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Abstract

Background: There are over 200 million reported cases of malaria each year, and most children living in endemic
areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent
clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these
modifications are observable in the absence of detectable parasitaemia.

Methods: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma
cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had
been under active surveillance for malaria for 8 years. Children were categorised into two groups depending
on the cumulative number of episodes experienced: high (≥ 8) or low (< 5).

Results: We observe that multiple episodes of malaria are associated with modification of the immune system. Children
who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear
increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and
CD8+ T cells.

Conclusion: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly
detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of
malaria are associated with modification of the immune system in children. Such immune modifications may have
implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.
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Background
Malaria is caused by infection with the protozoan parasite
Plasmodium spp. and is responsible for approximately half
a million deaths annually. Most of the mortality occurs
among children under 5 years of age [1], and progress in
control has recently stalled [2]. Malaria pathogenesis is
characterised by a complex interplay between an antigeni-
cally diverse parasite and a constantly evolving immune

response in the host. Initial exposure often leads to dis-
ease, but subsequent repeated exposures lead to the devel-
opment of partially protective, non-sterile immunity [3–
5]. There is mounting evidence that repeated clinical epi-
sodes of malaria result in substantial modification of the
host immune system. P. falciparum (Pf ) infection has
been shown to stimulate T regulatory cells [6, 7] and to
significantly alter the phenotype and function of a number
of other immune cell populations including dendritic cells
[8], conventional B [9, 10] and T lymphocytes [11, 12] and
γδ T cells [13]. In line with this, some Pf proteins bind the
inhibitory receptor LILRB1 found on NK and B cells [14].
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The consequences of such immune modification have
not been studied extensively; however, it is interesting to
note that a number of vaccine candidates have
demonstrated much-reduced efficacy when tested in
malaria-endemic populations as compared to malaria-naïve
populations [15, 16]. Although the precise mechanism of
this is not fully understood, it suggests that complex inter-
actions between malaria and the immune system affect the
ability to elicit appropriate immune responses upon chal-
lenge. Whether such immune modification persists in the
absence of parasitaemia (steady state) is also not known.
Here, we examined healthy uninfected children living

in an endemic area who had been under active surveil-
lance for clinical malaria for 8 years and had experienced
either high or low numbers of clinical episodes (relative
to the population average). We took a multi-dimensional
approach, comprising whole blood transcriptomic, cellu-
lar and plasma cytokine analyses to describe the immune
systems in these two groups of children, providing a
comprehensive description of the effect of repeated epi-
sodes of clinical malaria on the steady-state immune sys-
tem of children living in an endemic area. While
insufficient to establish the causal relationship between
malaria episodes and any immune modification (differ-
ences could reflect inherent immunological differences
that predispose certain individuals to increased numbers
of episodes), this study represents a necessary first step
in furthering our understanding of the complexity of
malaria immune responses.

Materials and methods
Study population
The participants for this study were drawn from two
previously described cohorts of children who had been
under active weekly surveillance for 8 years [17, 18]. The
Junju cohort is in an area of moderate malaria transmis-
sion with a Pf prevalence of approximately 30% [15, 17]
during the rainy season, while the Ngerenya cohort is in
an area where malaria transmission has fallen and
remained at almost zero since 2004 [18]. As described
elsewhere [19, 20], children were visited every week by
field workers (themselves living within the local commu-
nity) for the detection of malaria-associated fevers and
who were also available to assess any fevers occurring
between weekly visits. Any child with an axillary body
temperature of greater than 37.5 °C was tested for Pf
parasitaemia by rapid diagnostic test and confirmed by
microscopic examination of thin and thick blood smears
stained with 10% Giemsa. A clinical episode of malaria
was defined as body temperature above 37.5 °C with >
2500 parasites per microlitre of blood.
For our analysis, 42 children of similar age (7–10.5

years) were selected belonging to 2 categories—“low” and
“high” (under active surveillance since 2007) depending

on their number of past clinical episodes. An additional
27 age-matched children who had never had clinical mal-
aria (naïve) were selected from Ngerenya (under active
surveillance since 1989), where malaria transmission has
remained very low since 2004. The low group consisted of
children from Junju who had less than 5 recorded epi-
sodes of malaria, while the high group (also selected from
Junju) had between 8 and 18 recorded episodes of malaria.
A single blood sample was taken from each child and
processed as described below. All 69 children were geno-
typed to confirm that none carried the sickle cell trait
(haemoglobin AS genotype), a well-characterised poly-
morphism associated with resistance to malaria infection
[21]. All 69 children were also determined to be negative
for Pf (microscopy and PCR) and had not had a clinical
episode within the last 110 days prior to sampling.

Sample collection
Five millilitres of blood was drawn from each child by
venesection in March 2015 prior to the start of the
major malaria transmission season. One millilitre was
immediately placed in a Tempus tube (Thermo Fisher
Scientific) and stored for downstream transcriptomic
analysis. The remaining blood was transported within 2
h of collection to the laboratory where 200 μL was ali-
quoted for flow cytometry and 100 μL aliquoted for
real-time PCR (to assess Pf status), and the remaining
sample was centrifuged to separate the plasma which
was stored at − 20 °C.

PCR analysis
For PCR analysis, DNA was first extracted from 30 μL of
whole blood using QIAxtractor machine (QIAGEN,
Hilden, Germany). The DNA was eluted in 100 μL, from
which 5 μL of DNA were amplified by quantitative PCR.
This was done using a TaqMan assay for the Pf
multicopy 18S ribosomal RNA genes, as described else-
where [22], except that we used a modified probe
(5′-FAM-AACAATTGGAGGGCAAG-NFQ-MGB-3′).
We used an Applied Biosystems 7500 Real-Time PCR
System with quantification by Applied Biosystems 7500
software v2.0.6. Samples were analysed in singlet wells.
Three negative control wells and 7 serial dilutions of
DNA extracted from in vitro parasite cultures were in-
cluded as standards on each plate in triplicate. Plates
failing quality control standards were repeated. The
lower limit of accurate quantification of this method is
10 parasites/mL within the PCR elute. By assessing 1/20
of 30 μL of blood with a gene target present on 3 chro-
mosomes, the method has a theoretical limitation of 4.5
parasites/μL of whole blood, compared with a sensitivity
of 50 parasites/μL for thick blood films. PCR standards
were monitored through internal quality assurance and
use of external quality control standards.
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Stool microscopy
The formol-ether concentration method was used to
prepare samples for the detection of helminths or their
eggs by microscopy.

Flow cytometry
Two hundred microlitres of whole blood was mixed with
a cocktail of monoclonal antibodies specific for human
immune cell surface markers. The cocktail consisted of
antibodies against CD3, CD4, CD8, CD14, CD16,
HLA-DR, CD11c, CD45RO, CD45RA, TCR γδ, CD56,
CD19 and CD303 as well as a live/dead stain (see Add-
itional file 1: Table S1 for antibody conjugation informa-
tion). After staining for 30 min at 4 °C, erythrocytes were
lysed using BD FACS Lysing Solution (BD Biosciences,
San Jose, CA). Cells were washed and re-suspended in
200 μL of 1× PBS and analysed on a BD Fortessa flow
cytometer (BD Biosciences, San Jose, CA) acquiring at
least 200,000 leukocyte events per sample. Given the size
of the study and the need to limit time between sample
collection and FACS analysis, sample collection and
FACS were performed in batches over a number of days,
with appropriate single-colour controls acquired on each
day. All FACS data were however analysed together once
all the samples had been collected. Initial compensation
and manual gating analysis were performed using FlowJo
(FlowJo LLC, Ashland, OR).

