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The VERDICT framework for modelling diffusion MRI data aims to relate parameters

from a biophysical model to histological features used for tumour grading in prostate

cancer. Validation of the VERDICT model is necessary for clinical use. This study com-

pared VERDICT parameters obtained ex vivo with histology in five specimens from

radical prostatectomy. A patient‐specific 3D‐printed mould was used to investigate

the effects of fixation on VERDICT parameters and to aid registration to histology.

A rich diffusion data set was acquired in each ex vivo prostate before and after fixa-

tion. At both time points, data were best described by a two‐compartment model: the

model assumes that an anisotropic tensor compartment represents the extracellular

space and a restricted sphere compartment models the intracellular space. The effect

of fixation on model parameters associated with tissue microstructure was small. The

patient‐specific mould minimized tissue deformations and co‐localized slices, so that

rigid registration of MRI to histology images allowed region‐based comparison with

histology. The VERDICT estimate of the intracellular volume fraction corresponded

to histological indicators of cellular fraction, including high values in tumour regions.

The average sphere radius from VERDICT, representing the average cell size, was rel-

atively uniform across samples. The primary diffusion direction from the extracellular
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compartment of the VERDICT model aligned with collagen fibre patterns in the

stroma obtained by structure tensor analysis. This confirmed the biophysical relation-

ship between ex vivo VERDICT parameters and tissue microstructure from histology.
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1 | INTRODUCTION

Treatment decisions in prostate cancer are strongly influenced by tumour grade, which is determined by examination of cellular features and tissue

microstructure in histological images. This histology is obtained using invasive biopsy procedures, which are problematic for screening large numbers

of patients and longitudinal patient monitoring. A non‐invasive imaging method that captures microstructural information is therefore desirable.

Diffusion MRI is sensitive to changes in epithelium, lumen and stroma,1 but conventional methods summarize this information using a single param-

eter, the apparent diffusion coefficient (ADC), which has relatively low specificity for identifying prostate cancer.2,3 The vascular extracellular and restricted

diffusion for cytometry in tumours (VERDICT) model for prostate distinguishes benign frommalignant tissue with greater accuracy than conventional dif-

fusionmetrics.4 VERDICTmodels the tissuewith a simplified version of the histological features, with compartments describing the vascular, extravascular‐

extracellular and cellular spaces.5 This provides biologically meaningful parameters related to vascular and cellular fractions, as well as an average cell size

estimate. However, the biological interpretation of these parameters relies on the validity of the tissue model, which is a very simplified description of real

complex tissue. VERDICT must therefore be validated against histology to determine the accuracy of the parameters that the model provides.

Recently, VERDICT parameters from ex vivo breast tissue were compared to histology,6 revealing an association between the intracellular

fraction from MRI and the cell fraction from histology. The remaining signal component, assumed to be extracellular, was anisotropic, with direc-

tions similar to collagen fibre patterns in the stroma, but fibres were coherent only over distances of 1–2 mm, less than a typical clinical voxel size.

An even stronger anisotropy has been observed in high‐resolution ex vivo studies of prostate7-9 and comparison of diffusion tensor parameters

with histology suggests that high‐resolution diffusion anisotropy relates to stromal features, but this anisotropy is difficult to visualize at clinical

voxel scales. Models of subvoxel variation in fibre direction are used routinely in brain imaging, for example the neurite orientation distribution and

density imaging (NODDI),10 which assumes a Watson distribution of stick‐like structures that restrict diffusion to a single dimension. However,

such models have not been tested in cancer settings despite the orientational heterogeneity observed in many cancer microenvironments.

VERDICT validation in prostate has been limited to histology from biopsy cores,4 which are difficult to spatially localize within the MRI vol-

ume. For validation, model parameters need to be compared with corresponding histological features (ie co‐registered images). The challenges of

such a comparison may be divided into three stages: (1) those occurring as a result of surgery upon removal of the prostate from the body, includ-

ing the loss of any functional information such as blood flow or tissue deterioration; (2) changes resulting from tissue fixation, which include the

effects of fixation on water content, compartment size and shape, and (3) tissue changes as a result of histological processing and slicing.

We recently developed a 3D printing technique to construct a patient‐specific mould containing landmarks and slicing guides to manage sev-

eral of these issues.11 In this paper, we address the questions associated primarily with the last two stages of the validation process. Diffusion‐

weighted images were acquired before and after fixation in ex vivo prostatectomy samples and data were fitted using the VERDICT framework

to examine changes. The resulting parameter maps were then compared to registered histological images sliced in the MR imaging plane to deter-

mine the validity of the ex vivo VERDICT parameters.

