

minus and residues, mostly arginines (R27, R33, R43, R47, R72),

lining a deep central cleft inMbcT (Figure 2B). To validate the role

of the C terminus of MbcA in sterically blocking access to the

toxin active site, we designed a truncated MbcA version lacking

the last ten C-terminal amino acids (residues 104–113). As ex-

pected, this variant was not able to neutralize the toxic effect

of MbcT in a MtbDTA background (Figure S3E).

The closest structural relatives to MbcT are ADP-ribosyltrans-

ferases (ARTs), in particular bacterial ART toxins and poly (ADP-

ribose) polymerases (PARPs) (Aravind et al., 2015; Palazzo et al.,

2017; Simon et al., 2014) (Figure S4A). ARTs catalyze the transfer

of an ADP-ribose group from an NAD+ donor molecule to a sub-

strate (proteins, DNA, or RNA) and release free nicotinamide

(NAA). Bacterial ART toxins are classified into two major groups

based on conserved active-site motifs distributed across three

regions. The diphtheria toxin (ARTD) group has an H-Y/Y-Emotif,

also found in PARPs, whereas the cholera toxin (ARTC) group
Molecular Cell 73, 1282–1291, March 21, 2019 1283
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Figure 1. Rv1989c-Rv1990c Is a Bacteri-

cidal TA System in Mtb

(A) WT Mtb or MtbDTA transformed with

pGMC derivatives carrying Rv1990c, Rv1989c, or

Rv1989c-Rv1990c as indicated were grown in

7H9 ADC Tween medium. Growth on solid

medium was tested by spotting serial 10-fold di-

lutions on 7H11 OADC agar (�ATc) or the same

medium supplemented with anhydrotetracycline

(+ATc) to induce transcription from the P1 pro-

moter. Plates were observed after 20 days at

37�C. Shown data are representative of three

independent experiments.

(B) Growth of WT Mtb or MtbDTA transformed with

pGMC derivatives carrying Rv1990c, Rv1989c, or

Rv1989c-Rv1990c in liquid medium as monitored

by turbidity measurements (McFarland units). ATc

was added at day 0 to induce ectopic gene

expression when indicated. Data are represented

as mean of three technical replicates ± SD. Shown

data are representative of three independent

experiments.

(C) Survival of MtbDTA strains carrying pGMC-

TetR-P1-Rv1989c as measured by CFU scoring of

liquid cultures. ATc was added at time 0 to induce

expression of Rv1989c. Samples were collected

at the seven different time points, cells were

washed with growth medium to remove ATc and

10-fold serial dilutions were spotted on agar plates

for CFU counting. Data are represented as mean

of three independent replicates ± SD.

(D) MtbDTA strains carrying pGMC-TetR-P1-

Rv1989c or an empty vector control were grown

for 4 days in the presence of ATc (+ATc) or left

untreated (�ATc). Cells were labeled with the

LIVE/DEAD BacLight stains (Syto 9; propidium

iodide (PI)) and analyzed by fluorescence-acti-

vated cell sorting (FACS). The empty vector con-

trol was either left unlabeled (negative control) or

heat killed by incubation for 1 h at 100�C (positive

control). Quadrants were established using the

negative (no stain) and positive (heat-killed Mtb)

controls as references. Shown data are repre-

sentative of two independent experiments.

(E) Bar diagram showing the fraction of MtbDTA

cells permeable to PI and Sypro 9 as determined

by FACS analysis (see D). Data are represented as

mean of two independent replicates ± SD.

(F) Visualization of Syto9 (green) or PI (red) incor-

poration in MtbDTA cells following ATc-induced

expression of Rv1989c from pGMC-TetR-P1-Rv1989c by spinning disk confocal microscopy (see D). MtbDTA cells transformed with empty vector were included

as a negative control. PI incorporation is indicative of membrane damage. Representative maximum intensity Z projection images are shown. Scale bar, 5 mm.

See also Figures S1 and S2.
contains an R-S-E motif (Aravind et al., 2015; Simon et al., 2014)

(Figure 2C). The structural hallmark of ARTs is a central cleft

bearing a conserved NAD+-binding pocket (Aravind et al., 2015;

Han and Tainer, 2002). An NAD+-binding pocket is also present

in NAD+ glycohydrolases (NADases), such as the bacterial exo-

toxins TNT (Sun et al., 2015), SPN (Ghosh et al., 2010), and

Tse6 (Whitney et al., 2015), but the overall structural homology

ofMbcTwithNADases is less obvious (Figure S4A). Structural su-

perimposition with selected ARTs and NADases suggests that

MbcT could consume NAD+ as well, and pinpoints Arg27 in re-

gion 1, and Tyr28 and Tyr58 in region 2, as potential NAD+-bind-
1284 Molecular Cell 73, 1282–1291, March 21, 2019
ing residues (Figures 2C and 2D). Yet, the region-3 residue, which

is thought to confer substrate recognition and specificity, is re-

placed by a glycine (Gly152) in MbcT (Figure 2C). To investigate

the functional importance of the putative NAD+-binding site of

MbcT and the potential catalytic function of the RES motif

(R47-E69-S126), we substituted single residues of MbcT to

alanine and assessed the effect on growth inhibition of MtbDTA.

Non-toxic MbcT-R27A, MbcT-R47A, and MbcT-Y58A mutants

did not affect the growth of MtbDTA or E. coli, thus establishing

the crucial role of these individual residues for MbcT-catalyzed

growth inhibition (Figures S4B and S4C). Surprisingly, Ser126
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Figure 2. Crystal Structure of the MbcTA

Complex and Homology of MbcT to ARTs

and NADases

(A) Overall structure of the MbcTA hetero-

dodecamer consisting of three heterotetramers

(3x[MbcT-MbcA]2) arranged around a 3-fold

symmetry axis (as indicated by a black triangle).

The dashed line box in the front view (left) repre-

sents one [MbcT-MbcA]2 heterotetramer formed

by two MbcT (blue) and two MbcA (yellow) mole-

cules as indicated in the side view (right).

(B) Cartoon representation of the MbcTA complex

and zoom-in of the putative NAD+-binding site.

N and C termini and secondary structure elements

are labeled (left). Part of the a2-b2 loop

(G45GRW48) that lines the putative NAD+-binding

site is displayed in red. Zoom (right): interactions

based on a distance <3.8 Å as calculated by the

PISA server (Krissinel and Henrick, 2004) are

indicated by dotted lines. The orientation of the

MbcTA complex was modified to optimize visu-

alization of the MbcT/MbcA interaction.

(C) Structure-based alignment of the conserved

active-site motifs found in three sequence re-

gions of mono- and poly-ADP-ribosyltransferases

(ARTs) and NAD+ glycohydrolases (NADases). The

C-alpha atoms of Tyr28 in MbcT do not strictly

superimpose with those of Tyr97 and Tyr907 in

Dtox and PARP1, respectively (see also D).

Numbering of the residues refers to UniProt en-

tries: MbcT (UniProt: Y1989), diphtheria toxin

(Dtox) (UniProt: P00588), cholera toxin (Ctoxin)

(UniProt: P01555), human poly [ADP-ribose] po-

lymerase 1 (PARP1) (UniProt: P09874), the C-ter-

minal toxin domain (tuberculosis necrotizing NAD+

glycohydrolase toxin TNT) of the Mtb outer mem-

brane channel protein CpnT (UniProt: O05442),

P. aeruginosa NAD+ glycohydrolase Tse6

(UniProt: Q9I739), and Streptococcus pyogenes

NAD+ glycohydrolase SPN (UniProt: D7S065).

(D) Structural comparison of the active site in

MbcT, Dtox in complex with NAD+ (PDB: 1TOX),

PARP1 (PDB: 4DQY), and CpnT (PDB: 4QLP).

Conserved residues are colored according to their

localization in the three distinct regions (cf. C).

See also Figures S3 and S4.
was not essential for toxicity, whereas MbcT-Y28A and MbcT-

E69A retained limited toxin activity. Taken together, these results

suggest that MbcT toxicity involves NAD+, but that the catalytic

mechanism underlying toxin activity is divergent from that of

ART enzymes and NADases.

To identify substrates of MbcT and explore its NAD+-binding

activity in vitro, we sought to purify the WT, recombinant MbcT

protein. To overcome cell toxicity, we co-expressed full-length

WT MbcT with a His-tagged, C-terminal truncation of MbcA

(MbcAD112–113). WT MbcT is only weakly associated with His-

MbcAD112–113, allowing for subsequent isolation of WT MbcT

by salt-induced dissociation of the His-MbcAD112–113-MbcT

complex (Figure S5A). In addition to WT MbcT, we also purified

theMbcT active-site mutant R27E (MbcT-R27E) from E. coli as a

control (Figures S5B and S5C). This variant of MbcT was non-

toxic to MtbDTA cells (Figure S5D). We then incubated recombi-

nant protein with different bacterial cell fractions in the presence
of 32P-labeled NAD+ to probe for ADP-ribosylation of cellular

protein but did not detect 32P-ADP-ribose-incorporation into

the protein fractions (Figure S5E). MbcT also did not modify nu-

cleic acid substrates, in contrast to the mycobacterial DNA-

modifying TA toxin DarT (Jankevicius et al., 2016) (Figure S5F).