Unsupervised FACS analysis
Flow cytometry data was analysed using the integrated
analysis pipeline Cytofkit, available as an open-source
R/Bioconductor package [23]. Briefly, fcs files contain-
ing all live gated, singlet events from each participant
were imported, the expression values of each marker
extracted from each fcs file and the extracted data
transformed using “automatic logicle transformation”.
Expression matrices from all fcs files were then com-
bined into a single matrix, by sampling up to 10,000
events from each fcs file. Dimensionality reduction was
performed using the Barnes-Hut variant of the t-SNE
algorithm [24], and cellular subsets were identified
using the clustering method proposed by Rodriguez
and Laio [25]. Individual clusters were then manually
annotated using a heatmap displaying the median in-
tensity values per cluster for every marker. This heat-
map was used to identify each cluster’s defining
markers and designate each cluster as a previously de-
scribed population or unknown population. For each
cellular population, we performed a Kruskal-Wallis test
between the three groups of children. For significant
cell types, we performed a post-hoc Dunn’s test be-
tween each group.

Plasma cytokine analysis
One hundred microlitres of plasma from each partici-
pant was submitted to Eve Technologies (Calgary,
Canada) for analysis using the Human Cytokine/Chemo-
kine 65-plex Discovery Assay. This multiplex assay is
based on the Millipore MILLIPLEX cytokine array and
is designed to detect and quantify the levels of the fol-
lowing cytokines: EGF, eotaxin, FGF-2, Flt-3 ligand, frac-
talkine, G-CSF, GM-CSF, GRO, IFN-α2, IFN-γ, IL-10,
IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IL-1ra,
IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9,
IP-10, MCP-1, MCP-3, MDC (CCL22), MIP-1α, MIP-1β,
PDGF-AA, PDGF-AB/BB, RANTES, TGFα, TNF-α,
TNF-β, VEGF, sCD40L, Eotaxin-2, MCP-2, BCA-1,
MCP-4, I-309, IL-16, TARC, 6CKine, eotaxin-3, LIF,
TPO, SCF, TSLP, IL-33, IL-20, IL-21, IL-23, TRAIL,
CTACK, SDF-1α+β, ENA-78, MIP-1d and IL-28A. Cyto-
kine levels were parameterised as log fluorescence and
tested using a three-way Kruskal-Wallis test between the
naive, low-episode and high-episode groups. Post-hoc
Dunn’s tests were performed on cytokines with signifi-
cant differences.

RNA isolation and library preparation
Tempus/blood mix (1 mL blood with 6 mL Tempus solu-
tion) was thawed on ice for 1 h and transferred into a
50-mL Falcon tube. Next, 2 mL of ice cold 1×PBS was
added to the samples followed by the addition of 3 mL
chilled 100% ethanol. Samples were immediately vor-
texed for 30 s and then spun down at 15,000 rcf for
60 min at 0 °C. After centrifugation, the supernatant was
removed and the emptied tubes blotted on clean absorb-
ent paper to remove the remaining foam. No cell debris
pellet was visible within the tube. Next, the cells were
lysed by adding 200 μL of freshly prepared lysis/TCEP
solution (Perfect Pure kit, 5’PRIME) to the pellet and
vortexed immediately for 1.5 min. RNA isolation was
performed using the Perfect Pure kit, following the
manufacturer’s instructions, and eluted in 40 μL of
nuclease-free water. Globin mRNA was depleted from
the total RNA using the GLOBINclear kit (Ambion).
Indexed libraries were then generated using the KAPA
Stranded mRNA-Seq Kit (Roche) on an automated plat-
form with 10 cycles of PCR amplification.

RNA sequencing
Seventy-five samples, comprising 6 replicates of a single
European sample (batch controls), 27 samples from naive
children and 42 samples from exposed children, were se-
quenced in a single multiplexed pool using 5 lanes (75 bp
PE) of a HiSeq 2500 (Illumina). The reads were combined
across lanes for each sample but not across runs and
mapped using Kallisto v0.42.3 [26]. As a reference, we
used all cDNA sequences from the GRCh38 human
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genome. Read counts per gene were calculated by sum-
ming over their transcripts. Genes with fewer than 10 read
counts in at least 2 samples were removed. Sequence data
has been deposited in the European Genome-phenome
Archive (EGA)—accession number EGAS00001003167.

Differential expression analysis
Differential expression analysis was performed using
DESeq2 [27] version 1.16.1. The raw RNA-seq counts are
modelled as a negative binomial distribution while expli-
citly normalising for library size. p values were adjusted
for multiple comparisons using the Benjamini-Hochberg
correction (false discovery rate (FDR)).

Modular analysis
We applied modular analysis [28, 29] to our RNA-seq
data to ask whether any patterns would distinguish the
low- and high-episode groups of children (see study
population above). We used previously described clus-
ters (modules) of genes that were co-regulated across
nine different transcriptomic data sets obtained from pa-
tients with a variety of immune conditions [28–32].
Analogous to previously described methods [33], we cal-
culated modular over/underexpression (s) as:

sM ¼ 100
1

j M j
X

i∈M

D gi;a; gi;b
� �

where

(gi, a, gi, b)=
signðμi;a−μi;bÞ if pðgi;a; gi;bÞ < 0:05

0 otherwise

�

For each gene i within a module M, we performed a
Mann-Whitney test and calculated the p value (p) be-
tween child groups a and b. Here, M is the set of genes
in a module, and |M| is the number genes in that mod-
ule. Child categories include naive, low number of epi-
sodes and high number of episodes. If the test yielded a
p value < 0.05, then the sign of the differences in median
rlog values (μ) were added to sM (sign is a function that
returns − 1 for negative numbers, 0 for 0, and + 1 for
positive numbers). The list of genes in the modules was
obtained from a previously published report [29].
In a recent study, a modular transcriptional repertoire

analysis was used to find markers for malarial immunity
following an RTS,S study [34]. In contrast to modular
expression, which describes changes over entire categor-
ies of children, we also defined modular response (r) for
individuals as:

rc;M ¼ 100
1

j M j
X

i∈M

sign gi;c−μi
� �

where rc,M is the response of child c in module M, |M|
is the number of genes in module M, gi,c is the rlog gene
expression of gene i in child c, and μi is the median gene

expression of gene i in high and low malaria episode
children. We then performed a Mann-Whitney test of
response rates for each module between high and low
malaria episode children.

Cellular deconvolution
We performed cellular deconvolution to identify
cell-specific gene expression profiles. We learned the
gene expression profiles from the LM22 set of genes
previously used to deconvolve cell populations from
microarray data [35]. To prepare the data for deconvolu-
tion, we manually gated cell populations to mirror those
used to generate the LM22 gene set. Gene expression
was performed on transcripts per million (TPM) as has
been previously advocated for RNA-seq measurements
[36]. For each gene, we performed deconvolution over
seven cell types determined manually as illustrated in
Additional file 2: Figure S1 (NK, neutrophil, B cell,
CD8+ T cell, CD4+ T cell, γδ T cell, monocytes) and
three child categories (universal (all samples), not naïve
(high+low), high). Since deconvolving small populations
could be more error-prone, we limited our analysis to
the seven cell categories that were present in a signifi-
cant proportion of the children.
For RNA expression of each gene as measured by

TPM, y, we fit a profile (t) to the fraction of sub-cell
types (F) measured in children. The sub-cell types are
separated into three distinct categories: universal (U),
not naive (N) and high episodes (H), and arranged into a
matrix as F = [F(U), F(N), F(H)]. The universal fraction
F(U), is the fraction of cells measured for each child.
The sum fraction of cells for a child was less than 1,
since not all cell events were categorised as a recognis-
able immune cell. The subsequent terms F(N) and F(H)
are variations of the universal fraction, defined as:

Fc;i Pð Þ ¼ Fc;i Uð Þ if c∈P
0 otherwise

�

where P is a set of children in a category, and c is an in-
dividual child. We modelled the gene expression as the
linear set of equations Ft ¼ ŷ . For each gene, we fit a
profile with lasso penalty as:

argmint Ft−yð ÞT Ft−yð Þ−λ tj j1

We chose the lasso penalty (λ) that maximised the
tenfold cross-validated coefficient of determination (i.e.
R2) to find non-zero cell-specific profiles. This was im-
plemented in Python using scikit-learn [37]. For this
lasso penalty, we then performed a Bayesian lasso fit to
obtain z-scores for the non-zero cell-specific profiles.
The model’s parameters were inferred using MCMC
[38]. As further controls, we performed this deconvolu-
tion on simulated data. In one set, child RNA-seq
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measurements were scrambled. The resulting number of
positive results was used to estimate false discovery
rates.