2 | METHODS

2.1 | Sample preparation

Five radical prostatectomy specimens (four Gleason 3 + 4, one Gleason 3 + 3) were prepared for ex vivo scanning as described previously.11

Briefly, in vivo images were acquired on a 3 T MRI (Philips Achieva, Best, The Netherlands) using a 3D T2‐weighted axial sequence (fast spin echo,

TE = 100 ms, TR = 5.2 s, echo train length = 16, field of view (FOV) 18 cm × 18 cm, 0.4 × 0.4 × 2.5 mm3 resolution). The prostate was contoured on

each slice by a radiologist (E.J., M.B., each with two years' experience) and the contours were formed into a 3D volume that was subtracted from a

generic mould template in Rhino 5 (McNeel North America, Seattle, WA, USA). The mould was 3D printed from a nylon powder (PA2200 powder,

40–50 μm size) using selective laser sintering (EOSINT P100).

Seminal vesicles were removed before placing the specimen in the mould. The prostate was imaged fresh in saline (within 8 h of removal),

then fixed in 10% formalin for at least 10 h, washed and placed in saline for at least 8 h and imaged a second time after fixation. Scanning
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temperature was 18.5 ± 0.5°C. Then a single 5 mm reference slice was cut before the prostate was removed from the mould for further histolog-

ical processing. The porous grid design allowed for fixative penetration into the mould. Mould landmarks identifying a reference plane were

located in MRI using gradient echo images spaced 0.5 mm apart, allowing co‐localization of the fresh and fixed images. Guides in the mould deter-

mined the histological slicing plane that corresponded to the reference plane, as described by Bourne et al.11
2.2 | Ex vivo MRI data acquisition

Ex vivo images were acquired at 9.4 T (Agilent Inc., Santa Clara, CA, USA) using 400 mT/m gradients and a 72 mm internal diameter quadrature coil

(RAPID Biomedical, Rimpar, Germany). A high‐resolution T2‐weighted (fast spin echo) sequence (repetition time TR = 6 s, echo time TE = 20 ms,

0.375 × 0.375 × 0.5 mm3 resolution, 96 × 96 mm2 FOV at 9.4 T, or TR = 5.2 s, TE = 100 ms, 0.4 × 0.4 × 2.5 mm3 resolution, 180 × 180 mm2

FOV at 3 T) was acquired for registration purposes. A multi‐echo T2 sequence (TR = 2.2 s, TE = 3 ms, 96 echoes, 1.25 × 1.25 × 2.5 mm3,

80 × 80 mm2 FOV) was also acquired to examine the nature of the T2 relaxation.

Diffusion protocols differed for fresh and fixed scans due to timing constraints, but both used a multi‐slice pulsed gradient spin echo for

diffusion weighting, TR = 2 s, and had the same geometry (1.25 × 1.25 mm2 in plane, eight 2.5 mm thick slices with 2.5 mm gap, 80 × 80 mm2

FOV). Diffusion‐weighted images (three orthogonal directions + one unweighted image) were acquired using a fast spin echo readout for fresh

scans (diffusion parameters and echo times in white inTable 1) and a spin echo readout for fixed scans (parameters in grey inTable 1). In addition,

a high‐angular‐resolution scan (δ = 4.5 ms, Δ = 20 ms, TE = 36 ms, G = 18.7 mT/m, with 20 directions for the fresh protocol and 30 directions for

fixed12) was acquired. The VERDICT parameters for fits to data from the two acquisition protocols were compared in one fixed tissue sample.
2.3 | Data analysis

The diffusion data were fitted to a range of compartmental models outlined in Table 2. The compartments are described mathematically in the

Supplementary Material and References 13 and 10, and include ball (isotropic, unrestricted diffusion), tensor (anisotropic diffusion described using

three directions), sphere (isotropically restricted diffusion) and Watson (a group of ‘sticks’, each with diffusion restricted to a single dimension,

having a Watson distribution of angles). Models combine compartments by summing the theoretical signal for compartments. All models include

a normalization constant, S0, and a T2 relaxation time constant, T2.