In addition to NAD+ degradation and ADP-ribose (Appr) pro-

duction, we observed the appearance of an unknown reaction

product, dependent on the MbcT concentration (Figure 3A).

Interestingly, supplementing the MbcT reaction buffer with so-

dium phosphate markedly enhanced NAD+ degradation into

NAA and the hitherto unknown reaction product (Figure 3B),

whereas the MbcT R27E mutant or the MbcTA complex did

not trigger NAD+-turnover (Figures 3B and S5F). We performed

high resolution mass spectrometry and nuclear magnetic reso-

nance experiments, which identified the additional reaction

product as ADP-ribose-100-phosphate (Appr1p; [M-H]� m/z =

638.0301) (Figure 3C). To our knowledge, MbcT represents
Molecular Cell 73, 1282–1291, March 21, 2019 1285



Table 1. Crystallographic Data Collection, Phasing, and

Refinement Statistics

Native Dataset S-SAD Dataset

Data collection

Space group P63 P63

Cell dimensions (Å,�) 105.3, 105.3, 108.7 105.3, 105.3, 108.7

90.0, 90.0, 120 90.0, 90.0, 120

Wavelength (Å) 0.976 2.479

Resolution (Å) 9.99–1.80

(1.86–1.80)a
91.70–2.51

(2.61–2.51)

Rmerge (%) 0.0562 (1.364) 0.123 (0.667)

I/s(I) 21.6 (1.5) 42.5 (7.3)

Completeness (%) 98.8 (90.2) 89.3 (70.3)

Redundancy 10.0 (7.5) 57.6 (49.2)

CC1/2 0.999 (0.497) 0.999 (0.920)

Total number of

reflections

620,194 (42,332) 1,225,773 (92,688)

Unique reflections 62,157 (5,639) 21,269 (1,882)

Refinement

Rwork (%) 16.23 (27.26) –

Rfree (%) 21.11 (31.28) –

No. atoms

Total 4,865 –

Macromolecules 4,569 –

Ligands 18 –

Waters 278 –

No. protein residues 589 –

B-factorsb (Å2)

Macromolecules 42.4 –

Solvent 62.8 –

RMSDb

Bond lengths (Å) 0.007 –

Bond angles (�) 0.990 –

Ramachandranc (%)

Most favored 99.0 –

Allowed 1.0 –

Outliers 0.0 –
aValues in parentheses indicate the highest-resolution shells and their

statistics
bValues from PHENIX (Adams et al., 2010)
cValues from MOLPROBITY (Chen et al., 2010)

Table 2. SAXS Data Collection and Derived Parameters

MbcTA

Data collection

Instrument P12 at EMBL/DESY,

storage ring PETRA III,

Germany

Beam geometry 0.2 3 0.12 mm2

Wavelength (Å) 1.24

q-range (Å�1) 0.008–0.47

Exposure time (ms) 20 3 50

Concentration range (mg mL�1) 0.6–7.1

Temperature (K) 283

Structural parametersa

I(0) (arbitrary units) (from P(r)) 31,320 ± 10

Rg (from P(r)) (Å) 41 ± 1

I(0) (arbitrary units) (from Guinier) 31,340 ± 30

Rg (Å) (from Guinier) 41 ± 1

Dmax (Å) 114

Porod volume (103 Å3) 262

Molecular mass determinationa

MMPOROD (from Porod volume) (kDa) 154 ± 15

MMsaxs (from I(0), kDa) 110 ± 20

MMDAM (from bead model, kDa) 170 ± 35

Calculated monomeric MM from

sequence (kDa)

197.2

Software employed

Primary data reduction Automated radial

averaging

Data processing PRIMUS

Ab initio analysis DAMMIN

Validation and averaging SASRES, DAMAVER

Computation of model intensities CRYSOL

SASBDB entry code SASDD33
aReported for MbcTA at 0.6 mg mL�1
the first reported enzyme with NAD+ phosphorylase activity

(Figure 3D).

A kinetic analysis of MbcT activity, based on NAD+ consump-

tion at saturating orthophosphate conditions, yielded a Km of

110 ± 8 mM (Figure 3E). The turnover number of MbcT for

NAD+ phosphorolysis (kcat) was 167 ± 3 s�1 (Figures S6A and

S6B). By contrast, MbcT-R27E did not show any detectable

NAD+ turnover establishing the essentiality of Arg27 for NAD+

phosphorolysis (Figure 3F). With a catalytic efficiency (kcat/Km)

of 1.53 106M�1s�1, MbcT is one of themost effective NAD+-de-

grading toxins characterized to date, more potent than diph-
1286 Molecular Cell 73, 1282–1291, March 21, 2019
theria toxin (5 3 105 M�1s�1) (Perikh and Schramm, 2004)

and the mycobacterial NADase TNT (8.4 3 104 M�1s�1)

(Sun et al., 2015). The high catalytic efficiency of MbcT implies

that this enzyme has specifically evolved to carry out NAD+

phosphorolysis.

To determine whether MbcT exerts its toxic effect via NAD+

turnover, we measured the levels of NAD+ in MtbDTA expressing

mbcT. We observed rapid depletion of intracellular NAD+ upon

induction of mbcT expression, whereas control strains express-

ing no toxin or the MbcT-R27E inactive mutant exhibited no

decrease in intracellular NAD+ levels (Figure 4A). We also ex-

ploited thembcT-inducible system described above to evaluate

MbcT toxicity in vivo. First, we showed that, unlike TNT (Sun

et al., 2015), ectopic expression of mbcT in WT Mtb had no

deleterious effect on infected human monocyte-derived macro-

phages (hMDM) (Figure 4B). We then infected hMDM with

MtbDTA transformed with a control vector or a plasmid carrying

ATc-inducible mbcT. Induction of mbcT expression 2 days after
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Figure 3. Enzymatic Activity of MbcT

(A) Representative autoradiograph of a TLC plate

showing MbcT-mediated depletion of 32P-NAD+

over time and simultaneous accumulation of
32P-ADP-ribose (Appr) and a secondary reaction

product (white arrow). The dotted line indicates

the position where samples were applied to

the plate. Similar results were obtained in two

independent experiments.

(B) Representative HPLC chromatograms of the

reaction products of NAD+ (0.5 mM) with MbcT

(0.7 mM) in the presence (orange) or absence

(black) of sodium phosphate (30 mM). The white

arrow indicates the reaction product formed in

addition to nicotinamide (NAA) (cf. A). MbcT-R27E

does not degrade NAD+ in sodium phosphate

(30 mM) buffer (gray line). NAD+, Appr and NAA

were identified by retention time comparisons with

standards. The observed Appr is an impurity found

in the commercial substrate. Similar results were

obtained in three independent experiments.

(C) 1H-31P HSQC31 spectra of the reaction prod-

ucts of NAD+ (5 mM) with MbcT (10 mM) and, for

reference, of pure Appr (5 mM). Phosphate atoms

from the ADP-ribose moiety are colored green,

whereas the phosphate atom derived from ortho-

phosphate is highlighted in orange.

(D) Proposed reaction mechanism of MbcT-

mediated NAD+ phosphorolysis yielding ADP-

ribose-100-phosphate (Appr1p) and NAA.

(E) Kinetics of NAD+ phosphorolysis by MbcT

(50 nM). Km and Vmax values were determined by

nonlinear regression analysis with the Michaelis-

Menten equation.

(F) Comparison of initial velocity (V0) of NAD+

phosphorolysis of WT MbcT (50 nM) and MbcT-

R27E (50 nM) in the presence or absence of so-

dium phosphate (50 mM). The initial velocities

were determined at a substrate concentration of

100 mM. For data in (E) and (F), data are repre-

sented as mean of eight and four independent

replicates ± SD, respectively.

See also Figures S5 and S6.
infection resulted in more than a 10-fold decrease in the intracel-

lular bacterial load (Figure 4C). Next, we infected immune-defi-

cient SCID mice, which are highly sensitive to Mtb infection,

with the same MtbDTA strain. Doxycycline-mediated induction

ofmbcT after MtbDTA infection prolonged the survival of infected

mice by �40% compared to controls without doxycycline

(Figure 4D).