Gene set enrichment analysis
Gene set enrichment analysis [39] was performed on the
list of genes identified as altered in cell-specific signa-
tures following deconvolution using the Molecular Sig-
natures Database (MSigDB) [40] and queried Gene
Ontology terms, Reactome [41, 42] and KEGG [43].

Results
Characteristics of study population
Study participants were drawn from two cohorts of chil-
dren (Junju and Ngerenya) who had been under active
surveillance (see the “Materials and methods” section)
for 8 years and were selected to fall into 3 categories.
Children in the naive group (n = 27) had never had clin-
ical malaria, those in the low group (n = 21) had experi-
enced less than 5 clinical episodes (median = 2) over the
8-year period and those in the high group (n = 21) had a
history of 8–18 clinical episodes of malaria (median =
12) (Table 1). There was no discernible difference be-
tween the groups in terms of parasitaemia or severity of
fever during a clinical episode (Additional file 3: Figure
S2). None of the children recruited had experienced a
clinical episode within the last 110 days (although unsur-
prisingly the groups differed in time to the last episode
and exposure index), and none were parasitaemic at
time of sampling.

Differential gene expression analysis cannot differentiate
between naïve and low malaria episode groups
We compared individuals from the malaria-naïve cohort
(Ngerenya) to the individuals who lived in the moderate

transmission area of Junju but who had only experienced
a low number of cumulative clinical episodes. DESeq2 was
used to estimate the group effect size and false discovery
rate (FDR) for all genes. Only small effect sizes were in-
ferred, and most had high FDR values (Fig. 1a). Hierarch-
ical clustering of individuals based on genes with an FDR
< 0.2 also did not separate individuals into distinct epi-
demiological groups (Fig. 1b). This shows that we are un-
able to differentiate between naïve and low-episode
individuals on the basis of their transcriptome.

Differential gene expression analysis differentiates
between high and low malaria episode groups
Next, we compared children from the same moderate
transmission area but who had experienced low or high
numbers of episodes over the 8-year study period. Fig-
ure 1c shows the estimated effect size and FDR for all
genes. We detected more differentially expressed genes
than in the previous analysis of naïve versus low-episode
individuals, and while we observe modest effect sizes,
there are a small number of genes with low FDR and
known immunologically relevant function.
Importantly, hierarchical clustering based on genes

with an FDR < 0.2 sorted children almost perfectly into
their episode categories. We used k-means clustering to
identify four gene expression clusters (Fig. 1d; Add-
itional file 4: Table S2). Separation into more than four
clusters resulted in additional clusters indistinguishable
from one of the first four.
In general, there was quite a high level of heterogeneity

within the three groups of children (Additional file 5: Fig-
ure S3); however, subtle but detectable differences were
observed between the low- and high-episode groups.
High-episode individuals appeared to be characterised by
a transcriptional signature suggestive of greater immune

Table 1 Baseline characteristics of the three epidemiological groups

p value

Town Ngerenya Junju

Group Malaria-naïve Low High

n 27 21 21

Number of clinical episodes (median [IQR]) 0 [0, 0] 2 [1, 2] 12 [9, 14] < 0.001

Age (mean (sd)) 8.8 (1.1) 8.8 (0.3) 8.9 (0.3) 0.9

Sex = M (%) 12 (44.4) 14 (66.7) 9 (42.9) 0.2

Exposure index (median [IQR]) 0 [0, 0.02] 0.43 [0.15, 0.57] 0.77 [0.54, 0.81] < 0.001

Days since last episode (median [IQR]) n/a 490 [380, 1254] 167 [127, 259] < 0.001

Stool microscopy (%) 0.4

Ascaris lumbricoides 0 (0.0) 0 (0.0) 2 (9.5)

Hook worm 1 (3.7) 1 (4.8) 0 (0.0)

Trichuris trichiura 1 (3.7) 0 (0.0) 0 (0.0)

No parasites detected 24 (88.9) 20 (95.2) 19 (90.5)
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activation. These clusters feature genes involved in innate
immunity, including defensins (such as DEFA1 and
DEFA1B) and T cell differentiation (SOX5) as well as
genes involved in regulating B cell (SIGLEC6) and T cell
responses (PDCD1 and LILRB3).

Immune modular analysis reveals a unique signature
associated with high number of clinical episodes
We applied a modular analysis of immune-related genes
[28, 29, 34] to our RNA-seq data to see whether any pat-
terns would distinguish the three groups of children (see
the “Materials and methods” section). The overall change
in the expression for each module in each epidemiological
group is shown in Fig. 2a–c as the percentage of up- or

downregulated genes, which demonstrates a strong upreg-
ulation of the “interferon” modules (M1.2, M3.4, M5.12)
in the high-episode group in line with previous work [34].
To examine the variance in modular expression within

the groups, we quantified the modular responses of indi-
vidual children [34] (Fig. 2d). While there is some het-
erogeneity within the groups, modules M1.2 and M3.4
(both annotated as “interferon-inducible”) clearly distin-
guish between the high- and low-episode groups, with
both modules expressed more highly in high-episode
children. These modules are enriched for genes involved
in inflammatory responses and both type I and type II
interferon signalling. Similar to the DGE analysis, the
modular analysis reveals that high-episode children are

a c

b d

Fig. 1 Differential gene expression analysis distinguishes blocks of genes separating high- and low-episode groups. a DESeq2 was used to compare
the gene expression profiles between naïve and low-episode children. Only small effect sizes were inferred, and most had high FDR values. b
Hierarchical clustering of individuals based on differentially expressed genes also did not separate individuals into distinct epidemiological groups. c
Differential gene expression analysis between high- and low-episode children reveals subtle but detectable differences including a number of genes
with low FDR and known immunological relevant function (highlighted). d We selected 36 gene isoforms with adjusted p values < 0.2 as determined
by differential gene expression analysis (DESeq2) between low- and high-episode children. We used hierarchical clustering to order children but used
k-means clustering to identify 4 subsets of gene expression patterns. Child episode category (high/low) are shown for comparison with gene profiles
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characterised by a relative upregulation of immune-re-
lated genes within the “interferon-inducible” modules.