Several one‐ and two‐compartment models were tested, including the conventional diffusion tensor (tensor) and bi‐exponential (ball‐ball)

models. A separate ADC, ADCb < 1000, was calculated using data with b‐values under 1000 s/mm2 to imitate the output of current common clinical

practice. Two‐compartment models with a spherical restricted compartment are based on VERDICT models applied in vivo, but without the third

vascular compartment. In models with two compartments, the ball or sphere is assumed to represent the intracellular space and the diffusion coef-

ficient was fixed to DI = 0.3 × 10−3 mm2/s. This value was obtained by fixing DI to a range of values between 0.1 and 1.5 and fitting data from five

separate high‐SNR (signal‐to‐noise ratio) regions using the ball‐sphere and tensor‐sphere models. There was little variation in the objective func-

tion, but a minimum near 0.3 × 10−3 mm2/s was observed. This is in agreement with previous studies14 showing that the fit is insensitive to the

value of DI, although very low values can affect the radius parameter.
TABLE 1 Scan parameters for the fresh and fixed protocols. The value in each gradient separation (Δ) + duration (δ)/gradient strength (G) box
corresponds to the b‐value (s/mm2) for that scan. Empty boxes indicate that gradient strength was not included in the protocol. Values in
parentheses show the number of averages for a particular scan (no parentheses, one average)

Δ/TE (ms) δ (ms)
G (mT/m):
40 80 120 160 200 240 280 320 360 400

10/19 3 Fresh 9 148 334 594 752

Fixed 9 84 232 455 752 928

30/46 3 Fresh 30 120 478 1077 (2)

Fixed 30 269 748 (2) 1 465 (2)

10 Fresh 306 1222 2750 7638 (2) 14 971 (2)

Fixed 306 2750 7638 (2) 14 971 (2)

50/66 3 Fresh 51 202 808 (2)

Fixed 51 455 1263 (4)

10 Fresh 535 2139 8555 (4)

Fixed 535 4812 13367 (4)

70/86 3 Fixed 71 640 (2) 1779 (6)

10 Fixed 764 6875 (2) 19096 (6)



TABLE 2 Compartmental models included in the model selection process, along with the number of free
parameters fitted. All models include a normalization parameter, S0, and T2 to account for varying TE

Model Num. Params

Ball (ADC) 3

Zeppelin 6

Tensor 8

Watson 6

Ball‐ball (bi‐exp) 4

Zeppelin‐ball 7

Tensor‐ball 9

Watson‐ball 7

Ball‐sphere 5

Zeppelin‐sphere 8

Tensor‐sphere 10

Watson‐sphere 8

Watson‐ball‐sphere 9*

*Watson stick and ball compartments in Watson‐ball‐sphere are considered to have the same diffusion coefficient.
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Data were fitted voxelwise using a maximum‐likelihood approach that accounts for Rician noise.13 A noise estimate was calculated for each

voxel using the standard deviation across repeated b = 0 images withTE = 19ms.Models were compared using the Akaike information criterion (AIC):

AIC ¼ 2k − 2 ln Lð Þ;

where k is the number of model parameters and L is the likelihood function for the model.

A conventional colour fractional anisotropy (FA) map was generated to display the primary diffusion direction and anisotropy. An additional in‐

plane anisotropy map, which displays the primary diffusion direction within the imaging plane, was generated for comparison with the 2D histol-

ogy. The 3D FA was used as the anisotropy measure in this in‐plane map and only the anisotropic compartment of the model was used (ie, in the

tensor‐sphere model, only the anisotropy of the tensor is considered).

2.4 | Histology and structure tensor analysis

Three micrometre whole mount sections of the prostate were cut at 5 mm spacing. The first 5 mm slice used the cutting guides in the mould to

obtain a similar orientation to the MR imaging plane and a location near the centre for the MRI reference slice. Slices were stained with

haematoxylin and eosin (H&E) and digitized at 20× objective magnification (Hamamatsu Nanozoomer, Hamamatsu City, Japan). Regions of low

cellularity were identified by the low numbers of dark purple cell nuclei.

Structure tensor analysis15,16 was performed on 5× magnification (1.8 μm resolution) images converted to greyscale. Analysis was restricted

to the stroma, selected using k‐means clustering with three clusters (see Supplementary Figure 1). The structure tensor describes the local image

orientation by convolving the image (I) with a 2D Gaussian weighting function (w) in a neighbourhood Ω:

J x; yð Þ ¼ ∬Ω x;yð Þw ξ − x; η − yð Þ∇I ξ; ηð Þ∇TI ξ; ηð Þ dξ dη:

A Gaussian with full width at half maximum (FWHM) of 15 μm was used, which is near the average distance a water molecule is expected to

diffuse over a 30 ms MRI experiment. This value appeared to characterize the histological microstructure well compared with other FWHMs

between 1 and 20 μm. An anisotropy index was calculated using the eigenvalues, λ1 and λ2, of the structure tensor: AI ¼ λ1 − λ2
λ1 þ λ2

. The eigenvector

of the smaller eigenvalue gives the dominant direction for that pixel.