In addition, we infected immune-competent C57BL/6 mice

with the same bacterial strains and induced mbcT expression

with doxycycline 21 days after infection. At this stage, the Mtb

load in the lungs reaches a plateau. MbcT induction resulted in

the potent killing of Mtb (5-fold reduction in CFUs). Further,

MbcT enhanced the therapeutic efficacy of the frontline anti-

TB drug isoniazid (INH). Treatment with INH alone led to a

10-fold reduction in CFU relative to untreated mice, whereas

INH treatment combined with mbcT expression led to a
100-fold reduction in CFUs, indicative of a synergistic effect (Fig-

ure 4E). These results indicate that MbcT is highly toxic to Mtb

in vivo when not neutralized by MbcA. As such, small inhibitory

molecules able to dislocate the MbcTA complex could be prom-

ising candidates for the development of novel therapeutics to

control Mtb infection.

The molecular mechanism underpinning MbcT toxicity, NAD+

phosphorolysis, is unprecedented for TAmodules. To our knowl-

edge, MbcTA is also the first TA system that degrades an essen-

tial cellular metabolite resulting in rapid cell death. Yet, the bio-

logical role of the MbcTA system remains elusive. We did not

detect any particular phenotype in our MbcTA-KO mutant in a

variety of stress conditions in vitro and in vivo (data not shown),

so the relevance of theMbcTA system in theMtb life cycle is diffi-

cult to anticipate. This might be because this systemwould need

to be inactivated together with other TA pairs in order to observe
Molecular Cell 73, 1282–1291, March 21, 2019 1287
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Figure 4. MbcT Activity Can Be Bacteri-

cidal In Vivo

(A) Relative intracellular NAD+ levels were

measured in MtbDTA cells transformed with empty

vector (Ctrl) or with pGMC derivatives expressing

WT MbcT or MbcT-R27E, as indicated. Cultures

were grown in the absence (�ATc) or presence of

ATc (+ATc) to inducembcT gene expression from

the P1 promoter. Cellular NAD+ was extracted

24 h after induction and measured by a coupled

bioluminescence assay. Data are represented as

mean of three independent replicates ± SD.

(B) Viability of human macrophages infected with

WT Mtb strains carrying a pGMC-TetR-P1-mbcT

construct (MbcT), was measured by flow cy-

tometry after labeling with Zombie Aqua Viability

Kit. Infected macrophages were cultivated in the

presence (+ATc) or absence of ATc (�ATc) to

induce mbcT gene expression. MtbDTA carrying

an empty vector was included as control (Ctrl).

Data are represented as mean of three

independent replicates ± SD.

(C) ATc-induction of mbcT in MtbDTA results in

mycobacterial killing inside human monocyte-

derived macrophages. Cells were infected at a

multiplicity of infection of 0.1 bacteria/cell with

MtbDTA strains carrying pGMC-TetR-P1-mbcT

(mbcT) or empty vector (Ctrl). Toxin expression

was induced 2 days of infection by addition of

ATc, when indicated.

(D) ATc-induction of mbcT expression in

MtbDTA reduces mycobacterial virulence and

improves host survival in immune-deficient SCID

mice. Mice were infected with MtbDTA strains

transformedwith pGMC-TetR-P1-mbcT (mbcT) or empty vector (Ctrl). Toxin expressionwas induced by addition of doxycycline (Doxy) in the drinkingwater of the

animals from 7 days onward prior to infection. Mouse survival was followed over time using ten mice per condition. Statistical analysis was performed using the

log-rank (Mantel-Cox) test (****<0.0001).

(E) Number of CFU isolated from the lungs of immune-competent C57BL/6 mice infected with MtbDTA carrying pGMC-TetR-P1-mbcT (mbcT) or empty vector

(Ctrl). At day 21, mice were given isoniazid (INH) or Doxy by daily gavage for 10 days, as indicated. Data are represented as mean of at least four independent

replicates ± SD (n = 4–8 mice/group). NS or stars indicate significance as determined by a Student’s t test (*<0.05; **<0.01; ***<0.001).
a phenotype, as reported for MazEF TA pairs (Tiwari et al., 2015),

or because we did not expose the MtbDTA mutant to the relevant

physiological stress.

Strikingly, the Mycobacterium phage Ibhubesi encodes a

MbcA homolog, namely PBI_IBHUBESI_52 (Figures S1B and

S1C). It is tempting to speculate that thembcT-mbcA TA system

was acquired by Mtb, and possibly other bacteria, to inhibit

bacteriophage propagation by triggering self-intoxication, remi-

niscent of abortive infection TA systems (Dy et al., 2014). In line

with this, mycobacteriophage Ibhubesi could have acquired

the IBHUBESI_52 gene to neutralize the bacterial defense. The

IBHUBESI_52 protein would then be an antidefense protein,

mechanistically different but functionally similar to the Gp4.5

protein of bacteriophage T7 (Sberro et al., 2013). Whether TA

systems are indeed capable of inducing altruistic killing to pre-

vent phage attack is still under debate (Song and Wood, 2018).

Further experiments are needed to test this hypothesis.

Our study identifies MbcT as a highly efficient NAD+ phos-

phorylase. Further, we show that MbcT activity can be bacteri-

cidal in Mtb, in line with previous reports demonstrating that

mbcA is an essential gene (DeJesus et al., 2017), and NAD+

depletion is lethal in mycobacteria (Kim et al., 2013; Rodionova
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et al., 2014; Vilchèze et al., 2010). During the revision process of

this paper, Skjerning et al. (2018) reported that plasmid-based

expression of three prokaryotic RES-domain containing toxins,

including MbcT, resulted in growth arrest of E. coli. Interestingly,

the RES toxin from Photorhabdus luminescens (RESPl) triggers

depletion of intracellular NAD+ upon expression in E. coli.

Although the enzymatic activity of RESPl has not been biochem-

ically validated, it supports our hypothesis that NAD+ degrada-

tion is a more general mechanism utilized by prokaryotic TA

toxin systems to interfere with bacterial growth. The authors

also report the crystal structure of a RES toxin in complex

with its cognate Xre antitoxin from Pseudomonas putida

(RESPp-XrePp), in which the individual TA components share sig-

nificant structural similarity with MbcT and MbcA, respectively.

The putative NAD+ binding pocket of the RESPp toxin is blocked

by the C-terminal region of the Xre antitoxin as observed in the

MbcTA complex, further highlighting the functional similarities

within the RES-Xre TA systems. However, the toxin and anti-

toxin proteins assemble into complexes with a different quater-

nary structure, namely a heterohexameric (RESPp)2-(Xre
Pp)4

complex opposed to the heterododecameric MbcT6-MbcA6

complex.



To conclude, our findings pave the way for future exploration

of NAD+ phosphorylases in other organisms, and for functional

studies of this new class of enzymes in the context of bacterial

metabolism. This work also enables the search for small mole-

cule inhibitors that disrupt the MbcTA complex or inactivate

the MbcA antitoxin (Williams and Hergenrother, 2012), which

could be used in combination with standard drug regimens to

combat TB, the most devastating infectious disease globally.

More generally, identifying and targeting bactericidal TA systems

in bacterial pathogensmight illuminate approaches to treat other

infectious diseases.
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Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N.,

Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010).

PHENIX: a comprehensive Python-based system for macromolecular struc-

ture solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.

Aravind, L., Zhang, D., de Souza, R.F., Anand, S., and Iyer, L.M. (2015). The

natural history of ADP-ribosyltransferases and the ADP-ribosylation system.

Curr. Top. Microbiol. Immunol. 384, 3–32.

Becq, J., Gutierrez, M.C., Rosas-Magallanes, V., Rauzier, J., Gicquel, B.,

Neyrolles, O., and Deschavanne, P. (2007). Contribution of horizontally ac-

quired genomic islands to the evolution of the Tubercle bacilli. Mol. Biol.

Evol. 24, 1861–1871.

Blanchet, C.E., Spilotros, A., Schwemmer, F., Graewert, M.A., Kikhney, A.,

Jeffries, C.M., Franke, D., Mark, D., Zengerle, R., Cipriani, F., et al. (2015).

Versatile sample environments and automation for biological solution X-ray
Molecular Cell 73, 1282–1291, March 21, 2019 1289

https://doi.org/10.1016/j.molcel.2019.01.028
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref1
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref1
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref1
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref1
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref2
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref2
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref2
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref3
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref3
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref3
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref3
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref4
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref4
http://refhub.elsevier.com/S1097-2765(19)30048-6/sref4


scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Cryst.

48, 431–443.

Botella, L., Vaubourgeix, J., Livny, J., and Schnappinger, D. (2017). Depleting

Mycobacterium tuberculosis of the transcription termination factor Rho

causes pervasive transcription and rapid death. Nat. Commun. 8, 14731.