Plasma IL-10 levels are significantly higher in children
who have experienced high numbers of clinical episodes
We next compared plasma cytokine and chemokine
levels in the study participants at the time of sampling.
Of the 65 cytokines sampled (see the “Materials and
methods” section), 30 were below detectable levels.
Thirty-one of the remaining cytokines were not signifi-
cantly different between the groups (Additional file 6:
Table S3). We did however find a trend of increasing
levels of IL-10, IL-6, TNF-α and CCL15 (MIP-1δ) going
from the naïve group to the high group, with IL-10
exhibiting the largest effect (Fig. 3). Indeed, IL-10 levels
were significantly higher in children with high numbers
of episodes than in low-episode children. Since our
modular analysis had revealed a cytokine-inducible gene

signature, it was reasonable to suspect associations be-
tween the amounts of these plasma cytokines and the
modular responses determined above. As expected,
plasma levels of IL-10, TNF-α and IL-6, which we found
to be higher in the high-episode group were significantly
correlated with the “interferon” modules (M1.2, M3.4,
M5.12) described above (Additional file 7: Figure S4).
These plasma cytokine data therefore provide further
evidence of enhanced immune activation and inflamma-
tion in the high-episode children and identify elevated
levels of the immunoregulatory cytokine IL-10 as a key
difference between children who have experienced high
and low numbers of episodes.

Cellular subset composition reveals expansion in
activated γδ T cells in high-episode children
In addition to the whole blood transcriptomic ana-
lysis, we also characterised the cellular subset

Fig. 2 Immune modular analysis reveals a unique signature associated with a high number of clinical episodes. We performed a modular analysis
of a low-episode versus naive, b high-episode versus naive and c high-episode versus low-episode children. For each gene within each of these
previously defined modules, we performed a Mann-Whitney test between different high-, low-episode, or naive children and determined the
number of significant (p < 0.05) upregulated and downregulated genes. The overall change in expression is shown as the percentage of up- or
downregulated genes, which demonstrates a strong upregulation of the “interferon” modules (M1.2, M3.4, M5.12) in the high-episode group. d
For each child and each module, we calculated the “modular response” and then performed a Mann-Whitney test of response rates for each
module between high and low malaria episode children. Using a Benjamini-Hochberg procedure with FDR cut-off of 20%, we identified three
modules that were significantly different between high- and low-episode groups
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composition of the blood samples isolated from each
participant by flow cytometry. Using a 14-colour
panel of antibodies against a range of human im-
mune cell surface molecules, we determined the
relative abundance of the major cell populations in
the peripheral blood.
In addition to classical flow cytometric analysis using

manual gating, we maximised the objectivity and
descriptive power of our analysis by using Cytofkit [23]
to perform an unsupervised analysis of our FACS data.
Cellular subsets were identified using a clustering
algorithm and individual populations annotated using a
heatmap displaying the median intensity values per clus-
ter for every marker. This method identified 25 popula-
tions (Additional file 8: Figure S5), which were further
curated manually. Merging biologically indistinguishable

populations and excluding unidentifiable populations re-
sulted in 15 identifiable cellular populations (Add-
itional file 9: Figure S6). This analysis revealed that
cellular subset composition is significantly associated
with malaria experience. The numbers of CD11c+ B cells
(populations 12, 14 and 17), γδ T cells (populations 9,
24/10), double-negative T cells (population 25) and den-
dritic cells (population 21) in naïve individuals were sig-
nificantly different from those in either of the other two
groups (Fig. 4). CD11chi B cells (population 14) in par-
ticular are practically absent from the naive group while
found at levels over 104 cells/mL in the other groups.
CD11c+ γδ T cells were significantly expanded in the
high-episode group and were the only population of
those we characterised to distinguish between the high-
and low-episode groups.

Fig. 3 Differences in the levels of cytokines in plasma of naive and low- and high-episode children. Cytokine levels determined by Luminex cytokine
array were parameterised as log fluorescence and tested using a three-way Kruskal-Wallis test between naive, low-episode and high-episode groups.
Post-hoc Dunn’s tests were performed on cytokines with significant differences. *p = 0.05, **p = 0.01, ***p = 0.005

Fig. 4 Differences in cellular subset composition of whole blood from naïve and low- and high-episode children. Cellular composition
was determined via flow cytometry and analysed as described in the “Materials and methods” section. We used a three-way Kruskal-Wallis
test to determine if cell concentrations changed between child categories. We then performed a post-hoc Dunn’s test between individual
groups to determine where significant differences occurred. Dendritic cells (population 21) and CD11c+ B cells (populations 12, 14 and
17) were clearly able to distinguish between naive and malaria-experienced children. However, we observed only subtle differences
between low- and high-episode children with only γδ T cells (merged population 24/10) differing between the two groups. *p = 0.05,
**p = 0.01, ***p = 0.005
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Children with high numbers of episodes show
transcriptionally altered CD8+ T cells, B cells and
neutrophils
A major caveat of whole blood transcriptomic analysis is
that observed differences in transcript levels might repre-
sent changes in the abundance of certain cellular popula-
tions but not necessarily changes in gene expression
within individual cell populations [44]. We therefore per-
formed cellular deconvolutions where cell-specific gene
expression profiles were inferred based on FACS measure-
ments of cell proportions and RNA-seq transcript levels.
To validate the method, we first demonstrated that RNA
expression of canonical lineage-associated markers associ-
ated well with the inferred cell profiles and found good
correlations between each inferred subset and its respect-
ive subset associated marker (Fig. 5a).
As cellular deconvolution can be confounded by the

sensitivity of smaller populations to changes in larger
subsets, we limited the analysis to the populations that
accounted for 10% or more of the total cell population.
Three populations (CD8+ T cells, B cells and neutro-
phils) demonstrated a transcriptionally altered pheno-
type with ten or more altered genes in high-episode
children relative to low-episode children (Fig. 5b). The
majority of immunologically relevant genes upregulated
in high-episode children were associated with CD8+ T
cells. Gene set enrichment analysis (GSEA) on the sig-
nificantly altered genes for these cells showed enrich-
ment for genes involved in positive activation of
lymphocytes (including LAT, LCK and CD40), which
could suggest more active CD8+ T cells in high-episode
children (Additional file 10: Table S4). The B cell decon-
volution profile also features mostly upregulated gene
sets in this group of children. Many of these genes have
been implicated in B cell receptor signalling and regulat-
ing antibody responses (and include TNFRSF13B, ZBTB32
and MSC). B cells from high-episode children also
expressed higher levels of IGHE (gene encoding IgE).
Neutrophils in high-episode children were associated with
the upregulation of genes involved in the defence and in-
flammatory responses including OSM and TNFAIP6. Our
deconvolution approach thus suggests that high-episode
children are distinguished by transcriptionally altered
CD8+ T cells, B cells and neutrophils, characterised by the
upregulation of key immune-related genes.

Discussion
In this multi-dimensional assessment of the association
between repeated malaria infections and immune pheno-
type, we combined data from whole blood transcriptomic
analysis, multi-parameter flow cytometry, multiplex
plasma cytokine analysis and active malaria surveillance to
identify the immunological features associated with clin-
ical malaria experience. We observed subtle but detectable

differences in gene expression between children who have
experienced a high number of episodes compared with
others who have experienced fewer episodes. High-epi-
sode children were associated with increased expression
of genes involved in immune activation and regulation,
with modular analysis revealing the enrichment in genes
involved in responses to type I and II interferons. The
transcriptomic signature of enhanced immune activation
in high-episode children is supported by our findings that
levels of IL-10 and numbers of a subset of γδ T cells are
significantly higher in these children compared to
low-episode children. Through cellular deconvolution of
the transcriptomic data, we found that high-episode chil-
dren may have transcriptionally altered CD8+ T cells, B
cells and neutrophils.
Notably, we observed a modular transcriptional signa-

