acs.jmedchem.7b00596.pdf (3.06 MB)
Download fileStructure-guided optimization of HIV integrase strand transfer inhibitors
journal contribution
posted on 2020-10-15, 16:46 authored by Xue Zhi Zhao, Steven J Smith, Daniel P Maskell, Mathieu Métifiot, Valerie E Pye, Katherine Fesen, Christophe Marchand, Yves Pommier, Peter Cherepanov, Stephen H Hughes, Terrence R BurkeIntegrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates. Previously, we explored 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides as an INSTI scaffold, making a limited set of derivatives, and concluded that broadly effective INSTIs can be developed using this scaffold. Herein, we report an extended investigation of 6-substituents as well the first examples of 7-substituted analogues of this scaffold. While 7-substituents are not well-tolerated, we have identified novel substituents at the 6-position that are highly effective, with the best compound (6p) retaining better efficacy against a broad panel of known INSTI resistant mutants than any analogues we have previously described.
History
Publisher DOI
Usage metrics
Categories
Keywords
Cell LineCrystallography, X-RayDrug Resistance, ViralHIV InfectionsHIV IntegraseHIV Integrase InhibitorsHIV-1HumansModels, MolecularMutationNaphthyridinesVirus ReplicationCherepanov FC001061Medicinal & Biomolecular Chemistry0304 Medicinal and Biomolecular Chemistry1115 Pharmacology and Pharmaceutical Sciences0305 Organic Chemistry