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M.,

Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010).

MolProbity : all-atom structure validation for macromolecular crystallography.

Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21.

Cianci, M., Bourenkov, G., Pompidor, G., Karpics, I., Kallio, J., Bento, I.,

Roessle, M., Cipriani, F., Fiedler, S., and Schneider, T.R. (2017). P13, the

EMBL macromolecular crystallography beamline at the low-emittance

PETRA III ring for high- and low-energy phasing with variable beam focusing.

J. Synchrotron Radiat. 24, 323–332.

Combet, C., Blanchet, C., Geourjon, C., and Deléage, G. (2000). NPS@:

network protein sequence analysis. Trends Biochem. Sci. 25, 147–150.

DeJesus, M.A., Gerrick, E.R., Xu, W., Park, S.W., Long, J.E., Boutte, C.C.,

Rubin, E.J., Schnappinger, D., Ehrt, S., Fortune, S.M., et al. (2017).

Comprehensive essentiality analysis of the Mycobacterium tuberculosis

genome via saturating transposon mutagenesis. MBio. 8, e02133-16.

Deter, H.S., Jensen, R.V., Mather, W.H., and Butzin, N.C. (2017). Mechanisms

for differential protein production in toxin – antitoxin systems. Toxins (Basel)

9, 1–13.

Diebold, M.L., Fribourg, S., Koch, M., Metzger, T., and Romier, C. (2011).

Deciphering correct strategies for multiprotein complex assembly by co-

expression: application to complexes as large as the histone octamer.

J. Struct. Biol. 175, 178–188.

Dy, R.L., Przybilski, R., Semeijn, K., Salmond, G.P.C., and Fineran, P.C. (2014).

A widespread bacteriophage abortive infection system functions through a

type IV toxin-antitoxin mechanism. Nucleic Acids Res. 42, 4590–4605.

Ehrt, S., Guo, X.V., Hickey, C.M., Ryou, M., Monteleone, M., Riley, L.W., and

Schnappinger, D. (2005). Controlling gene expression in mycobacteria with

anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21.

Emsley, P., and Cowtan, K. (2004). Coot : model-building tools for molecular

graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132.

Evans, P.R. (2011). An introduction to data reduction: space-group determina-

tion, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67,

282–292.

Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GroEL (E. coli) monoclonal antibody (clone 9A1/2) Enzo Life Sciences Cat# ADI-SPS-870-D; RRID: AB_2039163

Bacterial and Virus Strains

Escherichia coli DH5a Thermo Fisher Scientific Cat# 18265017

Escherichia coli BL21(DE3) CodonPlus-RIL Agilent Cat# 230240

Escherichia coli W3110 Genevaux laboratory

Hayashi et al., 2006

N/A

Mycobacterium smegmatis mc2155 groEL1DC Noens et al., 2011 N/A

Mycobacterium tuberculosis H37Rv ATCC ATCC 27294

Mycobacterium tuberculosis H37Rv

D(Rv1990c-Rv1989c)::KanR
This study N/A

Chemicals, Peptides, and Recombinant Proteins

Nicotinamide adenine dinucleotide [adenylate-32P] Hartmann Analytic Cat# ARP0141

Q5 High Fidelity Polymerase NEB Cat# M0491

Anhydrotetracycline hydrochloride Merck Cat# 37919

Doxycycline hydrochloride Merck Cat# D3447

DNase I Thermo Fisher Scientific Cat# AM2222

Superscript III Reverse transcriptase Thermo Fisher Scientific Cat# 18080044

SYBER Green qPCR Premix ex Taq Ozyme Cat# TAKRR420A

Thrombin protease Sigma-Aldrich Cat# T4648

Protease-Inhibitor Mix HP Serva Cat# 39106

Deoxyribonuclease I Sigma-Aldrich Cat# DN25

Complete EDTA-free protease inhibitor cocktail Sigma-Aldrich Cat# 11873580001

Recombinant protein: TEV protease M. Wilmanns lab N/A

Recombinant protein: M. tuberculosis H37Rv MbcA This study NP_216506.1

Recombinant protein: M. tuberculosis H37Rv MbcT This study NP_216505.1

Recombinant protein: M. tuberculosis H37Rv

MbcT-R27E (aa 1–186, ref# NP_216505.1)

This study N/A

Critical Commercial Assays

NAD/NADH-Glo Detection Reagent Promega Cat# G9071

LIVE/DEAD BacLight Bacterial Viability Kits Thermo Fisher Scientific Cat# L7007

Zombie Aqua Fixable Viability Kit BioLegends Cat# 423101

RNeasy mini kit QIAGEN Cat# 74104

RNeasy Protect Bacteria Mini Kit QIAGEN Cat# 74524

Penta His HRP conjugate kit QIAGEN Cat# 34460

DNeasy Blood & Tissue kit QIAGEN Cat# 69504

Deposited Data

Raw image date This study; Mendeley Data https://doi.org/10.17632/y6ynjm5sf3.1

MbcT/MbcA structure This paper PDB: 6FKG

MbcT/MbcA SAXS data This paper SASBDB: SASDD33

Experimental Models: Cell Lines

Primary Human monocytes from healthy donors Etablissement Français du Sang Contract Nr. 121/PVNT/TOU/IPBS01/2009-0052

Experimental Models: Organisms/Strains

Mouse: SCID CB17/Icr-Prkdcscid/IcrIcoCrl Charles River RRID: IMSR_CRL:236

Mouse: C57BL/6J Charles River RRID: IMSR_JAX:000664

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

See Table S1 for list of primers used in this study N/A N/A

Recombinant DNA

See Table S2 for list of plasmids used in this study N/A N/A

Software and Algorithms

SMART Letunic and Bork, 2018 RRID: SCR_005026

Jalview 2.10 Waterhouse et al., 2009 RRID: SCR_006459

Pymol 2.1.1 Schrödinger RRID: SCR_000305

Prism 8 Prism https://www.graphpad.com/scientific-

software/prism/

OmniSEC Malvern Panalytical https://www.malvernpanalytical.com/en/

MassHunter B.07.00 Agilent RRID: SCR_015040

OpenLAB CDS ChemStation Agilent RRID: SCR_015742

Topspin 3.5 Bruker RRID: SCR_014227

7500 Real-time PCR Software v2.3 Thermo Fisher Scientific RRID: SCR_014596

XDS/XSCALE Kabsch, 2010 RRID: SCR_015652

CCP4 suite Winn et al., 2011 RRID: SCR_007255

SHELX Sheldrick, 2008 RRID: SCR_014220

ARP/wARP Perrakis et al., 1999 http://www.embl-hamburg.de/ARP/

REFMAC Vagin et al., 2004 RRID: SCR_014225

PHENIX Adams et al., 2010 RRID: SCR_014224

PDB_REDO Joosten et al., 2014 https://pdb-redo.eu/

TLSMD Painter and Merritt, 2006 http://skuld.bmsc.washington.edu/�tlsmd/

Coot Emsley and Cowtan, 2004 RRID: SCR_014222

Molprobity Chen et al., 2010 RRID: SCR_014226

ATSAS 2.7 Petoukhov et al., 2012 RRID: SCR_015648

PDBeFOLD Krissinel and Henrick, 2004 http://www.ebi.ac.uk/msd-srv/ssm/

ImageJ https://imagej.net/Welcome RRID: SCR_003070

FlowJo FlowJo RRID: SCR_008520
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Annabel Parret

(ahaparret@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains
M. smegmatis mc2155 groEL1DC and M. tuberculosis H37Rv (WT) and Mtb mutant strains were routinely grown at 37�C in Mid-

dlebrook 7H9 medium (Difco) supplemented with 10% albumin-dextrose-catalase (ADC, Difco) and 0.05% Tween 80 (Sigma-Al-

drich) or on Middlebrook 7H11 agar medium (Difco) supplemented with 10% oleic acid-albumin-dextrose-catalase (OADC,

Difco). When required, kanamycin (50 mg ml�1), hygromycin (50 mg ml�1), streptomycin (25 mg ml�1) or zeocin (25 mg ml�1)

were added to the culture media. E. coli strains DH5a, (DE3) CodonPlus RIL and W3110 (Hayashi et al., 2006) were grown at

37�C in LB (DH5a; W3110) or Terrific Broth medium (Melford) ((DE3) CodonPlus RIL) supplemented with kanamycin (30 mg

ml�1), chloramphenicol (34 mg ml�1) or ampicillin (100 mg ml�1) when required. Induction of gene expression is detailed in the

Method Details section.