ture that differs between high- and low-episode children.
High-episode children were characterised by higher ex-
pression of three modules containing interferon-inducible
genes. These three modules (M1.2, M3.4 and M5.12) are
part of the transcriptional signature associated with pro-
tection of malaria-naïve adults following the administra-
tion of the RTS,S malaria vaccine [34]. They have also
been shown to become sequentially activated in systemic
lupus erythematosus (SLE) patients [30] and form part of
the transcriptional signature associated with the trivalent
influenza vaccine [29]. While module M1.2 is enriched for
genes induced by IFN-α, modules M3.4 and M5.12 are
capable of also being driven by IFN-β and IFN-γ [30]. This
appears to suggest a role for both type I and type II inter-
ferons in shaping the immune system within high-episode
individuals. Cellular immunity to malaria is typically
thought to involve IFN-γ produced by Th1 CD4+ T cells;
however, both type I and II interferons have been impli-
cated in the immune response to malaria. Type I inter-
ferons, produced by a number of cell types following
malaria infection [31, 32, 45–47], have been implicated in
regulating CD4+ T cell responses and promoting the dif-
ferentiation of IL-10-producing Tr1 cells [48], which are
known to be significantly expanded in highly exposed chil-
dren [49]. This immunoregulation is thought to reflect an
attempt by the immune system to limit inflammation-in-
duced immunopathology but comes at the cost of limiting
anti-parasite immunity and may interfere with the induc-
tion of robust vaccine-induced immunity.
Inflammatory innate and adaptive immune responses

are crucial for parasite clearance; however, these effector
functions can result in significant immunopathology
without appropriate regulation [50, 51]. IL-10 plays a
crucial role in modulating the inflammatory response
during malaria [51], and it is notable that even in
non-parasitaemic children, of the 65 cytokines measured
in plasma, IL-10 was the only cytokine observed at sig-
nificantly different levels between high- and low-episode
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individuals. While a number of different cell types pro-
duce IL-10, a major source in malaria infections is CD4+

T cells that co-produce IFN-γ and IL-10 (Tr1 cells) [49].
These cells are prevalent in children living in endemic
areas, and the IL-10 they produce has been shown to

inhibit malaria-specific pro-inflammatory cytokine pro-
duction [52]. Though we do not address the cellular
source of IL-10 in this study, we found that increased
plasma levels of IL-10 were significantly associated with
increased expression of the “interferon-inducible”

Fig. 5 Cell-specific gene expression profiles inferred from cellular deconvolution of transcriptome reveal transcriptionally altered CD8+ T cells,
neutrophils and B cells in high-episode children. a RNA expression of canonical cellular lineage-associated markers strongly correlated with
inferred cell-specific profiles, suggesting that cell-specific gene expression patterns can be successfully deconvolved from cell sub-type proportions
and RNA levels. b Using scrambled data to infer false discovery rate, cell-specific gene contributions were selected. Focusing on cell populations with
at least ten genes altered, high-episode children show transcriptionally altered CD8+ T cells, neutrophils and B cells. Heatmap illustrates the expression
level of cell-specific genes in high-episode children relative to low-episode children

Bediako et al. BMC Medicine           (2019) 17:60 Page 10 of 14



signature in high-episode children, in keeping with the
known role of interferons in inducing the development
of Tr1 cells [48].
At the cellular level, a subset of γδ T cells (population

24/10) was significantly expanded in high- relative to
low-episode children. γδ T cells are activated during
malaria, but their function in anti-malarial immunity re-
mains unclear. These cells have been shown to expand
during acute malaria infection in previously naïve indi-
viduals [53, 54] and can produce inflammatory cytokines
including TNF-α and IFN-γ [55] in addition to being
able to directly kill merozoites in vitro [56, 57]. More re-
cently, a subset of γδ T cells has been shown to associate
with the protection in irradiated sporozoite vaccination
[58]. In this study, we found that a specific subset of γδ
T cells, expressing CD11c, accumulates in high-episode
children. While not previously reported in the context of
malaria, CD11c+ γδ T cells have been described as a
highly activated subset with enhanced effector function
and high migratory potential [59].
Deconvolution analysis integrating cellular proportions

(as determined by flow cytometry) with transcriptomic
data allowed us to infer altered gene expression profiles
in neutrophils, CD8+ T cells and B cells in high-episode
children. Very little is known about the role of neutro-
phils in malaria although neutrophils isolated from
Pf-infected children in the Gambia were shown to tem-
porarily exhibit reduced effector function until about 8
weeks after infection [60]. Our results suggest that re-
peated episodes of malaria result in the development of
an activated neutrophil phenotype that persists even in
the absence of detectable infection.
Our finding of high levels of B cell expression of genes

including TNF receptor superfamily member 13B
(TNFRSF13B), a receptor found on the surface of B cells,
responsible for regulating humoral responses and sur-
vival of plasma cells [61], is in line with the studies dem-
onstrating that repeated exposure to malaria is necessary
for the development of appropriate humoral responses
[3–5]. Furthermore, our finding that B cells from
high-episode children also express high levels of IgE
supports previous studies showing increased plasma IgE
levels in individuals living in high transmission settings
[62, 63]. We also revealed a clear expansion of CD11c+

B cells in malaria-experienced children. Atypical B cells
(a population that includes CD11c+ B cells) have previ-
ously been identified in high frequencies among individ-
uals living in malaria-endemic regions [9]. While these
cells were completely missing in naïve children, we did
not observe significant differences in CD11c+ B cell
numbers between the high- and low-episode groups.
This suggests that although malaria most certainly leads
to the initial expansion of these cells, they may not accu-
mulate with subsequent episodes.

More unexpected was our finding that increased mal-
aria experience results in more activated CD8+ T cells.
CD8+ T cells have clear roles in the immune response to
pre-erythrocytic stages of infection [64, 65] and have
been implicated in mediating pathology in a murine
model of cerebral malaria [66, 67]. There is evidence
that CD8+ T cells specific to blood-stage antigens are ac-
tivated via cross-presentation by dendritic cells [68] and
may indirectly promote immunity through secretion of
IFN-γ [11, 69]. It is interesting to note that a recent
study in Western Kenya has described the expansion of
an unconventional innate-like CD8+ T cell population in
children living in an area of high parasite burden [70].
While future studies will be needed to confirm the pres-
ence of this cellular subset among our cohort, this study
provides further evidence of transcriptional alteration of
CD8+ T cells in the context of malaria exposure.
In our study, participants were selected on the basis of

numbers of preceding episodes of malaria within the
past 8 years; however, it is important to note that unsur-
prisingly from an epidemiological standpoint, these chil-
dren also differ in two other important aspects. Despite
the fact that none of the participants in either group had
experienced an episode of malaria for more than 110
days, there was a significant difference in the calculated
exposure indices and time to the last episode between
the low- and high-episode groups. While the modular
transcriptional signature we observed does not appear to
correlate with time to the last episode (Spearman corre-
lations: M1.1 = 0.027, p value = 0.87; M1.2 = − 0.05, p
value = 0.76; M3.4 = − 0.08, p value = 0.63; M5.12 = −
0.13, p value = 0.43), we cannot discount the possibility
that the effects that we observe are due in part at least
to the more recent immunological stimulation in the
high-episode group rather than the number of previous
episodes per se. Carefully designed longitudinal studies
would be required to disentangle the contributions of
these and other parameters to the development of a mal-
aria immune response. These studies could prospectively
relate individual pre-existing immunological status to
subsequent risk of clinical infection and thus determine
which immune responses are directly related to clinical
protection.