2.5 | Registration

TheT2‐weighted image from the reference slice of the fresh specimen was registered to theT2‐weighted image of the fixed specimen by a 2D rigid

registration using a block‐matching strategy and correlation coefficient as similarity measure.17,18

H&E images were downsampled to 0.25× and converted to greyscale for registration. Six corresponding points were chosen on the T2‐

weighted fixed image and the corresponding histological slice. These points generated an initial transformation that was refined using a 2D rigid
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registration with block‐matching strategy and correlation coefficient as similarity measure. The final transformations were applied to the diffusion

parameter maps, resampling using nearest‐neighbour interpolation to avoid discontinuities at boundaries; diffusion directions were also rotated

using the transformations.

2.6 | Statistics

For comparison of fresh and fixed parameters, regions of interest (ROIs) were drawn (by E.J. and M.B.) around the peripheral zone and transition

zone in the reference slice. Tumour was also outlined when present in the reference slice (n = 2). Voxels from the fresh parameter maps were

compared pairwise with voxels from the fixed parameter maps using the Wilcoxon signed‐rank test. Comparisons between parameter values

across ROIs in the same specimen were made using the Mann–Whitney U‐test. Values were considered significant with p < 0.05/48 to correct

for multiple comparisons.

3 | RESULTS

Figure 1A shows a diffusion‐weighted image (b = 1465 s/mm2). The image appears heterogeneous, with SNR of 81 for the red voxel and 19 for the

green voxel. This difference was due partly to different initial signals (proton density and coil sensitivity effects) and partly to smaller diffusion

signal attenuation in the red voxel. For the largest diffusion weighting, b = 19 096 s/mm2 with six signal averages, the SNR is 5.8 in the red voxel

and 1.7 in the green voxel.

Figure 1B and 1 C shows representative results from the fitting. The VERDICT parameters for the ball‐sphere model calculated from data from

the fresh and fixed protocols in fixed tissue agreed within 15% (data not shown) except in areas where the radius was poorly determined,
FIGURE 1 Model fitting results. A, diffusion‐weighted imaging indicating two points with high (red) and low (green) SNR. B, fits to the data from
the high‐SNR voxel for three models (see supplementary figure 2 for remaining fits) indicating that tensor‐sphere and Watson‐ball‐sphere capture
the effects of restriction at high b‐values while tensor‐ball and tensor‐sphere better capture the variation with gradient direction. Signal is plotted
versus cos β, where β is the angle between the primary diffusion direction and the gradient direction. Plots for tensors are not smooth because the
signal also depends on the secondary diffusion direction. C, fits for the lower‐SNR voxel show similar trends as in B, but with less deviation at high
b‐values for the tensor‐ball model and more signal dependence on gradient direction. The scale bar is 10 mm



6 of 13 BAILEY ET AL.
discussed further below. The fits for the higher‐SNR voxel (Figure 1B) demonstrated that the tensor‐ball model was unable to capture the effects

of restricted diffusion at high b‐values whereas the tensor‐sphere and Watson‐ball‐sphere models both captured these changes. The signal depen-

dence on cos β is also plotted, where β is the angle between the applied diffusion gradient and the primary diffusion direction of the tensor (dif-

ferent values are therefore possible along the x‐axis depending on the primary direction estimated by the model fit). Only points from the high‐

angular‐resolution scan are shown for clarity, although all data were fitted to obtain directional estimates. The tensor‐ball and tensor‐sphere

models produced similar fits to the gradient direction data with a jagged fit line due to signal variation in the secondary diffusion direction, while

the Watson‐ball‐sphere model did not capture these variations as well, although neither the tensor nor Watson models captured all variation in

the signal with gradient direction.

Similar trends were observed for the low‐SNR voxel (Figure 1C), but with smaller differences between the fits of the tensor‐ball and tensor‐

sphere models and larger anisotropy.

Figure 2 demonstrates that the tensor‐sphere model had the lowest AIC in most voxels. A limited selection of models is presented to highlight

the effects of incorporating restriction and anisotropy, but data from other models can be found in Supplementary Figures 2 and 3. To examine

the effects of fixation on model parameters and compare with histology, we used the tensor‐sphere model since it best described the data in

most voxels.

Figure 3 shows selected parameter maps for one sample before and after fixation (see Supplementary Figure 4 for additional parameter maps).