Human Cell Culture
Human monocytes were obtained from healthy blood donors (Etablissement Français du Sang, EFS, Toulouse, France) with written

informed consent (under EFSContract n�121/PVNT/TOU/IPBS01/2009-0052, whichwas approved by the FrenchMinistry of Science
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and Technology, agreement nr. AC2009-921, following articles L1243-4 andR1243-61 of the French Public Health Code). Monocytes

were prepared following a previously published procedure (Troegeler et al., 2014). Briefly, cells were purified using CD14 microbead

positive selection and MACS separation columns (Miltenyi Biotec), according to manufacturer’s instructions. For differentiation

of monocyte-derived macrophages, monocytes were allowed to adhere to glass coverslips (VWR international) in 6-well plates

(ThermoFischer Scientific), at 1.5x106 cells/well, for 1 h at 37�C in pre-warmed RPMI-1640 medium (GIBCO). The medium was

then supplemented with 10% Fetal Bovine Serum (Sigma-Aldrich), 1% sodium pyruvate (GIBCO), 0.1% b-mercaptoethanol (GIBCO)

and 20 ng ml�1 humanMacrophage Colony-Stimulating Factor (Miltenyi Biotec). Cells were allowed to differentiate for seven days at

37�C under 5% CO2 atmosphere.

Experimental animals
C57BL/6J and SCIDCB17/Icr-Prkdcscid/IcrIcoCrl micewere purchased fromCharles River andmaintained under specific germ-free

conditions in the IPBS specific animal facility at 22�C under a 12 h light/dark cycle for at least one week before starting experiments.

All animal experiments were performed in animal facilities that meet all legal requirements in France and by qualified personnel in

such a way to minimize discomfort for the animals. All procedures including animal studies were conducted in strict accordance

with French laws and regulations in compliance with the European community council directive 68/609/EEC guidelines and its

implementation in France. All protocols were reviewed and approved by the Comité d’Ethique Midi-Pyrénées (reference MP/03/

07/04/09) and the Comité d’Ethique FRBT (APAFIS#1269).

METHOD DETAILS

Protein homology searches
Rv1989c-Rv1990c-like TA systems were identified in bacterial genomes using NCBI’s standard protein BlastP searches against the

non-redundant protein sequence (nr) database. Hits from M. tuberculosis genomes were excluded. From the resulting top 100 hits,

only those homologs were withheld for which the hypothetical toxin and antitoxin were encoded by adjacent genes. Selected protein

sequences were retrieved from the UniProt database and re-aligned usingMAFFT (Katoh and Standley, 2013) within the Jalview soft-

ware package (Waterhouse et al., 2009). Pairwise protein sequence identities were calculated using the Pairwise Alignment tool

in Jalview. Conserved protein were identified with InterPro (Finn et al., 2017). The N-terminal HTH domain of the antitoxin, which

is not detected by InterPro, was identified using the HTH motif prediction program available from the NPS@ web server (Combet

et al., 2000).

E. coli viability assays
E. coli strain W3110 containing p29SEN or p29SEN-Rv1990c was co-transformed with empty vector (pMPMK6) or pMPMK6-

Rv1989c (Table S2), grown to mid-log phase, serially diluted and spotted on agar plates supplemented with appropriate antibiotics.

1% arabinose or 5 mM IPTG or were used to induce expression of Rv1989c and Rv1990c, respectively. Images were taken after over-

night incubation at 37�C. Raw images are available on Mendeley Data (https://doi.org/10.17632/y6ynjm5sf3.1).

Construction of M. tuberculosis mutants
Mutant strains ofM. tuberculosisH37Rv were constructed by allelic exchange using recombineering (van Kessel et al., 2007). Briefly,

two �0.5-kb DNA fragments flanking the mbcA-mbcT operon were amplified by PCR from M. tuberculosis H37Rv genomic DNA,

using the primers set 1990cAm-Fw/1990cAm-Rv or 1990cAv-Fw/1990cAv-Rv, respectively. These two DNA fragments were in-

serted into pGem5Z (Promega) flanking a kanamycin-resistance cassette. The recombination substrate was recovered by enzymatic

digestion and agarose gel purifications. The recipient strain for recombineering was a derivative of M. tuberculosis H37Rv carrying

two plasmids: the integrative plasmid pGMCS-P1-Rv1990c, constitutively expressing mbcA, and pJV53H, a hygromycin-resistant

pJV53-derived plasmid expressing recombineering enzymes (van Kessel et al., 2007) (Table S2). This strain was grown in growth

medium supplemented with hygromycin until mid-log phase and expression of recombineering enzymes was induced by 0.2%

acetamide (Sigma-Aldrich) overnight at 37�C. After induction, electrotransformation was performed with 100 ng of the linear DNA

fragment for allelic exchange. After 48 h incubation at 37�C, mycobacteria were plated onto agar plates supplemented with kana-

mycin. Kanamycin-resistant clones were harvested, cultured in growth medium supplemented with kanamycin and verified to carry

the expected allele replacement by colony PCR, using appropriate primers. The pJV53H plasmid was spontaneously lost by serial

rounds of culture without hygromycin. Plasmid pGMCS-P1-Rv1990c was removed by transformation with pGMCZ, a similar vector

but carrying resistance to zeocin, resulting in the deleted strain WTMtb D(Rv1990c-Rv1989c)::KanR /pGMCZ, further abbreviated as

MtbDTA.

Cloning of expression constructs
M. tuberculosis expression constructs

Rv1989c, Rv1990c or both genes were amplified by PCR using Mtb H37Rv genomic DNA as template and primer pairs clo-

rv1990-attB2/clo-Rv1990-attB3, clo-rv1989-attB2/clo-Rv1989-attB3 or clo-rv1990-attB2/clo-Rv1989-attB3, respectively (Tables

S1 and S2). Plasmids pGMCS-TetR-P1-Rv1990c, pGMCS-TetR-P1-Rv1989c or pGMCS-TetR-P1-Rv1990c-Rv1989c were
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constructed by multisite gateway recombination (Schnappinger and Ehrt, 2014), using plasmid pDE43-MCS as destination vector.

These plasmids are integrative vectors (insertion at the attL5 mycobacteriophage insertion site in the glyV tRNA gene) and express

Rv1990c, Rv1989c or Rv1990c-Rv1989c under the control of P1, a tetracycline-inducible promoter (Ehrt et al., 2005) (Table S2). In

pGMCS-TetR-P1-Rv1990c and pGMCS-TetR-P1-Rv1990c-Rv1989c, the sequence harboring the natural Shine-Dalgarno sequence

of Rv1990c (AGGAAGACAGGCTGCCC) was placed upstream of the AUG codon of Rv1990c. In pGMCS-TetR-P1-Rv1989c, this

same sequence was placed upstream of the GUG start codon of the Rv1989c single open reading frames (see sequence of oligo-

nucleotide clo-rv1989c-B2 in Table S1). The empty vector pGMC-TetR-P1was also constructed bymultisite gateway recombination,

but with no gene inserted in front of the P1 promoter.

Generation of a construct for expression of Rv1989c and Rv1990c lacking the last ten codons (pGMCS-TetR-P1-DRv1990c(104-

113)-Rv1989c) was achieved by PCR amplification of two overlapping DNA fragments using pGMCS-TetR-P1-Rv1990c-Rv1989c

as template and the primer pairs clo-rv1990-attB2/1990c-del104_113-Rv or 1990c-del104_113-Fw/clo-rv1989-attB3 (Table S2).

The two purified fragments were mixed and used as template for a second round of PCR with the oligonucleotide pair

clo-rv1990-attB2/clo-Rv1989-attB3. The final construct was generated by multiple gateway cloning using the resulting purified

PCR fragment.

Directed mutagenesis of Rv1989c was performed by PCR amplification of two overlapping DNA fragments carrying the required

mutation using pGMCS-TetR-P1-Rv1989c as template and the primer pair clo-rv1989-attB2/Rv1989c_XnA_rev or Rv1989c_XnA_

for/clo-rv1989-attB3 (Table S2). Purified PCR fragments were mixed and used as templates for a second round of PCR with the

primer pair clo-rv1989-attB2/clo-Rv1989-attB3. The resulting fragments were used for multiple gateway cloning to construct

pGMCS-TetR-P1-Rv1989c derivatives with the desired mutations.

M. smegmatis expression constructs

The Rv1990c-Rv1989c operon was PCR-amplified using Q5 High Fidelity Polymerase (New England Biolabs) from Mtb H37Rv

genomic DNA using the primer set Rv1990c_NcoI and Rv1989c_HindIII (Table S2). DNA fragments were ligated into pMyNT

(Table S1) using NcoI/HindIII restriction enzymes, generating pMyNT-MbcTA encoding N-terminally His6-tagged MbcA and un-

tagged MbcT.