Conclusion
In summary, in this exploratory study, we show that our
approaches of transcriptomic analysis together with
cytokine and immune cell profiling of peripheral blood
can robustly detect immune differences between high-
and low-episode children. Multiple (and possibly recent)
episodes of malaria are associated with the modification
of the immune system in children. Individuals who have
experienced repeated episodes demonstrate enhanced
activation of neutrophils, B cells and CD8+ T cells;
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upregulation of interferon-inducible genes; and a clear
increase in circulating levels of the immunoregulatory
cytokine IL-10. Such elevated IL-10 levels suggest a de-
gree of immune modulation that may be important for
avoiding immunopathology but could interfere with
parasite clearance. This skewing may also affect the in-
duction of protective immune responses by vaccines and
hence have significant implications for the efficacy of
such vaccines in endemic populations.

Additional files

Additional file 1: Table S1. Flow cytometry antibody panel. (XLSX 9 kb)

Additional file 2: Figure S1. Gating strategy used to define cellular
subsets used in deconvolution analysis. (PDF 425 kb)

Additional file 3: Figure S2. Distribution of temperature and log-
parasitaemia for each clinical episode in the high- and low-episode
groups over period of follow-up. High-episode group: red dots, n = 21;
low-episode groups: blue dots, n = 21 (PDF 160 kb)

Additional file 4: Table S2. k-means clustering of differentially
expressed genes between low- and high-episode children. (XLSX 10 kb)

Additional file 5: Figure S3. Principal component analysis (PCA) plot of
the transcriptome profiles of study participants. Naïve (green), low episodes
(blue) and high episodes (red). (PDF 39 kb)

Additional file 6: Table S3. Mean levels of detectable plasma cytokines.
(XLSX 11 kb)

Additional file 7: Figure S4. Association between immune modular
expression and plasma cytokine levels. (a) Spearman correlations
between significant cytokines and modules are shown along with (b)
their respective p values. (PDF 278 kb)

Additional file 8: Figure S5. Unsupervised cellular subset identification.
Flow cytometry data was analysed using the integrated analysis pipeline
Cytofkit. (a) Collective t-SNE dimensionality reduced CD45+ live cell data
derived from 69 participants. Every dot represents a single cell, and the
colour of the cells indicates the expression values for a given marker
analysed. (b) Cellular subsets were identified using Cluster X. (c) Heatmap
displaying hierarchical clustering of median surface marker expression
levels of indicated populations. Bracketed clusters were condensed into
one population. (Populations 13, 7, 18, 19 and 15 determined to be
unidentifiable). (PDF 1238 kb)

Additional file 9: Figure S6. Cellular composition of whole blood from
naïve and low- and high-episode children. The initial clusters in Add-
itional file 8: Figure S5 were manually curated, merging biologically indis-
tinguishable clusters resulting in 15 identifiable cellular populations. We
used a 3-way Kruskal-Wallis test to determine if cell concentrations chan-
ged between child categories. We then performed a post-hoc Dunn’s test
between individual groups to determine where significant differences oc-
curred. *p = 0.05, **p = 0.01, ***p = 0.005. (PDF 781 kb)

Additional file 10: Table S4. Results of GSEA analysis of CD8+ T cell
deconvolution signature associated with high-episode children. (XLSX 13 kb)

Acknowledgements
The authors acknowledge the participants and their parents who graciously
consented for their samples to be used in this study.
The authors thank the WTSI DNA pipelines for generating the RNA libraries
and sequencing.

Funding
The study received funding from the UK Medical Research Council, (MRC
Programme grant #: MR/M003906/1)
YB, RA, JL, JWL, SM and JS are supported by the Francis Crick Institute, which
receives its funding from the UK Medical Research Council, Cancer Research
UK, and the Wellcome Trust, UK. The Wellcome Trust provides core support
to the Kenya Programme (203077_Z_16_Z)

MB and AR are supported by the Wellcome Trust (Grant #: WT 206194)

Availability of data and materials
Transcriptomic data has been deposited in the European Genome-phenome
Archive (EGA) https://www.ebi.ac.uk/ega/studies/EGAS00001003167. For
metadata please submit a request to the KEMRI Wellcome Trust Data
Governance Committee via Data Requests dgc@kemri-wellcome.org using
the form available on their website: http://kemri-wellcome.org/about-us/
#ChildVerticalTab_15.

Authors’ contributions
JL, KM, PB, MB, CN, MR and FN conceptualised the project. YB, RA, AR, JJV,
MEL, DK, JM and JWGA carried out the experiments and/or analysed the
data. JMN, JW, EPV, MS, OK, JS, J-WL, SM and GN provided the essential data.
YB, RA, JL, AR and JJV wrote the manuscript. All authors read and approved
the final manuscript.

Ethics approval and consent to participate
Informed, written consent was obtained from the parents/guardians of the
research participants prior to enrolment in the study. The study was reviewed
and approved by the Kenyan Medical Research Institute National Ethics
Committee. (Reference number: SSC 2887)

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Francis Crick Institute, London, UK. 2Wellcome Genome Campus, Wellcome
Sanger Institute, Hinxton, Cambridgeshire, UK. 3University of Exeter, Exeter,
UK. 4KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya. 5Weatherall
Institute of Molecular Medicine, University of Oxford, Oxford, UK. 6Nuffield
Department of Medicine, University of Oxford, Oxford, UK. 7Present Address:
Transla TUM, Zentralinstitut für translationale Krebsforschung der
Technischen Universität München, Munich, Germany. 8Present Address: West
African Centre for Cell Biology of Infectious Pathogens, University of Ghana,
Accra, Ghana. 9Present Address: Division of Pediatric Infectious Diseases, State
Key Laboratory of Biotherapy, Sichuan University and Collaboration
Innovation Centre, Chengdu, China.

Received: 19 November 2018 Accepted: 18 February 2019

References
1. World Health Organization. World malaria report. Geneva: World Health

Organization; 2017.
2. Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, Bejon P,

Noor AM. The prevalence of Plasmodium falciparum in sub-Saharan Africa
since 1900. Nature. 2017;550(7677):515–8.

3. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more
questions than answers. Nat Immunol. 2008;9(7):725–32.

4. Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. Parasite
Immunol. 2006;28(1–2):51–60.

5. Tran TM, Li S, Doumbo S, Doumtabe D, Huang CY, Dia S, Bathily A, Sangala
J, Kone Y, Traore A, et al. An intensive longitudinal cohort study of Malian
children and adults reveals no evidence of acquired immunity to
Plasmodium falciparum infection. Clin Infect Dis. 2013;57(1):40–7.

6. Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, Andersen
RF, Bejon P, Thompson F, Dunachie SJ, et al. Upregulation of TGF-beta,
FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid
parasite growth in human malaria infection. Immunity. 2005;23(3):287–96.

7. Kurup SP, Obeng-Adjei N, Anthony SM, Traore B, Doumbo OK, Butler NS,
Crompton PD, Harty JT. Regulatory T cells impede acute and long-term
immunity to blood-stage malaria through CTLA-4. Nat Med. 2017;23(10):
1220–5.

Bediako et al. BMC Medicine           (2019) 17:60 Page 12 of 14

https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
https://doi.org/10.1186/s12916-019-1292-y
mailto:dgc@kemri-wellcome.org
http://kemri-wellcome.org/about-us/#ChildVerticalTab_15
http://kemri-wellcome.org/about-us/#ChildVerticalTab_15


8. Pinzon-Charry A, Woodberry T, Kienzle V, McPhun V, Minigo G, Lampah DA,
Kenangalem E, Engwerda C, Lopez JA, Anstey NM, et al. Apoptosis and
dysfunction of blood dendritic cells in patients with falciparum and vivax
malaria. J Exp Med. 2013;210(8):1635–46.

9. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B, Kayentao K,
Ongoiba A, Doumbo OK, Pierce SK. Atypical memory B cells are greatly
expanded in individuals living in a malaria-endemic area. J Immunol. 2009;
183(3):2176–82.

10. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P,
Crompton PD, Marsh K, Ndungu FM. Chronic exposure to Plasmodium
falciparum is associated with phenotypic evidence of B and T cell
exhaustion. J Immunol. 2013;190(3):1038–47.

11. Horne-Debets JM, Faleiro R, Karunarathne DS, Liu XQ, Lineburg KE, Poh
CM, Grotenbreg GM, Hill GR, MacDonald KP, Good MF, et al. PD-1
dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Rep.
2013;5(5):1204–13.

12. Bediako Y, Ngoi JM, Nyangweso G, Wambua J, Opiyo M, Nduati EW, Bejon
P, Marsh K, Ndungu FM. The effect of declining exposure on T cell-
mediated immunity to Plasmodium falciparum - an epidemiological “natural
experiment”. BMC Med. 2016;14(1):143.

13. Jagannathan P, Kim CC, Greenhouse B, Nankya F, Bowen K, Eccles-James I,
Muhindo MK, Arinaitwe E, Tappero JW, Kamya MR, et al. Loss and
dysfunction of Vdelta2(+) γδ T cells are associated with clinical tolerance to
malaria. Sci Transl Med. 2014;6(251):251ra117.

14. Saito F, Hirayasu K, Satoh T, Wang CW, Lusingu J, Arimori T, Shida K,
Palacpac NMQ, Itagaki S, Iwanaga S, et al. Immune evasion of Plasmodium
falciparum by RIFIN via inhibitory receptors. Nature. 2017;552(7683):101–5.

15. Bejon P, Mwacharo J, Kai O, Todryk S, Keating S, Lowe B, Lang T, Mwangi
TW, Gilbert SC, Peshu N, et al. The induction and persistence of T cell IFN-
gamma responses after vaccination or natural exposure is suppressed by
Plasmodium falciparum. J Immunol. 2007;179(6):4193–201.

16. Rts SCTP, Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG,
Kabwende AL, Adegnika AA, Mordmuller B, Issifou S, et al. A phase 3 trial of
RTS,S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367(24):
2284–95.

17. Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, Swalm C,
Keating J, Regens JL, Shililu JI, et al. Spatial and temporal heterogeneity of
Anopheles mosquitoes and Plasmodium falciparum transmission along the
Kenyan coast. Am J Trop Med Hyg. 2003;68(6):734–42.

18. O’Meara WP, Mwangi TW, Williams TN, McKenzie FE, Snow RW, Marsh K.
Relationship between exposure, clinical malaria, and age in an area of
changing transmission intensity. Am J Trop Med Hyg. 2008;79(2):185–91.

19. Mwangi TW, Mohammed M, Dayo H, Snow RW, Marsh K. Clinical algorithms
for malaria diagnosis lack utility among people of different age groups.
Tropical Med Int Health. 2005;10(6):530–6.

20. Mwangi TW, Ross A, Snow RW, Marsh K. Case definitions of clinical malaria
under different transmission conditions in Kilifi District, Kenya. J Infect Dis.
2005;191(11):1932–9.

21. Aidoo M, Terlouw DJ, Kolczak MS, McElroy PD, ter Kuile FO, Kariuki S, Nahlen
BL, Lal AA, Udhayakumar V. Protective effects of the sickle cell gene against
malaria morbidity and mortality. Lancet. 2002;359(9314):1311–2.

22. Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ,
Sauerwein RW. Detection of Plasmodium falciparum malaria parasites in
vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001;118(2):
247–51.

23. Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J. Cytofkit: a
bioconductor package for an integrated mass cytometry data analysis
pipeline. PLoS Comput Biol. 2016;12(9):e1005112.

24. Maaten vd: Accelerating t-SNE using tree-based algorithms. J Mach Learn
Res 2014, 15:3221–3245.

25. Rodriguez A, Laio A. Machine learning. Clustering by fast search and find of
density peaks. Science. 2014;344(6191):1492–6.

26. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34(5):525–7.

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

28. Chaussabel D, Baldwin N. Democratizing systems immunology with
modular transcriptional repertoire analyses. Nat Rev Immunol. 2014;14(4):
271–80.

29. Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-
Snipes L, Ranganathan R, Zeitner B, Bjork A, et al. Systems scale interactive

exploration reveals quantitative and qualitative differences in response to
influenza and pneumococcal vaccines. Immunity. 2013;38(4):831–44.

30. Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K,
Anguiano E, Quinn C, Burtey S, Berland Y, et al. Modular transcriptional
repertoire analyses of adults with systemic lupus erythematosus reveal
distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;
66(6):1583–95.

31. Haque A, Best SE, Ammerdorffer A, Desbarrieres L, de Oca MM, Amante FH,
de Labastida RF, Hertzog P, Boyle GM, Hill GR, et al. Type I interferons
suppress CD4(+) T-cell-dependent parasite control during blood-stage
Plasmodium infection. Eur J Immunol. 2011;41(9):2688–98.

32. Kim CC, Nelson CS, Wilson EB, Hou B, DeFranco AL, DeRisi JL. Splenic red
pulp macrophages produce type I interferons as early sentinels of malaria
infection but are dispensable for control. PLoS One. 2012;7(10):e48126.

33. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, Stichweh D,
Blankenship D, Li L, Munagala I, et al. A modular analysis framework for
blood genomics studies: application to systemic lupus erythematosus.
Immunity. 2008;29(1):150–64.

34. Rinchai D, Presnell S, Vidal M, Dutta S, Chauhan V, Cavanagh D, Moncunill G,
Dobano C, Chaussabel D. Blood interferon signatures putatively link lack of
protection conferred by the RTS,S recombinant malaria vaccine to an
antigen-specific IgE response. F1000Res. 2015;4:919.

35. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD,
Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue
expression profiles. Nat Methods. 2015;12(5):453–7.

36. Jin H, Wan YW, Liu Z. Comprehensive evaluation of RNA-seq quantification
methods for linearity. BMC Bioinformatics. 2017;18(Suppl 4):117.

37. Fabian P, Gael V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B,
Peter P, Ron W, Vincent D, et al. Scikit-learn: machine learning in Python. J
Mach Learn Res. 2011;12:2825–30.

38. Forman-Mackey DH, David, Lang D, Goodman J. emcee: the MCMC
Hammer. Publ Astron Soc Pac. 2013;125(925):306.

39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

40. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27(12):1739–40.

41. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw
R, Jassal B, Korninger F, May B, et al. The Reactome pathway
Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.

42. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R,
Jassal B, Jupe S, Korninger F, McKay S, et al. The Reactome pathway
Knowledgebase. Nucleic Acids Res. 2016;44(D1):D481–7.

43. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
2017;45(D1):D353–61.

44. Shen-Orr SS, Gaujoux R. Computational deconvolution: extracting cell type-
specific information from heterogeneous samples. Curr Opin Immunol.
2013;25(5):571–8.

45. Luty AJ, Perkins DJ, Lell B, Schmidt-Ott R, Lehman LG, Luckner D, Greve B,
Matousek P, Herbich K, Schmid D, et al. Low interleukin-12 activity in severe
Plasmodium falciparum malaria. Infect Immun. 2000;68(7):3909–15.

46. Sharma S, DeOliveira RB, Kalantari P, Parroche P, Goutagny N, Jiang Z, Chan
J, Bartholomeu DC, Lauw F, Hall JP, et al. Innate immune recognition of an
AT-rich stem-loop DNA motif in the Plasmodium falciparum genome.
Immunity. 2011;35(2):194–207.

47. Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, Yu W, Qi Y, Zeituni AE,
Nair SC, et al. Strain-specific innate immune signaling pathways determine
malaria parasitemia dynamics and host mortality. Proc Natl Acad Sci U S A.
2014;111(4):E511–20.