A map of ADCb < 1000 is presented for comparison with tensor‐sphere parameters. Although the ADCb < 1000 fits used fewer data, the results were

similar to the ADC fit using all data. There was spatial heterogeneity in the maps but similar spatial patterns were observed before and after fix-

ation with little change in the absolute values of the parameters, except in a few voxels of the fresh scan of Sample 2 where radius was poorly

determined. These regions have low intracellular volume fraction and thus a small signal contribution from the restricted sphere component such

that all values of R between the allowed fitting limits (0–20 μm) produce similar signal curves, making accurate determination of R challenging. The

colour FA map in the bottom row demonstrates that the changes in directional parameters were also small.

The boxplots summarize the parameter changes in all five specimens and black asterisks indicate a statistically significant difference between

fresh and fixed specimens. There was a small but significant decrease in ADCb < 1000 and DE with fixation. Four of the five samples had increased

f I following fixation and this was due primarily to changes in the transition zone. The changes in radius, R, and FA with fixation were not significant

in all specimens and did not show a consistent direction. Data are shown for the whole prostate, but tumour had significantly higher f I and lower

ADCb < 1000 than peripheral zone. The values of ADCb < 1000 across voxels had a strong correlation with DE and strong inverse correlation with f I

from the tensor‐sphere model (see Supplementary Figure 5). ADCb < 1000 correlated weakly with R.
FIGURE 2 Model selection demonstrates that A, in this fixed sample, the tensor‐sphere model best described the data (lowest AIC) in most
voxels. In some regions later found to contain more lumen space, simpler models were sufficient, but B, a boxplot of the relative AIC values
confirms that, for most voxels in both fresh and fixed cases, the tensor‐sphere model explained the data better than a two‐compartment model
without restriction (tensor‐ball) and a two‐compartment model without anisotropy (ball‐sphere)



FIGURE 3 Comparison of the ADCb < 1000 calculation and selected tensor‐sphere model parameters in fresh and fixed samples. Parameter maps
for a representative sample demonstrated similar spatial trends and absolute values before and after fixation. The boxplots summarize parameter
values in all five samples. Black asterisks indicate that small but statistically significant decreases in ADCb < 1000 and DE following fixation were the
only consistent trends
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Figure 4 shows the ADCb < 1000 and f I maps along with the registered histology reference slice in one of the five samples (remaining samples

in Supplementary Figure 6). Regions of high f I and low ADC correspond to regions of high cell fraction on histology, including in the Gleason 3 + 4

tumour outlined in black on histology. Regions of low f I and high ADC are dominated by either lumen space (blue arrow) or low‐cellularity stroma.

Some non‐cancerous regions of the transition zone also demonstrated higher f I and these regions also appeared cellular on H&E.
FIGURE 4 Representative ADCb < 1000 and f I maps with registered H&E slice. The tumour region is in white on MRI and black on histology.
Regions with substantial lumen space (blue arrows) correspond to regions with higher ADCb < 1000 and lower f I in the MRI maps. However,
ADCb < 1000 and f I were also related to cell fraction, most clearly seen in the tumour regions, but in this case also near the bottom of the peripheral
zone. Other specimen comparisons can be seen in supplementary figure 6. The scale bar is 10 mm
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Figure 5 shows the maps of the sphere radius, R. In regions with substantial lumen space (orange arrows), R was poorly determined and tended

toward the largest values allowed by the fitting (20 μm). These regions are not plotted in the R map because of the high uncertainty in the fitted

parameter value. The remaining regions had a relatively uniform R indicating a sphere radius of about 6–7 μm. This was also the case in tumour

regions (Samples 3 and 5). The white and green boxes highlight regions of lower and higher R, respectively, and the histology from these regions is

outlined in the rows underneath each sample, but showed no obvious differences.

The structure tensor analysis on the segmented stroma of the H&E image is shown in Figure 6 alongside the in‐plane colour FA map. In these

maps, the direction is indicated by the colour in the legend, and these corresponded well in most regions of all samples. White arrows indicate

several regions with a colour (directional) difference in regions of bending or dispersing fibres. The intensity corresponds to the anisotropy

(anisotropy index for structure tensor and FA of the tensor compartment for MRI) and lower FA is observed in regions where the structure tensor

suggests that there is less stroma or the direction in the stroma is less coherent over the MRI voxel scale.
4 | DISCUSSION

This study implemented a patient‐personalized scanning and registration pipeline to validate VERDICT model parameters using histology. The rich

diffusion data set allowed for examination of restricted and anisotropic signal components, including the novel testing of a Watson‐distributed

sticks compartment in cancer. The mould limited tissue deformation and confined histological slicing to the MR imaging plane, allowing detailed

histological comparison following rigid alignment with small residual errors due to slicing artefacts. In previous in vivo VERDICT studies, only

biopsy data were available for parameter validation, with uncertainty due to biological heterogeneity and the spatial accuracy of biopsy sampling.