E. coli expression constructs

Rv1989c and Rv1990c were PCR-amplified using Phusion High-Fidelity DNA polymerase (New England Biolabs) from

M. tuberculosis H37Rv genomic DNA and ligated into expression vectors pnEK and pnEA-His, respectively, using NdeI/BamHI

restriction enzymes (Table S2). Resulting constructs, pnEK-MbcT and pnEA-His-MbcAD112�113, encoding untagged MbcT and

N-terminally His6-tagged MbcAD112�113 were cloned using primers DF101/DF102 and SpeI/XbaI ligation of a synthetic fragment

consisting of MbcAD112�113 (gBlock; Integrated DNA Technologies), respectively. the mbcT gene was first cloned in pET-28a(+)

using restriction enzymes NcoI/HindIII. MbcT mutants (pET-28a(+)-MbcT constructs) were generated by site-directed mutagen-

esis (Table S2). To generate constructs for the E. coli toxicity rescue assays, Rv1989c was PCR-amplified using Phusion High-

Fidelity DNA polymerase (New England Biolabs) with primers for1989-2 and rev1989-2. The PCR product was cloned as an

EcoRI/HindIII fragment under the control of an arabinose-inducible promoter (pBAD) into pMPMK6 vector (Mayer, 1995) digested

with the same enzymes (Table S2). The mbcA gene was PCR-amplified using Phusion High-Fidelity DNA polymerase (New

England Biolabs) using primers for1990-2 and rev1990-2, and cloned as an EcoRI/HindIII fragment under the control of an

IPTG-inducible promoter into p29SEN vector (Genevaux et al., 2004) digested with the same enzymes. E. coli strain DH5a

was used for all cloning experiments.

Viability Staining and Flow Cytometry
Exponentially growing cultures (OD600 between 0.05 and 0.2) of strain MtbDTA containing plasmid pGMCS-TetR-P1 (empty

vector) or pGMCS-TetR-P1-Rv1989c were divided in two: half was left in standard growth medium (uninduced cultures) and

the other half was treated with 200 ng ml�1 of anhydrotetracycline (ATc) to induce expression from the P1 promoter. After

various times post-induction, samples were harvested and centrifuged to remove residual ATc. Cells were resuspended in

PBS buffer and dilutions were plated on 7H11 OADC agar, to measure colony-forming units. For labeling with LIVE/DEAD

BacLight (Molecular Probes) dyes, cells were harvested 4 days post-ATc induction. Cells were centrifuged, resuspended in

PBS buffer and stained as recommended by the manufacturer. Labeled cells were either observed by confocal microscopy us-

ing an Andor/Olympus spinning disk microscope with an Olympus 100x oil immersion objective or by fluorescence-activated

cell sorting using a BD FACS Aria Fusion flow cytometer. Image analysis was performed using ImageJ software and flow

cytometry data analysis using FlowJo software. Raw images are available on Mendeley Data (https://doi.org/10.17632/

y6ynjm5sf3.1).

RT-qPCR
RT-qPCR quantification of mbcT mRNA was performed on total RNA extracted from Mtb WT cultures grown to exponential phase

(OD600 of 0.5) at 37
�C in 7H9 + 10%ADC + 0.05% Tween-80. For samples from starved cells, cultures were washed and kept for 24h

in suspension in PBS buffer before RNA extraction. In addition, total RNA was extracted from MtbDTA cultures carrying plasmid

pGMCS-TetR-P1 (empty vector) or pGMCS-TetR-P1-Rv1989c, 6 or 24 h post-induction with ATc. RNA was prepared using the

RNeasy kit (QIAGEN) followingmanufacturer’s instructions with slight modifications (Levillain et al., 2017). RNA samples were treated
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for 30 min with 2U of Turbo DNase (Turbo DNA free kit, Ambion). The amount and purity of RNA were quantified using a NanoDrop

ND-1000 apparatus (ThermoFischer Scientific) by measuring absorbance at 260/280 nm. Double-stranded cDNA was reverse-tran-

scribed using the superscript III Reverse Transcriptase kit (Invitrogen), according to themanufacturer’s protocol. For real-time qPCR,

specific primers were designed and PCR reactions were performed using SYBR Green Premix Ex Taq (Ozyme), according to the

manufacturer’s protocol. All real-time qPCR reactions were carried out using a 7500 Real-Time PCR System and data were analyzed

using the 7500 Software version 2.3 (Applied Biosystems). PCR array data were calculated by the comparative cycle threshold

method, normalizedwith the rpoB housekeeping gene, and expressed asmean fold change in experimental samples relative to levels

in Mtb WT grown in 7H9 ADC tween medium.

Protein Expression and Purification
For expression of the intact MbcT-MbcA complex, pMyNT-MbcTA plasmid DNA was electroporated into M. smegmatis mc2155

groEL1DC (Noens et al., 2011) and cultured in Middlebrook 7H9 medium, supplemented with 0.2% glucose, 0.2% glycerol and

0.05% Tween 80. Protein expression was induced with 2% (v/v) acetamide at an OD600 of 1.5. Cells were pelleted by centrifu-

gation after xh incubation and resuspended in lysis buffer C (30 mM Tris (pH 8.0), 100 mM NaCl, 10 mM imidazole, 10% (w/v)

glycerol) containing 1/100 protease inhibitor mix HP, 0.01% deoxyribonuclease I (Sigma-Aldrich) and disrupted using an Emulsi-

flex C3 high-pressure homogenizer (Avestin) by performing 5 cycles of �20,000 psi at 4�C. The cell suspension was centrifuged

at 43,000 x g for 45 min at 4�C to pellet cell debris. MbcTA was purified from clarified lysate using a 5 mL HisTrap HP column.

Following cleavage of the His6-tag with TEV protease, protein was concentrated and injected onto a Superdex 200 16/60 SEC

column (GE Healthcare) pre-equilibrated in SEC buffer (30 mM Tris-HCl pH 8.0, 200 mM NaCl, 10% (w/v) glycerol) for removal of

aggregated protein. Fractions containing MbcTA were pooled and concentrated to 12 mg ml�1. Samples were immediately used

for crystallization or aliquoted and stored at �80�C. Proteins were routinely concentrated using Spin-X UF concentrators

(Corning).

For expression of the MbcT-MbcAD112�113 complex, pnEK-MbcT and pnEA-His-MbcAD112�113 were co-transformed to E. coli

BL21(DE3) CodonPlus-RIL. Protein expression was induced with 0.5 mM isopropyl-b-D-thiogalactopyranoside (IPTG) at an

OD600 of 0.7. After xh incubation at xC, cells were pelleted by centrifugation and resuspended in lysis buffer A (30 mM Tris-HCl

pH 8.0, 50 mM NaCl, 10 mM imidazole and 10% (w/v) glycerol) containing 1/100 protease inhibitor mix HP (Serva), 0.01% deoxy-

ribonuclease I (Sigma-Aldrich). Cell disruption was achieved using an Emulsiflex C3 high pressure homogenizer (Avestin) by per-

forming three cycles of�15,000 psi at 4�C. The cell suspension was centrifuged at 43,000 x g for 20 min at 4�C to pellet cell debris.

MbcTA-containing lysate was loaded onto a 5 mL HisTrap HP (GE Healthcare) to bind the complex, followed by a salt wash with a

linear gradient up to 2M NaCl. This salt wash resulted in MbcT-MbcAD112�113 dissociation and subsequent elution of MbcT. Frac-

tions containing MbcT were buffer-exchanged to low salt buffer (30 mM Tris-HCl pH 8.0, 20 mM NaCl and 10% (w/v) glycerol),

loaded onto a Mono Q 5/50 anion exchange chromatography column (QIAGEN), further concentrated and injected into a Superdex

75 16/60 size-exclusion chromatography (SEC) column (GE Healthcare) pre-equilibrated in SEC buffer for removal of aggregated

protein.

MbcT R27E was produced as described for MbcT-MbcAD112�113 with following modifications. MbcT R27E-containing lysate in

lysis buffer B (30 mM Tris-HCl pH 8.0, 200 mM NaCl, 10 mM imidazole, 10% (w/v) glycerol) was injected onto a 1 mL HisTrap HP

column (GE Healthcare) and eluted using a linear gradient up to 300 mM imidazole. Following cleavage of the His6-tag with thrombin

protease, the concentrated protein sample was injected onto a Superdex 75 16/60 SEC column pre-equilibrated in SEC buffer for

removal of aggregated protein. Raw gel images are available on Mendeley Data (https://doi.org/10.17632/y6ynjm5sf3.1).

Crystallography
Initial crystallization conditions for the MbcTA complex (12 mg ml�1) were identified using the Morpheus screen (Molecular

Dimensions) and the PEGs suite (QIAGEN). Optimized rod-like crystals were obtained by the vapor diffusion method in 0.2 M ammo-

nium sulfate, 0.1 M tri-sodium citrate pH 5.6 and 25% PEG 4000. Prior to data collection, crystals were transferred to a solution

containing cryoprotectant that was optimized to a ratio of 2:2:1 of SEC buffer, precipitant, and glycerol, respectively, and mounted

in a CryoLoop (Hampton).

