The Francis Crick Institute
eabf3641.full (1).pdf (3.12 MB)

Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization

Download (3.12 MB)
journal contribution
posted on 2021-08-13, 11:22 authored by Nicholas AW Bell, Philip J Haynes, Katharina Brunner, Taiana Maia de Oliveira, Maria M Flocco, Bart W Hoogenboom, Justin E Molloy
Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that plays important roles in DNA repair, chromatin organization and transcription regulation. Although binding and activation of PARP1 by DNA damage sites has been extensively studied, little is known about how PARP1 binds to long stretches of undamaged DNA and how it could shape chromatin architecture. Here, using single-molecule techniques, we show that PARP1 binds and condenses undamaged, kilobase-length DNA subject to sub-piconewton mechanical forces. Stepwise decondensation at high force and DNA braiding experiments show that the condensation activity is due to the stabilization of DNA loops by PARP1. PARP inhibitors do not affect the level of condensation of undamaged DNA but act to block condensation reversal for damaged DNA in the presence of NAD. Our findings suggest a mechanism for PARP1 in the organization of chromatin structure.


Crick (Grant ID: 10119, Grant title: Molloy FC001119)


Usage metrics

    The Francis Crick Institute