The registered VERDICT maps and histological images confirmed previous in vivo VERDICT model findings, demonstrating high intracellular

fraction in tumour regions.
4.1 | Modelling water diffusion in prostate

The tensor‐sphere model best described the diffusion data in most regions of both fresh and fixed ex vivo prostate. This is in agreement with pre-

vious ex vivo studies.7 It also confirms in vivo findings that single‐compartment models such as the ADC or diffusion tensor fail when data include

high b‐values or varying diffusion times,8,19 but more complex models may capture additional information related to cellular fraction.

The sphere component captures restricted diffusion thought to be related to intracellular water; this was supported by the correspondence

between the volume fraction of this compartment ( f I) and the cellular fraction on histology (Figure 4). The SNR at high b‐values is also important

for characterizing restricted diffusion (Figure 1C).
FIGURE 5 Comparison of R and cell size. Parametric maps of the VERDICT sphere radius R (top row) are relatively uniform with most values 6–
7 μm, including in tumour regions. Orange arrows indicate several regions of low cellularity on histology where the sphere radius was poorly
determined and thus is not plotted. White and green boxes indicate areas of low and high R that are depicted in high‐resolution histological images
in the second and third rows



FIGURE 6 Anisotropy comparison for histology and VERDICT MRI. The first column shows the H&E histology image for each sample and the
middle column is a structure tensor analysis of the stroma segmented from the histology, where colour indicates dominant fibre direction and
brightness indicates the anisotropy index. For VERDICT analysis (right‐hand images), the colour represents the primary in‐plane diffusion direction
and the brightness represents the 3D FA of the tensor component. White arrows indicate regions of bending or dispersing fibres described further
in the text
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The tensor component of the model describes the anisotropic aspects of diffusion and corresponded to anisotropic features in the stroma

(Figure 6). Although this anisotropic component has been observed in previous ex vivo studies,7,8 it is not observed with in vivo VERDICT data.

This is probably related to the coarser in‐plane resolution and more limited data. Although the model of Watson‐distributed sticks has been suc-

cessfully employed to describe dispersing fibres in the brain,10 the Watson model did not describe signal variation with gradient direction as well

as a tensor (Figure 1).

Other microstructural models, such as D‐Histo,20 also employ high b‐values to examine restricted diffusion in prostate cancer. The models

differ in their approach to characterizing restriction. VERDICT estimates average cell size whereas D‐Histo separates signal into a highly restricted

diffusion component related to lymphocytes and a restricted component related to epithelial cells. There were insufficient regions of inflammation

in our data set to determine sensitivity to immune cell populations. In addition, VERDICT examines diffusion direction whereas D‐Histo analysis

has focused on isotropic diffusion measures.

Alternative MRI contrast mechanisms also reveal microstructure. In luminal water imaging (LWI), the fraction of signal with long T2 relates to

the lumen space and decreases in cancers as cells proliferate into the space.21 VERDICT does not distinguish extracellular water in the stroma from

that in the lumen, while the T2 spectrum in LWI does not distinguish between non‐lumen water in the intracellular and stromal spaces. The two
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techniques are therefore likely to provide complementary information, but ex vivo LWI does not exhibit the same long‐T2 component.22 The com-

bination of T2‐ and diffusion‐sensitive data is an important avenue for future in vivo studies. Indeed, hybrid multidimensional MRI,23 which

explores T2 using a smaller range of echo times than LWI and lower b‐values than VERDICT, estimates lumen, epithelial and stromal fractions

and correlates with Gleason score. Higher b‐values and techniques such as VERDICT that can characterize restricted diffusion may improve spec-

ificity further.
4.2 | VERDICT model parameters—Cells

Variation of MRI parameters throughout the transition zone and peripheral zone appears to be true biological heterogeneity, with regions of lower

cell density and more lumen space in Figure 4 exhibiting lower f I and often higher ADCb < 1000. Variation in imaging properties throughout the

prostate and its relation to biological variation has been noted previously.24

However, the higher intracellular fraction in tumour tissue relative to benign agrees with in vivo VERDICT findings4: Panagiotaki et al found

median f I ~ 0.5 in tumour and 0.2 in benign tissue. The volume fractions were also similar to those found in previous ex vivo VERDICT studies of

fixed tissue.7

That R varies little between benign epithelial regions and tumour is not unexpected given that cancer cells are derived from epithelial cells.