All diffraction data were collected at EMBL beamline P13 (Cianci et al., 2017) at the PETRA III storage ring (DESY, Hamburg,

Germany) using a low-energy set up with a Helium-cone covering the PILATUS 6M pixel-array detector (DECTRIS Ltd., Baden,

Switzerland) running with custom low-energy calibration tables. Data for Sulfur Single-wavelength Anomalous Dispersion (S-SAD)

phasing were collected with an X-ray beam of 70 mm in diameter at an energy of 5.0 keV (l = 2.48 Å) on three different positions

of a rod-shaped crystal with approximate dimensions of 300 3 70 3 70 mm3. At each position, 3600 frames of 0.1� per 40 ms

exposure time were collected.

High-resolution native data were collected at an energy of 12.7 keV (l = 0.976 Å) on a crystal with approximate dimensions of

500 3 100 3 100 mm3 with a beam of 100 mm in diameter employing a helical scan between two centring points ca. 400 mm apart.

1800 frames of 0.1� per 40mswere recorded. Data were integratedwith XDS and further processedwith XSCALE (Kabsch, 2010) and

POINTLESS and AIMLESS from the CCP4 suite of programs (Evans, 2011; Winn et al., 2011).

The crystal structure was solved using the SHELX suite (Sheldrick, 2008) of programs via the HKL2MAP user interface

(Pape and Schneider, 2004). Unmerged data collected at low and high energy were supplied to SHELXC as SAD and NATIVE
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datasets respectively. For substructure solution, the anomalous differences determined by SHELXC were truncated at 3.0 Å. In

100 trials, 16 anomalous sites with occupancies higher than 0.6 were identified by SHELXD with a CFOM of 58.8. Phases calcu-

lated based on the substructure, after ten alternating cycles of density modification (assuming a solvent content of 44%) and

main-chain auto-building as implemented in SHELXE resulted in 550 residues being placed into the experimentally phased elec-

tron density with correlation coefficient between the structure factors calculated for the partial structure and the experimental

data of 46.7%.

Using the phases obtained fromSHELXE, ARP/wARP (Perrakis et al., 1999) was used to automatically build a first model consisting

of 578 residues with Rwork- and Rfree-values of 0.30 and 0.25, respectively. The startingmodel wasmanually rebuilt with Coot (Emsley

and Cowtan, 2004) and refined by iterative cycles using REFMAC (Vagin et al., 2004), PHENIX (Adams et al., 2010), and the

PDB_REDO web server (Joosten et al., 2014) using translation, liberation, and screw-rotation (TLS) groups as identified by the

TLSMD server (Painter and Merritt, 2006). The quality of the final model was assessed using Coot (Emsley and Cowtan, 2004),

the wwPDB validation server (Gore et al., 2012) and theMolprobity server (Chen et al., 2010). Structural figures were generated using

PyMol (Schrödinger). Data statistics are presented in Table 1.

Size Exclusion Chromatography Right-Angle Light Scattering
Protein mass measurements were performed on an Agilent HPLC system connected to a Viscotek 305 tri-detector (Malvern) to

monitor static light scattering, refractive index, and UV absorbance. 100 mL sample was loaded onto a Superdex 200 HR 10/300

GL column (GE Healthcare) equilibrated in Size Exclusion Chromatography (SEC) buffer at a flow rate of 0.3 mL min�1. Data were

recorded and processed using OmniSEC software (Agilent).

Small Angle X-ray Scattering
Small angle X-ray scattering (SAXS) data were collected at EMBL beamline P12 at the PETRA III storage ring (DESY, Hamburg,

Germany) (Blanchet et al., 2015) using a 2M Pilatus pixel detector (DECTRIS) detector, a distance of 3.1 m and a wavelength of

1.24 Å (Table 2). MbcTA was measured at several protein concentrations in a range between �0.6 to �7.1 mg ml�1. Analysis of

the scattering data was performed using the programs from the ATSAS 2.7 package (Petoukhov et al., 2012). The data obtained

at the lowest and highest concentration were used for further analysis of MbcTA. The forward scattering I(0) and the radius of gyration

Rg were calculated from the Guinier approximation calculated using PRIMUS GNOM (Svergun, 1992) was used to evaluate the pair

distribution function, P(r), and to calculate the maximum particle dimension (Dmax). Ab initiomodels for MbcTA were generated with

DAMMIN (Svergun, 1999) utilizing a relaxed disconnectivity criterion without symmetry restrictions. Validation, resolution estimation

and averaging for the final model building were performed with SASRES (Tuukkanen et al., 2016) and DAMAVER (Volkov and

Svergun, 2003). Theoretical scattering curves were calculated using CRYSOL (Svergun et al., 1995). SUPCOMB (Kozin and Svergun,

2001) was used for superimposition of the calculated ab initio model with the atomic structure. Data statistics are presented in

Table 2.

Circular Dichroism Spectroscopy
Samples were diluted to �0.1 mg ml�1 in buffer containing 250mM NaF and 10mM sodium phosphate (pH 7.5). Circular dichroism

(CD) spectra were recorded between 190 and 320 nm at 10�C in a 1 mm QS quartz cuvette on a Chirascan CD Spectrometer up-

graded with an Active Nitrogen Management System (Applied Photophysics). Instrument settings were as follows: 1 nm bandwidth,

1 s response and 0.5 nm data pitch. For each dataset 5 spectra have been averaged and sample buffer subtracted as background.

Data were recorded with the Pro-Data Chirascan software (version 4.5.1833).

Isolation of genomic DNA and total RNA
For isolation of genomic DNA, E. coli DH5a cells were cultured in LB medium to an OD600 of 0.7, collected and washed with

PBS buffer. Genomic DNA was obtained using the DNeasy Blood & Tissue kit (QIAGEN) according to the manufacturer’s in-

structions for Gram-negative bacteria, including RNaseA digestion. For isolation of total RNA, E. coli DH5a cells were cultured

in LB medium to an OD600 of 0.7, mixed with RNAprotect Bacteria Reagent (QIAGEN) by vortexing followed by incubation for

5 min. at room temperature. Cells were pelleted by centrifugation and RNA was extracted according to the RNeasy Protect

Bacteria Mini Kit protocol (QIAGEN) with a minor modification, namely DNase digestion was performed on-column for

30 min at 37�C.

ADP ribosylation assays
For production of cell lysates, E. coli strain DH5a was cultured to an OD600 of 0.7. Cells were pelleted, washed with phosphate

buffered saline (PBS) and resuspended in 1x BugBuster lysis reagent (Merck Millipore) supplemented with 1 mM dithiothreitol,

1x complete EDTA-free protease inhibitor cocktail (Roche) and 0.01 mg ml�1 deoxyribonuclease I. After 15 min incubation at

room temperature, cell lysate was clarified by centrifugation at 20000 g, 4�C for 10 min. The supernatant was desalted using

PD10 columns (GE Healthcare) in Tris buffer (20mM; pH 7.5) and protein concentration was measured using the BCA protein assay

kit (ThermoFischer Scientific) following the manufacturer’s instructions. M. smegmatis mc2155 groEL1DC (Noens et al., 2011)

cells were cultured to an OD600 of 1.5 in Middlebrook 7H9 medium, supplemented with 0.2% glucose, 0.2% glycerol and 0.05%
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Tween-80. M. smegmatis cell lysate was prepared as described for E. coli DH5a cells, with the exception of the cell lysis step. To

ensure complete cell lysis, cell pellets were additionally incubated in a sonication bath for 5 min. Reactions were performed in

10 mL reaction buffer (50 mM Tris (pH 7.4), 200 mM NaCl, 2 mMMgCl2 and 1 mM DTT) containing MbcT and�1 mg of protein lysate,

�50 ng denatured dsDNA or�1 mg RNA and/or spiked with 32P-NAD+. The final concentration of MbcT was 1 or 10 mM, when mixed

with nucleosides or lysates respectively. The reactionswere incubated at 37�C for 1 h. Reactionswith protein lysate were analyzed by

SDS-PAGE, gels were dried and exposed to autoradiography films. Reactions with DNA and RNA or without substrate were analyzed

by thin layer chromatography.

Thin Layer Chromatography
2 mL of each ADP-ribosylation reaction was spotted on polyethyleneimine (PEI) cellulose plates (Merck Millipore), which were air-

dried prior to development with 0.25 M LiCl and 0.25 M formic acid. After drying, plates were exposed to an image plate (Fujifilm)

and analyzed using a Phosphor-Imager (Fujifilm). Raw images are available on Mendeley Data (https://doi.org/10.17632/

y6ynjm5sf3.1).

