The Francis Crick Institute
emmm.201607227.pdf (1.02 MB)

Sensing infection and tissue damage

Download (1.02 MB)
journal contribution
posted on 2021-08-18, 10:18 authored by Caetano Reis e Sousa
Innate and adaptive immunity work concertedly in vertebrates to restore homoeostasis following pathogen invasion or other insults. Like all homoeostatic circuits, immunity relies on an integrated system of sensors, transducers and effectors that can be analysed in cellular or molecular terms. At the cellular level, T and B lymphocytes act as an effector arm of immunity that is mobilised in response to signals transduced by innate immune cells that detect a given insult. These innate cells are spread around the body and include dendritic cells (DCs), the chief immune sensors of pathogen invasion and tumour growth. At the molecular level, DCs possess receptors that directly sense pathogen presence and tissue damage and that signal via transduction pathways to control antigen presentation or regulate a plethora of genes encoding effector proteins that regulate immunity. Notably, molecular circuits for pathogen detection are not confined to DCs or even to immune cells. All cells express sensors and transducers that monitor invasion by viruses and bacteria and elicit suitable effector barriers to pathogen propagation. Here, I discuss work from my laboratory that has contributed to our understanding of these issues over the years.