The R maps in a previous ex vivo VERDICT study showed more variation, including lower R values in non‐cancerous regions, but that study

allowed the intracellular diffusion coefficient to vary during fitting, which can produce parameter couplings. The R range of about 6–7 μm found

in this study corresponds to a cell diameter of 12–14 μm, in agreement with the value of 13.4 ± 2.5 μm found for cultured prostate cancer cells25

and just below the R of 8–8.5 μm in in vivo VERDICT studies,4 which may indicate some cell shrinkage after surgical removal.

The inverse relationship between f I and ADCb < 1000, along with the corresponding histology, support the conventional wisdom that ADC

relates to tumour cellularity. However, the data also demonstrated a weak correlation between ADCb < 1000 and R. A comparison of regions of

low and high R in Figure 5 did not reveal obvious differences between these regions, and given the small number of samples further investigation

is needed to interpret R. Nevertheless, the data suggest that ADC is related to intracellular fraction, but also influenced by other factors such as R

that may affect its specificity as a biomarker.
4.3 | VERDICT model parameters—Anisotropy

The relationship between diffusion anisotropy and extracellular features such as stroma and elongated stromal myocytes has been observed in

previous work.8 The anisotropy is weaker than that observed in the white matter of the brain, but still visible, particularly when plotted using

the tensor compartment's diffusion coefficients. The influence of stromal fibres and elongated myocytes on diffusion anisotropy is likely to be

quite different from the restricted diffusion inside white matter axons, but similar errors in the directions obtained from the tensor model can

be observed in areas where fibres change direction at a subvoxel scale (white arrows in Figure 6). For example, in Sample 1, fibres above the

arrow's tip are curving slightly upward at an angle of about 160° (magenta‐blue colour), but fibres below the arrow's tip curve downward at an

angle of about 20° (orange‐yellow). However, the MRI voxel corresponding to this area is red, corresponding to an angle of 0°, which would be

the directional average of water influenced by all of these fibres.

In the brain and spinal cord, such fibre dispersion has been accounted for using the NODDI model,10,16 which assumes a Watson distribution

of fibres, but this model was not an improvement over the tensor model in prostate. However, given the failure of the tensor to characterize the

primary diffusion direction in regions of dispersing and bending fibres, other fibre distributions or higher‐order spherical harmonics may better

characterize anisotropic diffusion in prostate. Exploring such subvoxel variation in anisotropy is challenging with conventional diffusion techniques

and new b‐tensor diffusion imaging and microscopic anisotropy techniques may offer better characterization of tissue microstructure.26,27

Although FA in the tumour region itself has not demonstrated significant differences from benign tissue except in differentiating stromal

benign prostatic hyperplasia,28 the role of diffusion anisotropy in non‐tumour tissue is relatively unexplored. Stroma has a role in cancer progres-

sion and invasion,29,30 and non‐invasive biomarkers related to stromal features are therefore of interest. The colour FA maps plotted for VERDICT

depict only the tensor component of the two‐compartment model, making it easier to see fibre direction in voxels with mixed cellular and stromal

features than in colour FA maps derived from the conventional diffusion tensor.
4.4 | Effects of fixation

Model selection was not affected by the fixation procedure, except in parts of the transition zone of Sample 2 that could be described by simpler

models such as tensor‐ball. However, the parametric maps for the tensor‐sphere model in this sample were consistent with the changes seen in

other samples, except that R was poorly determined. This suggests that the more limited data for fresh samples limited the accuracy of R in regions

of low cell fraction.
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The parametric maps demonstrated similar spatial trends before and after fixation, and comparison of the absolute values suggested that

changes were small, with a decrease in DE and an increase in f I as the only consistent trends in VERDICT parameters. Significance may have been

affected by residual errors in the registration and the heterogeneity within both the transition and peripheral zones.

Both the decrease in the extracellular diffusion coefficient, DE, and the increase in the intracellular water fraction, f I, are consistent with water

loss from the extracellular space during fixation. The extracellular diffusion coefficient was fitted without a tortuosity approximation, so a decrease

in the extracellular space is expected to increase tortuosity and decrease the diffusion coefficient, although there may also be some change in the

intrinsic extracellular diffusion coefficient due to protein cross‐linking during fixation. The water fractions are relative, so an apparent increase in

f I is consistent with water loss if more water is lost from the extracellular than the intracellular compartment. The f I increase was larger in the

transition zone and the reason is unclear, but a comparison of the in vivo and ex vivo peripheral zone volumes suggests a collapse in the peripheral

zone immediately after surgery, such that peripheral zone water loss may occur even before fixation. The change in the sphere radius R was not

significant, which also suggests that more water leaves the lumen and extracellular spaces than the cells.