LC-MS
LC-MS analysis was carried out on an Agilent system consisting of a 1290 Infinity II HPLC coupled to a 6230 TOFmass spectrometer

with a dual Agilent Jet Stream (AJS) electrospray ionization source in negativemode. Ionization conditions were as follows: Nebuliser

pressure 35 psi; N2 drying gas temperature and flow 200�C and 8 l min�1; N2 sheath gas temperature and flow 300�C and 11 l min�1;

and capillary, nozzle, fragmentor, and octupole RF voltages 3000, 2000, 400 and 750 V, respectively. Compounds were separated

with a Waters XBridge Amide column (3.5 mm; 4.6 mm 3 100 mm). Phase A was 5% acetonitrile, 20 mM ammonium hydroxide and

20mMammonium acetate. Phase Bwas 100%acetonitrile (Yuan et al., 2012). Compounds were eluted at a flow rate of 0.4mLmin�1

and a temperature of 40�C with a gradient of 85%–60% B in 5 min, 60% B for 11 min, 60%–2% B in 5 min and 2%–80% B in 5 min.

Data were collected and analyzed with MassHunter B 07.00.

HPLC
Reactions were analyzed on an Agilent 1260 Infinity HPLC system using an Agilent Poroshell 120 EC-C18 column (2.7 um

4.6 3 50 mm) and monitoring absorbance at 260 nm. Elution was achieved with an isocratic flow of 2 ml/min of 10 mM ammonium

phosphate pH 5.5 with 2.5% acetonitrile (Muller-Steffner et al., 1994). Data were collected and analyzed with OpenLAB CDS Chem-

Station (Agilent).

NMR spectroscopy
Spectra were acquired in a Bruker Avance III HD spectrometer operating at a 1H frequency of 700 MHz and equipped with a 5 mm
1H/31P/13C/15N resonance PFG cryogenic probe. Data were processed and analyzed with Topspin 3.5. 1D and COSY HMBC NMR

spectra are available on Mendeley Data (https://doi.org/10.17632/y6ynjm5sf3.1).

Enzyme kinetics
All kinetic reactions were performed in 96-well plates. MbcT (50 nM) was incubated with different concentrations of NAD+ sodium salt

(Sigma-Aldrich) at 37�C and the reaction time was adjusted in order to assure measurement of the initial rate of the reaction. Reac-

tions were carried out in a final volume of 140 mL in reaction buffer (50 mM sodium-phosphate buffer (pH 7.5), 50 mMNaCl). For each

time point, 10 mL of the reactionmixturewas added to 300 mL of 5MNaOH and incubated in the dark at room temperature for 50min to

allow for the production of the alkaline-generated fluorescent species of NAD+. Fluorescence was measured at 360/460 nm (excita-

tion/emission filter set) using a TECANmicroplate reader. The concentration of NAD+ in each sample was calculated from the relative

fluorescence correlated to a standard curve of NAD+. Initial rates of the reactionwere determined by the linear regression of the plot of

NAD+ consumption versus time, assuming saturating conditions of inorganic phosphate. Each calculated initial rate was plotted

versus the corresponding NAD+ concentration. Michaelis Menten kinetics were used to determine KM, Vmax for MbcT under each

condition. Kcat was determined from the fit of the plot of Kobs (initial rate divided by enzyme concentration) versus NAD+ concentra-

tion. All calculations were performed using GraphPad Prism software.

Western blotting
pET28a(+)-MbcT constructs were transformed to E. coli BL21 (DE3) and cultured in LB at 37�C. Protein expression was induced

with IPTG (0.5mM) at an OD600 of 0.7 and cells were harvested 1 h after induction by centrifugation. Cells were resuspended in

1x BugBuster lysis reagent (Merck Millipore) supplemented with 0.13 mg ml�1 protease-inhibitor-mix HP (SERVA Electrophoresis)

and 0.01 mg ml�1 deoxyribonuclease I (Sigma-Aldrich) and incubated at RT for 15 min. Protein lysates were separated by SDS-

PAGE, transferred to Immuno-Blot PVDF membrane (Bio-Rad) using a Trans-Blot Turbo (Bio-Rad) and blocked overnight using

5% solution of skimmed milk powder (Carl Roth). Membranes were probed with either Penta His HRP conjugate (QIAGEN) or

anti-GroEL (E. coli) monoclonal antibody (clone 9A1/2) (Enzo Life Sciences) as the primary antibody. HRP-linked whole Mouse
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IgG Antibody (GE Healthcare) was used for detection of GroEL. Blots were developed using SuperSignal West PicoMaximum Sensi-

tivity Substrate (ThermoFisher Scientific) and visualized using a ChemiDocMP (Bio-Rad). Raw blot images are available onMendeley

Data (https://doi.org/10.17632/y6ynjm5sf3.1).

Determination of NAD+ levels in bacterial cells
MtbDTA strains containing pGMCS-TetR-P1 (empty vector), pGMCS-TetR-P1-Rv1989c or pGMCS-TetR-P1-Rv1989cR27E plasmids

were cultured in 7H9 medium (Difco) supplemented with 10% albumin-dextrose-catalase (ADC, Difco), 0.05% Tween-80 (Sigma-

Aldrich) at 37�C to OD600 of 0.2 prior to induction of protein expression with 200 ng ml�1 of anhydrotetracycline (ATc). 500 mL of

culture was removed 24 h post-induction. Cells were harvested by centrifugation and resuspended in PBS buffer at an OD600 of

0.5. 0.1 mm-diameter glass beads were added to the tubes and cells were lysed by four 60 s pulses at full speed in a bead-beater

device. The samples were centrifuged for 1 min at 20,200xg and the lysates were sterilized by filtration. Filtrates were mixed with

an equal volume of NAD/NADH-Glo Detection Reagent (Promega) and luciferin bioluminescence was measured after 30 min of in-

cubation using a CLARIOstar plate reader (BMG LABTECH) and normalized to background (PBS-only) signal.

Macrophage infections
Before infection, mycobacterial clumps were disaggregated after at least 20 passages through a 25G needle. Human monocyte-

derived macrophages were infected with M. tuberculosis at a multiplicity of infection of 0.3 bacteria/macrophage in complete

RMPI medium for 4 h at 37�C. Cells were then washed with RPMI and further incubated at 37�C for 5 days in RPMI supplemented

with or without ATc (200 ng ml�1). Measurements of macrophage viability were performed by flow cytometry analysis of cells treated

with Zombie Aqua Fixable Viability Kit (BioLegends) as recommended by the manufacturer. Briefly, infected macrophages were

recovered from the glass coverslips by treatment with non-enzymatic cell dissociation solution (Sigma-Aldrich). Macrophage pellets

were resuspended in 100 mL Zombie Aqua solution in PBS and stained 20 min at 4�C. Macrophages were then washed in PBS, fixed

for 2 h at room temperature in 200 mL of PBS containing 4% paraformaldehyde (Polyscience) and analyzed by flow cytometry (LSRII,

BD Biosciences).

Mice infections
Six- to eight-week-old female mice (SCID or C57BL/6J, Charles River) were anesthetized in gas chambers containing 0.5% isoflur-

ane. SCID mice were infected by intravenous injection of �105 CFUs of Mtb. Groups of 10 mice were provided with drinking water

supplemented (or not) with 5% sucrose and 1 mg ml�1 of doxycycline from 7 days onward before infection and during the whole

course of the Mtb infection. Survival was followed during time. C57BL/6J mice were infected intranasally with �103 CFUs of Mtb

in 25 mL of DPBS (GIBCO). At day 21 post-infection, groups of eight mice were fed by daily gavage with either water, isoniazid

(25 mg kg�1), doxycycline (1 mg kg�1) or both during 10 days. At day 31 post-infection, mice were sacrificed and lung homogenates

were plated onto 7H11 agar plates for CFU scoring.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of survival curves of SCID mice was performed with Log-rank (Mantel-Cox) test in GraphPad Prism software. Signifi-

cance of variation in CFUs in lungs of infected C57BL/6J mice was performed using unpaired Student’s tests in GraphPad Prism

software. No animals were excluded from statistical analysis. p values correlate with symbols as follows: ns = not significant,

p > 0.05, * p % 0.05, ** p % 0.01, *** p % 0.001, **** p % 0.0001.

DATA AND SOFTWARE AVAILABILITY

All raw images as well as the 1D and COSY HMBC NMR spectra are deposited on Mendeley Data (https://doi.org/10.17632/

y6ynjm5sf3.1). The accession number for theMbcT-MbcA crystal structure reported in this paper is PDB: 6FKG. The accession num-

ber for the MbcT-MbcA SAXS data reported in this paper is SASBDB: SASDD33.
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