The Francis Crick Institute
Wan-2019-Using-deep-maxout-neural-networks-t.pdf (3.01 MB)

Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks.

Download (3.01 MB)
journal contribution
posted on 2020-01-09, 16:43 authored by Cen Wan, Domenico Cozzetto, Rui Fa, David T Jones
Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other protein-protein interaction network-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.


Usage metrics

    The Francis Crick Institute