These changes with fixation are also consistent with previous ex vivo studies in prostate,8,31 as well as brain32 and optic nerve,33 which

suggest that fixation influences water content and diffusion coefficients, but neither model selection nor model parameters associated with tissue

structure (R, directional patterns), are greatly affected by fixation.

These small changes suggest that fixation is unlikely to substantially affect estimates of VERDICT parameters related to tissue microstructure

such as cell fraction, cell size or primary diffusion direction. A validation pipeline for in vivo VERDICT may therefore compare these parameters

with histology without additional corrections for fixation.
4.5 | Limitations

The models involve several assumptions and simplifications in order to make data fitting tractable. The T2 was modelled as a mono‐exponential

decay, an assumption that was checked using a multi‐echo T2 sequence. This differs from the multi‐exponential T2 behaviour that has been

observed in vivo,21 and T2 values were also shorter than those observed in vivo. This is probably related to differences in extracellular space, such

as the collapse of some luminal spaces after surgery, water efflux and possibly increases in water exchange between the lumen and stromal spaces.

Incorporating multi‐exponential T2 into a diffusion model is complex given that exchange is relatively fast compared with differences in T2 relax-

ation rates34 but slow for the majority of diffusion weightings and times.35 We therefore limited the scope of this paper to models with a singleT2

component in all regions, which may have resulted in some systematic errors in regions with multi‐exponential T2 decay.

VERDICT models cell size with a single average radius, but cells have a distribution of sizes that can be captured by more complex models that

assume a size distribution.36,37 The amount of lumen space and the organization of cells around the lumen are also key features in histological

grading. VERDICT currently does not distinguish extracellular water in the stroma from that in the lumen, but the directional diffusion findings

in this study suggest this may also be possible by incorporating anisotropy information into future in vivo VERDICT work.

For model stability at low SNR, the intracellular diffusion coefficient, DI, was fixed to 0.3 × 10−3 mm2/s. This value was estimated from a fit to

a high‐SNR region and it was assumed that intracellular diffusion was constant throughout the prostate. This value is in agreement with that from

high‐resolution ex vivo studies of epithelial prostate regions.9 It has also been previously demonstrated that DI has limited influence on the fit

except at low radius values, where parameter coupling between R and DI can occur.13

Comparison of MRI and histology was limited by the registration accuracy. The use of a rigid transformation simplifies registration but does

not correct for all deformations between MRI and histology, particularly histological slicing artefacts near the urethra. Non‐rigid methods were

unable to correct for these deformations. Differences in slice thickness and through‐plane location may also contribute to errors. Quantitative

voxelwise comparisons should therefore involve caution, but the method is accurate enough for visual comparison and ROI‐based analysis.

Structure tensor analysis was subject to the 2D nature of the histological images. The mould allowed similar image planes so that most in‐plane

directions should be comparable. However, when the primary diffusion direction is perpendicular to the image plane, the secondary diffusion direc-

tion may have a larger contribution to in‐plane diffusion. The secondary diffusion direction is not considered when constructing the in‐plane colour

FA maps and comparison in these cases may be inaccurate. The use of the 3D FA to scale the image brightness will be most misleading in cases

where the primary diffusion is through plane, which is expected to be a small number of voxels given a spherical probability distribution of angles.

Data were acquired from five samples, only two of which contained cancer in the reference slice. Four samples were Gleason 3 + 4 and one

was Gleason 3 + 3. The small number of samples and limited range of Gleason grades mean that this study examines a limited subset of prostate

cancers with moderately favourable outcomes. These specimens do not represent the full range of microstructures present in prostate tissue and

cancers. In particular, cancers with Gleason scores lower than 3 + 4 may not show the same differences in VERDICT intracellular fraction, since

there is less cell proliferation into the lumen space. Nonetheless, the patterns related to cellularity and fibre orientation were observed in both

cancerous and non‐cancerous tissues and registration allowed for a detailed spatial comparison. The similarity in VERDICT parameters with fixa-

tion and registration of MRI to histology can be used as the basis for developing a full pipeline to validate in vivo VERDICT parameters. This study

will involve a larger number of patients with a wide variety of prostate microstructure.
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This study developed the ex vivo portion of a pipeline to validate VERDICT MRI in prostate using histology. The first part of the pipeline focused

on fixation effects and demonstrated that VERDICT parameter changes were small. Slices for histology were then cut in the MR image plane,

guided by a patient‐specific mould, and rigid registration was sufficient for ROI‐based comparison with histology. This demonstrated that regions

of high intracellular fraction from VERDICT corresponded to regions of higher cell density in histology, including in tumours, and the primary

diffusion direction related to stromal orientation patterns on histology.
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