48. Zander RA, Guthmiller JJ, Graham AC, Pope RL, Burke BE, Carr DJ, Butler NS.
Type I interferons induce T regulatory 1 responses and restrict humoral
immunity during experimental malaria. PLoS Pathog. 2016;12(10):e1005945.

49. Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, Wamala S,
Ebusu C, Muhindo MK, Arinaitwe E, Briggs J, et al. IFNgamma/IL-10 co-
producing cells dominate the CD4 response to malaria in highly exposed
children. PLoS Pathog. 2014;10(1):e1003864.

50. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R,
Plowe CV, Doumbo OK, et al. Serum levels of the proinflammatory cytokines

Bediako et al. BMC Medicine           (2019) 17:60 Page 13 of 14



interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and
IL-12(p70) in Malian children with severe Plasmodium falciparum malaria
and matched uncomplicated malaria or healthy controls. Infect Immun.
2004;72(10):5630–7.

51. Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on
the regulation of host responses during malaria. Int J Parasitol. 2012;42(6):
549–55.

52. Portugal S, Moebius J, Skinner J, Doumbo S, Doumtabe D, Kone Y, Dia S,
Kanakabandi K, Sturdevant DE, Virtaneva K, et al. Exposure-dependent
control of malaria-induced inflammation in children. PLoS Pathog. 2014;
10(4):e1004079.

53. Roussilhon C, Agrapart M, Ballet JJ, Bensussan A. T lymphocytes bearing the
gamma delta T cell receptor in patients with acute Plasmodium falciparum
malaria. J Infect Dis. 1990;162(1):283–5.

54. Teirlinck AC, McCall MB, Roestenberg M, Scholzen A, Woestenenk R, de Mast
Q, van der Ven AJ, Hermsen CC, Luty AJ, Sauerwein RW. Longevity and
composition of cellular immune responses following experimental
Plasmodium falciparum malaria infection in humans. PLoS Pathog. 2011;
7(12):e1002389.

55. Troye-Blomberg M, Worku S, Tangteerawatana P, Jamshaid R, Soderstrom K,
Elghazali G, Moretta L, Hammarstrom M, Mincheva-Nilsson L. Human
gamma delta T cells that inhibit the in vitro growth of the asexual blood
stages of the Plasmodium falciparum parasite express cytolytic and
proinflammatory molecules. Scand J Immunol. 1999;50(6):642–50.

56. Elloso MM, van der Heyde HC, Vande Waa JA, Manning DD, Weidanz WP.
Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells.
J Immunol. 1994;153(3):1187–94.

57. Hviid L, Kurtzhals JA, Adabayeri V, Loizon S, Kemp K, Goka BQ, Lim A,
Mercereau-Puijalon O, Akanmori BD, Behr C. Perturbation and
proinflammatory type activation of V delta 1(+) gamma delta T cells in
African children with Plasmodium falciparum malaria. Infect Immun. 2001;
69(5):3190–6.

58. Zaidi I, Diallo H, Conteh S, Robbins Y, Kolasny J, Orr-Gonzalez S, Carter D,
Butler B, Lambert L, Brickley E, et al. gammadelta T cells are required for the
induction of sterile immunity during irradiated sporozoite vaccinations. J
Immunol. 2017;199(11):3781–8.

59. Qualai J, Li LX, Cantero J, Tarrats A, Fernandez MA, Sumoy L, Rodolosse A,
McSorley SJ, Genesca M. Expression of CD11c is associated with
unconventional activated T cell subsets with high migratory potential. PLoS
One. 2016;11(4):e0154253.

60. Cunnington AJ, Njie M, Correa S, Takem EN, Riley EM, Walther M.
Prolonged neutrophil dysfunction after Plasmodium falciparum malaria
is related to hemolysis and heme oxygenase-1 induction. J Immunol.
2012;189(11):5336–46.

61. Ou X, Xu S, Lam KP. Deficiency in TNFRSF13B (TACI) expands T-follicular
helper and germinal center B cells via increased ICOS-ligand expression but
impairs plasma cell survival. Proc Natl Acad Sci U S A. 2012;109(38):15401–6.

62. Seka-Seka J, Brouh Y, Yapo-Crezoit AC, Atseye NH. The role of serum
immunoglobulin E in the pathogenesis of Plasmodium falciparum malaria
in Ivorian children. Scand J Immunol. 2004;59(2):228–30.

63. Elghazali G, Perlmann H, Rutta AS, Perlmann P, Troye-Blomberg M. Elevated
plasma levels of IgE in Plasmodium falciparum-primed individuals reflect an
increased ratio of IL-4 to interferon-gamma (IFN-gamma)-producing cells.
Clin Exp Immunol. 1997;109(1):84–9.

64. Doolan DL, Hedstrom RC, Wang R, Sedegah M, Scheller LF, Hobart P,
Norman JA, Hoffman SL. DNA vaccines for malaria: the past, the present, &
the future. Indian J Med Res. 1997;106:109–19.

65. Ewer KJ, O’Hara GA, Duncan CJ, Collins KA, Sheehy SH, Reyes-Sandoval A,
Goodman AL, Edwards NJ, Elias SC, Halstead FD, et al. Protective CD8+ T-
cell immunity to human malaria induced by chimpanzee adenovirus-MVA
immunisation. Nat Commun. 2013;4:2836.

66. Howland SW, Claser C, Poh CM, Gun SY, Renia L. Pathogenic CD8+ T cells in
experimental cerebral malaria. Semin Immunopathol. 2015;37(3):221–31.

67. Howland SW, Poh CM, Gun SY, Claser C, Malleret B, Shastri N, Ginhoux F,
Grotenbreg GM, Renia L. Brain microvessel cross-presentation is a hallmark
of experimental cerebral malaria. EMBO Mol Med. 2013;5(7):984–99.

68. Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS,
Mintern JD, Belz GT, Schofield L, Carbone FR, et al. Blood-stage Plasmodium
infection induces CD8+ T lymphocytes to parasite-expressed antigens,
largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A.
2008;105(38):14509–14.

69. Horne-Debets JM, Karunarathne DS, Faleiro RJ, Poh CM, Renia L, Wykes MN.
Mice lacking programmed cell death-1 show a role for CD8(+) T cells in
long-term immunity against blood-stage malaria. Sci Rep. 2016;6:26210.

70. Falanga YT, Frascoli M, Kaymaz Y, Forconi C, Ong’echa JM, Bailey JA, Berg LJ,
Moormann AM. High pathogen burden in childhood promotes the
development of unconventional innate-like CD8+ T cells. JCI Insight. 2017;
2(15):e93814.

Bediako et al. BMC Medicine           (2019) 17:60 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Study population
	Sample collection
	PCR analysis
	Stool microscopy
	Flow cytometry
	Unsupervised FACS analysis
	Plasma cytokine analysis
	RNA isolation and library preparation
	RNA sequencing
	Differential expression analysis
	Modular analysis
	Cellular deconvolution
	Gene set enrichment analysis


	Results
	Characteristics of study population
	Differential gene expression analysis cannot differentiate between naïve and low malaria episode groups
	Differential gene expression analysis differentiates between high and low malaria episode groups
	Immune modular analysis reveals a unique signature associated with high number of clinical episodes
	Plasma IL-10 levels are significantly higher in children who have experienced high numbers of clinical episodes
	Cellular subset composition reveals expansion in activated γδ T cells in high-episode children
	Children with high numbers of episodes show transcriptionally altered CD8+ T cells, B cells and neutrophils

	Discussion
	Conclusion
	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

