1-s2.0-S2211124721013693-main.pdf (3.97 MB)
Download file

Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non-canonical LC3 lipidation.

Download (3.97 MB)
journal contribution
posted on 29.10.2021, 11:47 by Rachel Ulferts, Elena Marcassa, Lewis Timimi, Liam Changwoo Lee, Andrew Daley, Beatriz Montaner, Suzanne Dawn Turner, Oliver Florey, John Kenneth Baillie, Rupert Beale
Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.

Funding

Crick (Grant ID: 10827, Grant title: Beale FC001827)

History